封面
市场调查报告书
商品编码
1371889

2030 年 3D 列印药品市场预测:按剂型、技术、用途、最终用户和地区进行的全球分析

3D Printed Drugs Market Forecasts to 2030 - Global Analysis By Dosage Form, Technology (Semi Solid Extrusion, Stereolithography, Powder Bed Printing, Thermal Inkjet Printing and Other Technologies), Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据Stratistics MRC的数据,2023年全球3D列印药品市场规模为9,909万美元,预计到2030年将达到3.0279亿美元,预测期内年复合成长率为17.3%。

3D 列印药品市场由使用 3D 列印技术以更安全、更有效率的方式专为每位患者製造的药品结构。这些药物不需要完全摄入,因为它们的整体多孔结构很容易在口腔中分散。因此,经常吞嚥困难的患者、儿童、老人、中风、阿兹海默症、头颈癌和其他神经系统问题的患者都可以从这种药物中受益。我可以。

根据世界卫生组织(WHO)统计,2017年全球人均医疗保健支出为1,064.741美元。全球人均医疗保健支出从 2008 年的 864.313 美元增至 2018 年的 1,110.841 美元,其中美国位居榜首,2018 年达到人均 10,623.85 美元。

快速生产与原型製作、复杂的药物传输技术

3D 列印是原型製造和药物开发的一种快速且经济实惠的替代。它减少了对耗时且昂贵的传统製造程序(例如射出成型和锭剂)的需求。此外,透过精确控制药物释放的特性,可以3D列印复杂的药物传输系统。透过靶向体内的特定部位并改善药物输送,该技术可以提高药物的功效和安全性。

复杂的製造流程与法规障碍

3D列印药物的法规环境仍在不断发展,因此这些产品很难获得法规的核准。为了确保3D列印药品的安全、品质和有效性,必须建立强而有力的法律规范和标准。然而,在製药业实施3D列印技术需要专门的工具和知识。 3D 列印基础设施的设置和维护成本高昂,需要大量投资。

疾病增加

例如,肺炎导致的儿童死亡人数比其他感染疾病都多,每天约有 2,000 人死亡。其中超过20万是新生儿。因此,使用3D列印机製造药物可以让服药困难的儿童变得更容易。订製锭剂的口味、颜色和风格的可能性是这些锭剂的第一个优势。儿童疾病发病率上升推动了此类药物的日益普及,预计未来年度3D列印药物市场将在全球范围内活跃。

3D列印技术价格昂贵

由于必要的硬体、软体和材料的初始成本较高,中小型製药公司可能会发现实施 3D 列印技术具有挑战性。然而,由于较高的材料成本和较长的製造时间,3D列印药物的单位成本可能比传统药物更高。这可能会减少患者获得 3D 列印药物的机会,并减少对这些产品的需求。

新冠肺炎 (COVID-19) 影响:

由于 COVID-19 的爆发,3D 列印的使用增加。为了帮助製造药品和其他所需产品,先进的製造负责人部署了许多 3D 列印机。此外,由于 COVID-19 大流行导致的药品短缺,引起了製药公司对使用 3D 列印技术快速供应药品的想法的兴趣。 COVID-19 大流行预计将对市场扩张产生积极影响。先进的製造业务正在部署许多印表机来为药品和其他必需产品的生产提供动力。因此,这些技术的使用预计会在 COVID-19 大流行期间扩大。

预计神经病学领域在预测期内将是最大的。

由于帕金森氏症等某些神经系统疾病的患病不断上升,领域在预测期内占据了最大份额。例如,2015年8月,美国FDA核准了Aprecia Pharmaceutical的SPRITAM(左乙拉西坦)锭剂,这是市面上唯一治疗癫痫患者的药物。这项核准吸引了製药公司投资该领域,推动了市场成长。此外,2022 年 4 月发表的一篇论文揭示了一群德国和荷兰科学家如何使用 3D 列印技术製造迷你浮动复方药丸来治疗帕金森氏症。这项研究利用了熔融增材製造 (FDM)。

热喷墨列印领域预计在预测期内年复合成长率最高

热喷墨列印领域预计在预测期内年复合成长率最高。热喷墨列印是一种非接触式列印技术,利用热量将微小的墨滴驱动到基板上,形成高解析度的影像和图案。在 3D 列印治疗领域,热喷墨列印技术能够精确沉积药物成分,从而能够生产具有指定给药和成分的定製药物。此外,与其他 3D 列印製程相比,该技术非常经济,适合各种规模的製药公司使用。

占比最大的地区:

由于慢性病的增加、该国拥有良好的医疗基础设施、对研发的大量投资以及对技术进步的更多利用,亚太地区将在预期期间占据大部分。此外,由于多种要素,市场正在扩大,包括对廉价药物和锭剂的需求不断增加,以及医疗保健行业中 3D 列印的使用不断增加。 3D 列印药物越来越受欢迎,因为它们易于摄入并且几乎可以立即溶解。

复合年复合成长率最高的地区:

由于中国和日本在将 3D 列印药物技术整合其技术方面取得了相当大的进展,预计亚太地区将在预测期内呈现最高的发展速度。此外,澳洲和印度等新兴市场不断扩大的临床开发框架、研发和医疗基础设施为预测期内亚太市场带来了良好的成长预测。因此,吞嚥困难发生率的上升和医疗基础设施的扩张预计将推动市场扩张。

免费客製化服务

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和年复合成长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第1章执行摘要

第2章前言

  • 概述
  • 利害关係人
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 调查来源
    • 主要调查来源
    • 二次调查来源
    • 先决条件

第3章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 用途分析
  • 最终用户分析
  • 新兴市场
  • 新型冠状病毒感染疾病(COVID-19)的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第5章全球3D列印药品市场:按剂型

  • 奈米颗粒
  • 多重植入物
  • 解决方案
  • 药片
  • 其他剂型

第6章全球 3D 列印药品市场:依技术分类

  • 半固体挤出(SSE)
  • 立体光固成型(SLA)
  • 粉红床印刷
  • 热喷墨列印
  • 拉炼剂量
  • 直接写入
  • 熔融沉积建模
  • 选择性雷射烧结
  • 其他技术

第7章全球3D列印药品市场:依用途

  • 牙科
  • 神经病学
  • 整形外科
  • 儿童用
  • 对于老年人
  • 其他用途

第8章全球 3D 列印药品市场:依最终用户分类

  • 研究
  • 医院和诊所
  • 其他最终用户

第9章全球3D列印药品市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第10章进展

  • 合约、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第11章公司简介

  • Affinity Therapeutics
  • Aprecia Pharmaceuticals LLC
  • Astrazeneca
  • Bioduro
  • Cycle Pharmaceuticals
  • Extend Biosciences
  • Fabrx Ltd
  • Glaxosmithkline PLC
  • Hewlett Packard Caribe
  • Osmotica Pharmaceuticals
Product Code: SMRC23946

According to Stratistics MRC, the Global 3D Printed Drugs Market is accounted for $99.09 million in 2023 and is expected to reach $302.79 million by 2030 growing at a CAGR of 17.3% during the forecast period. The market for 3D-printed drugs consists of pharmaceuticals that are made specifically for each patient in a safer and more efficient manner using 3D printing technology. These medications do not have to be ingested completely because of their unitary porous architecture, which easily disperses in the mouth. Therefore, patients who frequently have swallowing issues, children, the elderly, and those suffering from the effects of stroke, Alzheimer's disease, head and neck cancers, and other neurological problems can all benefit from this type of drug.

According to the statistics by the World Health Organization, the global per capita healthcare expenditure amounted to USD 1,064.741 in the year 2017. The worldwide healthcare expenditure per person grew from USD 864.313 in 2008 to USD 1,110.841 in 2018, where the U.S. is the top country that amounted to healthcare expenditure of USD 10, 623.85 per capita in 2018.

Market Dynamics:

Driver:

Rapid production and prototyping and complex medication delivery techniques

A rapid and affordable alternative for producing prototypes and developing pharmaceuticals is 3D printing. It reduces the need for time- and money-consuming traditional manufacturing procedures like injection molding and tablet compression. Additionally, with precise control over medication release features, complex drug delivery systems can be made through 3D printing. By targeting particular regions of the body and improving drug delivery, this technique can increase the efficacy and safety of medications.

Restraint:

Complex manufacturing processes and regulatory hurdles

Obtaining regulatory approval for these products is difficult, as the regulatory environment for 3D-printed drugs is still developing. A strong regulatory framework and set of criteria must be established in order to guarantee the safety, quality, and effectiveness of 3D-printed drugs. However, specialized tools and knowledge are needed to implement 3D printing technology in the pharmaceutical production industry. The infrastructure for 3D printing can be expensive to set up and maintain, necessitating substantial investments.

Opportunity:

Rising disease prevalence

For instance, pneumonia kills more children than any other infectious disease and causes about 2,000 deaths each day. Newborns make up more than 200,000 of them. Therefore, due to 3D-printed medications, taking medication could become a lot simpler for kids who are averse to doing so. The possibility of customizing the tablet's taste, color, and style is the first advantage of these tablets. The rising adoption of these medications is being influenced by the rising incidence of pediatric disorders, which is expected to fuel the market for 3D-printed drugs globally over the next few years.

Threat:

The cost of 3D printing technology is high

Small and medium-sized pharmaceutical enterprises might find it challenging to embrace 3D printing technology due to the high initial cost of the necessary hardware, software, and materials. However, due to the high cost of materials and the period of time needed for production, 3D-printed pharmaceuticals may have higher prices per unit than conventional drugs. This may lower patient access to 3D-printed medications and lower demand for these products.

COVID-19 Impact:

The use of 3D printing has increased as a result of the COVID-19 outbreak. To assist with the creation of medicines and other necessary products, the operational individuals in the advanced manufacturing industry have introduced a number of 3D printers. Additionally, the COVID-19 pandemic's drug shortages have drawn pharmaceutical companies' attention to the idea of using 3D printing technology to supply medications rapidly. The COVID-19 pandemic is projected to have a favorable effect on market expansion. The operation of businesses in the advanced manufacturing sector has introduced a number of printers to aid in boosting the production of medicines and other essential products. Therefore, it is anticipated that the use of these technologies will grow during the COVID-19 pandemic.

The neurology segment is expected to be the largest during the forecast period

Neurology segment commanded the largest share over the projection period, due to the rise in prevalence of certain neurological conditions, such as Parkinson's disease. For instance, The U.S. FDA approved Aprecia Pharmaceutical's SPRITAM (levetiracetam) tablets in August 2015 as the only approved drug on the market for the treatment of people with epilepsy. This approval has attracted pharmaceutical companies' attention to invest in this segment, driving market growth. Additionally, in an article published in April 2022, a group of scientists from Germany and the Netherlands revealed how they created the Mini-Floating Polypill as a Parkinson's disease treatment using 3D printing technology. This study made use of fused deposition modeling (FDM).

The thermal inkjet printing segment is expected to have the highest CAGR during the forecast period

Thermal Inkjet Printing segment is estimated to witness the highest CAGR over the extrapolated period. Thermal Inkjet Printing is a non-contact printing technology that utilizes heat to drive microscopic droplets of ink onto a substrate, creating high-resolution pictures or patterns. In the context of 3D printed therapeutics, thermal inkjet printing technology allows for the accurate deposition of pharmaceutical ingredients, enabling the fabrication of tailored medications with specified dosages and compositions. Moreover, the technology is reasonably economical compared to other 3D printing processes, making it accessible to pharmaceutical companies of varying sizes.

Region with largest share:

Due to an increased prevalence of chronic diseases, the availability of an outstanding domestic healthcare infrastructure, significant investment in R&D, and the region's expanding utilization of technological advancements, the Asia Pacific region dominated with a majority over the anticipated period. Moreover, the market is expanding due to a number of factors, including the increased need for less expensive medications or tablets and the expanding use of 3D printing in the healthcare industry. Pharmaceuticals produced through 3D printing are gaining popularity as they are simple to consume and almost immediately dissolve.

Region with highest CAGR:

Due to considerable advancements made by China and Japan in the integration of 3D-printed drug techniques into technology, the Asia Pacific is predicted to have the highest rate of development over the projected period. Furthermore, the expansion of clinical development frameworks, R&D, and healthcare infrastructure in developing nations like Australia and India is setting the Asia Pacific market for lucrative growth prospects over the course of the projection period. As a result, rising dysphagia rates and expanding healthcare infrastructure are predicted to drive market expansion.

Key players in the market:

Some of the key players in 3D Printed Drugs market include: Affinity Therapeutics, Aprecia Pharmaceuticals LLC , Astrazeneca, Bioduro, Cycle Pharmaceuticals, Extend Biosciences, Fabrx Ltd, Glaxosmithkline PLC, Hewlett Packard Caribe and Osmotica Pharmaceuticals.

Key Developments:

In October 2022, Cycle Pharmaceuticals Limited (Cycle) announced the launch of JAVYGTOR (sapropterin dihydrochloride) Tablets for Oral Use and Powder for Oral Solution, as a treatment option for patients with Phenylketonuria (PKU), approved by the US Food and Drug Administration (FDA). The launch of JAVYGTOR continues an established partnership between Cycle and Dr Reddy's Laboratories Ltd, in which the two companies are committed to providing affordable medicines to patients with rare diseases, complemented by the support these patients need.

Dosage Forms Covered:

  • Nanoparticles
  • Multidrug Implant
  • Solutions
  • Tablet
  • Other Dosage Forms

Technologies Covered:

  • Semi Solid Extrusion (SSE)
  • Stereolithography (SLA)
  • Powder Bed Printing
  • Thermal Inkjet Printing
  • Zip Dose
  • Direct Write
  • Fused Deposition Modelling
  • Selective Laser Sintering
  • Other Technologies

Applications Covered:

  • Dental
  • Neurology
  • Orthopedic
  • Children
  • Elderly
  • Other Applications

End Users Covered:

  • Research Laboratories
  • Hospitals & Clinics
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global 3D Printed Drugs Market, By Dosage Form

  • 5.1 Introduction
  • 5.2 Nanoparticles
  • 5.3 Multidrug Implant
  • 5.4 Solutions
  • 5.5 Tablet
  • 5.6 Other Dosage Forms

6 Global 3D Printed Drugs Market, By Technology

  • 6.1 Introduction
  • 6.2 Semi Solid Extrusion (SSE)
  • 6.3 Stereolithography (SLA)
  • 6.4 Powder Bed Printing
  • 6.5 Thermal Inkjet Printing
  • 6.6 Zip Dose
  • 6.7 Direct Write
  • 6.8 Fused Deposition Modelling
  • 6.9 Selective Laser Sintering
  • 6.10 Other Technologies

7 Global 3D Printed Drugs Market, By Application

  • 7.1 Introduction
  • 7.2 Dental
  • 7.3 Neurology
  • 7.4 Orthopedic
  • 7.5 Children
  • 7.6 Elderly
  • 7.7 Other Applications

8 Global 3D Printed Drugs Market, By End User

  • 8.1 Introduction
  • 8.2 Research Laboratories
  • 8.3 Hospitals & Clinics
  • 8.4 Other End Users

9 Global 3D Printed Drugs Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Affinity Therapeutics
  • 11.2 Aprecia Pharmaceuticals LLC
  • 11.3 Astrazeneca
  • 11.4 Bioduro
  • 11.5 Cycle Pharmaceuticals
  • 11.6 Extend Biosciences
  • 11.7 Fabrx Ltd
  • 11.8 Glaxosmithkline PLC
  • 11.9 Hewlett Packard Caribe
  • 11.10 Osmotica Pharmaceuticals

List of Tables

  • Table 1 Global 3D Printed Drugs Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global 3D Printed Drugs Market Outlook, By Dosage Form (2021-2030) ($MN)
  • Table 3 Global 3D Printed Drugs Market Outlook, By Nanoparticles (2021-2030) ($MN)
  • Table 4 Global 3D Printed Drugs Market Outlook, By Multidrug Implant (2021-2030) ($MN)
  • Table 5 Global 3D Printed Drugs Market Outlook, By Solutions (2021-2030) ($MN)
  • Table 6 Global 3D Printed Drugs Market Outlook, By Tablet (2021-2030) ($MN)
  • Table 7 Global 3D Printed Drugs Market Outlook, By Other Dosage Forms (2021-2030) ($MN)
  • Table 8 Global 3D Printed Drugs Market Outlook, By Technology (2021-2030) ($MN)
  • Table 9 Global 3D Printed Drugs Market Outlook, By Semi Solid Extrusion (SSE) (2021-2030) ($MN)
  • Table 10 Global 3D Printed Drugs Market Outlook, By Stereolithography (SLA) (2021-2030) ($MN)
  • Table 11 Global 3D Printed Drugs Market Outlook, By Powder Bed Printing (2021-2030) ($MN)
  • Table 12 Global 3D Printed Drugs Market Outlook, By Thermal Inkjet Printing (2021-2030) ($MN)
  • Table 13 Global 3D Printed Drugs Market Outlook, By Zip Dose (2021-2030) ($MN)
  • Table 14 Global 3D Printed Drugs Market Outlook, By Direct Write (2021-2030) ($MN)
  • Table 15 Global 3D Printed Drugs Market Outlook, By Fused Deposition Modelling (2021-2030) ($MN)
  • Table 16 Global 3D Printed Drugs Market Outlook, By Selective Laser Sintering (2021-2030) ($MN)
  • Table 17 Global 3D Printed Drugs Market Outlook, By Other Technologies (2021-2030) ($MN)
  • Table 18 Global 3D Printed Drugs Market Outlook, By Application (2021-2030) ($MN)
  • Table 19 Global 3D Printed Drugs Market Outlook, By Dental (2021-2030) ($MN)
  • Table 20 Global 3D Printed Drugs Market Outlook, By Neurology (2021-2030) ($MN)
  • Table 21 Global 3D Printed Drugs Market Outlook, By Orthopedic (2021-2030) ($MN)
  • Table 22 Global 3D Printed Drugs Market Outlook, By Children (2021-2030) ($MN)
  • Table 23 Global 3D Printed Drugs Market Outlook, By Elderly (2021-2030) ($MN)
  • Table 24 Global 3D Printed Drugs Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 25 Global 3D Printed Drugs Market Outlook, By End User (2021-2030) ($MN)
  • Table 26 Global 3D Printed Drugs Market Outlook, By Research Laboratories (2021-2030) ($MN)
  • Table 27 Global 3D Printed Drugs Market Outlook, By Hospitals & Clinics (2021-2030) ($MN)
  • Table 28 Global 3D Printed Drugs Market Outlook, By Other End Users (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.