2030 年製药机器人市场预测:按产品、应用、最终用户和地区进行全球分析
市场调查报告书
商品编码
1383479

2030 年製药机器人市场预测:按产品、应用、最终用户和地区进行全球分析

Pharmaceutical Robots Market Forecasts to 2030 - Global Analysis By Product, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,2023 年全球製药机器人市场规模为 2.0425 亿美元,预计到 2030 年将达到 5.4996 亿美元,预测期内年复合成长率为 15.2%。

製药机器人市场是医疗保健和製药行业的一个子集,重点是机器人技术和自动化在各种製药流程和应用中的使用。这些专用机器人旨在执行药品製造、药物研发、样品处理、实验室自动化、包装等。製药机器人透过提供精确度、一致性、效率并降低人为错误和污染的风险来提高药品的品质和安全性。

根据CNBC公布的资料,2020年6月,美国累积失业率从2020年4月的14.7%下降至2020年5月的13.3%。同时,2020年1月至2020年4月製造业整体就业率以19.1%的比例下降,面临急剧收缩,导致30%的製造商表示正在寻找新员工。

对无菌环境的需求不断增加

无菌条件在药品生产中至关重要,特别是在生技药品的生产中,以防止污染并确保药品的安全性和有效性。製药机器人专门设计用于在无尘室和无菌环境中工作,使其成为实现高无菌标准的宝贵资产。随着製药业专注于生物製药和无菌加工,对能够在无菌条件下运作的製药机器人的需求不断增加。这些机器人不仅提高了药品的品质和安全性,还有助于最佳化无菌製造流程,从而成为製药机器人市场成长的关键驱动力。

初始成本高

取得和实施机器人系统可能需要大量的初期成本,包括购买机器人本身、将其整合到当前的製药流程中以及培训操作和维护设备的工人。对于资源有限的中小型製药公司、研究机构和新兴企业来说,这些成本可能特别高。对製药机器人的投资需要严格的财务规划和合理性,以权衡提高效率、准确性和生产力的潜在长期利益与直接成本。有很多。然而,虽然这项技术可能会带来长期的成本节约并提高产品质量,但最初的成本障碍阻碍了机器人自动化的采用,特别是当有更经济的替代方案可用时,一些公司可能会阻止这种做法。

药物开发的成长

製药部门不断扩张,研发投资不断增加,特别是在生物技术和个体化治疗等领域。製药机器人透过加速药物研发和开发过程,在这个不断变化的环境中发挥关键作用。随着渗透疗法和治疗方法需求的增加,製药公司越来越多地转向机器人自动化,以加快其药物开发平臺。製药机器人市场正在响应这一需求,透过提供复杂的解决方案来满足业界对更快、更有效率的药物开发程序的渴望,从而将自己确立为这一不断变化的形势的驱动力。

技术故障的风险

製药公司使用机器人来实现药物配方、样本处理和实验室测试等关键流程的自动化。儘管机器人自动化有许多好处,但它也存在技术错误和故障,这可能会为製药业务带来严重的问题和风险。机器人系统的技术缺陷可能会导致错误、故障或有价值的医疗用品损坏。由于机器人技术的复杂性,识别和解决问题是一个专门且耗时的过程,可能会导致代价高昂的停机时间并降低生产率。

COVID-19 的影响:

疫情也暴露了全球供应链的缺陷,并导致机器人系统的采购和维护出现延误。对此,产业不断发展,提高了机器人的远端监控和远端控制能力,使其能够进行远端系统管理。总体而言,COVID-19 大流行凸显了製药机器人在医疗紧急情况中的重要性,同时加速了它们与製药业务的融合,并为疫情后製药业的进一步自动化和创新铺平了道路。

预计自动分配系统产业将在预测期内成为最大的产业

在预测期内,自动分配系统领域占据最大的市场占有率。这些系统旨在自动精确检测和分配液体、粉末或其他药物成分,从而大大减少人为错误和污染问题的可能性。此外,自动分配系统具有很强的适应性,可用于各种製药过程,包括药品製造和分配药房中的配製、填充和分配。

预计药物研发领域在预测期内年复合成长率最高

预计药物研发领域在预测期内将出现最高的年复合成长率。自动化和机器人技术正在改变药物研发过程,使其更有效率、准确且具有成本效益。製药机器人的引入极大地加速了高通量筛选,这是药物研发的关键步骤,可以针对特定生物标的快速测试数千种化合物。此外,这些机器人提供卓越的准确性和一致性,降低人为错误和污染的风险,同时保持结果的可靠性。

占比最大的地区:

由于训练有素的劳动力、先进的技术基础设施以及政府为促进製药业自动化和机器人技术而采取的支援措施的扩大,亚太地区在预测期内占据了最大的比例。因此,该地区製药机器人的普及显着较高,随着该国製药公司数量的增加,这一数字预计在不久的将来还会增加。

复合年复合成长率最高的地区:

北美地区预计将实现盈利成长。药品生产和实验室流程受到美国食品药物管理局(FDA) 和加拿大卫生部等法规卫生署制定的高品质和安全要求的约束。此外,这些标准旨在确保药品的一致性、准确性和完整性。製药机器人严格遵守这些标准,并透过提供精度和自动化来减少错误和污染的可能性,从而提高该地区的法规遵循。

免费客製化服务

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和年复合成长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第1章执行摘要

第2章前言

  • 概述
  • 利害关係人
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 调查来源
    • 主要调查来源
    • 二次调查来源
    • 先决条件

第3章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 产品分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • 新型冠状病毒感染疾病(COVID-19)的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第5章全球製药机器人市场:依产品

  • 传统机器人
    • 关节式机器人
    • 笛卡儿机器人
    • 台达/并联机器人
  • 协作製药机器人
  • 自动点胶系统
  • 液体处理机器人
  • 药品包装机器人
  • 机器人胶囊充填机
  • 其他产品

第6章全球製药机器人市场:依应用分类

  • 药品检测
  • 实验室应用
  • 拣货和包装
  • 配药
  • 药物研发
  • 库存控制
  • 药房自动化
  • 其他用途

第7章全球製药机器人市场:依最终用户分类

  • 调查
  • 製药公司
  • 药品研发 (R&D) 设施
  • 临床实验室
  • 医院及医疗机构
  • 生技公司
  • 其他最终用户

第8章全球製药机器人市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第9章进展

  • 合约、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第10章公司简介

  • ABB Ltd.
  • Denso Corporation
  • Durr AG
  • Epson Robots
  • FANUC Corporation
  • Kawasaki Heavy Industries Ltd.
  • KUKA AG
  • Marchesini Group
  • Omron Corporation
  • Schaeffler Group
  • Seiko Epson Corporation
  • Staubli International AG
  • Thermo Fisher Scientific Inc.
  • Universal Robots
Product Code: SMRC24327

According to Stratistics MRC, the Global Pharmaceutical Robots Market is accounted for $204.25 million in 2023 and is expected to reach $549.96 million by 2030 growing at a CAGR of 15.2% during the forecast period. The pharmaceutical robot market is a subset of the healthcare and pharmaceutical industries that focuses on the use of robotic technology and automation in a variety of pharmaceutical processes and applications. These specialist robots are designed to perform things like medicine manufacture, drug discovery, sample handling, laboratory automation, and packing. Pharmaceutical robots provide precision, consistency, and efficiency, lowering the risk of human mistakes and contamination and thereby improving pharmaceutical product quality and safety.

According to the data published by CNBC, in June 2020, the cumulative unemployment rate in the U.S. decreased from 14.7% in April 2020 to 13.3% in May 2020, whereas 30% of manufacturers stated that they are seeking to hire new employees during the COVID-19 pandemic as the overall employment rate in the manufacturing sector is facing a sharp contraction, declining at a rate of 19.1% from January 2020 to April 2020.

Market Dynamics:

Driver:

Rising need for sterile environments

Sterile conditions are essential in pharmaceutical manufacturing, particularly in the creation of biologics, to prevent contamination and ensure drug safety and efficacy. Pharmaceutical robots are specifically built to function in cleanroom environments and under aseptic circumstances, making them an invaluable asset in achieving high sterility criteria. The demand for pharmaceutical robots that can function in sterile conditions is increasing as the pharmaceutical industry focuses more on biopharmaceuticals and aseptic processing. These robots not only increase the quality and safety of pharmaceutical products, but they also contribute to the optimization of sterile manufacturing processes, resulting in a key driver in the growth of the pharmaceutical robotics market.

Restraint:

High initial costs

The purchase of the robots themselves, integration into current pharmaceutical processes, and training of workers to operate and maintain the equipment may all result in significant upfront costs for the acquisition and installation of robotic systems. These expenses can be particularly costly for smaller pharmaceutical businesses, research institutions, and startups with limited resources. Pharmaceutical robot investments frequently involve strict financial planning and justification as organizations assess the potential long-term benefits of enhanced efficiency, accuracy, and production against the immediate cost outlay. However, while the technology might result in long-term cost savings and increased product quality, the initial cost barrier might discourage some firms from embracing robotic automation, especially when alternative, more economical alternatives are available.

Opportunity:

Growth in drug development

The pharmaceutical sector is constantly expanding with increased investments in R&D, particularly in areas such as biotechnology and personalized treatment. Pharmaceutical robots play an important part in this ever-changing landscape by accelerating drug discovery and development processes. Pharmaceutical companies are increasingly turning to robotic automation to speed the drug development pipeline as demand for penetration treatments and therapies grows. The pharmaceutical robot market responds to this demand by providing sophisticated solutions to the industry's desire for faster and more efficient drug development procedures, establishing itself as a driving force in this changing landscape.

Threat:

Risk of technological glitches

Robots are used by pharmaceutical businesses to automate important processes such as drug formulation, sample handling, and laboratory testing. While robotic automation has numerous benefits, it is not immune to technical errors or failures, which can pose severe problems and risks to pharmaceutical operations. Robotic system technical faults can cause errors, disturbances, or even damage to valuable drugs. Because of the intricacy of robotic technology, identifying and resolving problems is a specialized and time-consuming procedure that can result in costly downtime and productivity losses.

COVID-19 Impact:

The epidemic also exposed flaws in global supply chains, creating delays in robotic system acquisition and maintenance. In response, the industry evolved by improving the remote monitoring and teleoperation capabilities of robots, allowing them to be managed remotely. Overall, the COVID-19 pandemic highlighted the critical importance of pharmaceutical robots in healthcare emergencies while also hastening their integration into pharmaceutical operations, creating the path for more automation and innovation in the post-pandemic pharmaceutical landscape.

The automated dispensing systems segment is expected to be the largest during the forecast period

The automated dispensing systems segment commanded the largest market share during the projection period, as these systems are intended to automate the exact measurement and distribution of liquids, powders, or other pharmaceutical ingredients, lowering the margin for human error and contamination concerns significantly. Moreover, automated dispensing systems are adaptable and can be used in a variety of pharmaceutical procedures, including compounding, filling, and dosing in drug production and compounding pharmacies.

The drug discovery segment is expected to have the highest CAGR during the forecast period

Drug Discovery segment is expected to have the highest CAGR during the forecast period. Automation and robotics have transformed the drug discovery process, making it more efficient, precise, and cost-effective. With the incorporation of pharmaceutical robots, high-throughput screening, a vital step in drug discovery, has witnessed significant acceleration, allowing rapid testing of thousands of compounds against specific biological targets. Moreover, these robots provide outstanding accuracy and consistency, decreasing human error and contamination risks while maintaining the reliability of the research results.

Region with largest share:

Due to an expanding trained workforce, advanced technical infrastructure, and supportive government initiatives that promote automation and robotics in the pharmaceutical sector, the Asia-Pacific region held the largest percentage over the forecast period. As a result, the region has a significantly high penetration of pharmaceutical robots, and this number is projected to grow in the near future as the country's pharmaceutical enterprises increase.

Region with highest CAGR:

The North America region is expected to experience profitable growth. Pharmaceutical manufacturing and laboratory processes are governed by high quality and safety requirements set by regulatory authorities such as the United States Food and Drug Administration (FDA) and Health Canada. Additionally, these standards are intended to ensure pharmaceutical product consistency, accuracy, and integrity. Pharmaceutical robots adhere closely to these criteria, providing precision and automation that reduces the chance of errors and contamination, hence improving regulatory compliance in the region.

Key players in the market

Some of the key players in Pharmaceutical Robots market include: ABB Ltd., Denso Corporation, Durr AG, Epson Robots, FANUC Corporation, Kawasaki Heavy Industries Ltd., KUKA AG, Marchesini Group, Omron Corporation, Schaeffler Group, Seiko Epson Corporation, Staubli International AG, Thermo Fisher Scientific Inc. and Universal Robots.

Key Developments:

In September 2023, ABB established a new robotics plant at its existing facility in Auburn Hills, Michigan. The expansion is aimed at elevating its product offerings and services to robotics customers in the U.S., Mexico, and Canada. With the expansion, the company becomes the first global industrial robotics company to invest in and fully commit to the North American robotics-manufacturing footprint.

In January 2023, FANUC America Corporation announced the expansion of its headquarters with the construction of a new facility in Auburn Hills, MI. The new facility was used for product development, manufacturing, engineering, and warehousing.

Products Covered:

  • Traditional Robots
  • Collaborative Pharmaceutical Robots
  • Automated Dispensing Systems
  • Liquid Handling Robots
  • Pharmaceutical Packaging Robots
  • Robotic Capsule Fillers
  • Other Products

Applications Covered:

  • Inspection of Pharmaceutical Drugs
  • Laboratory Applications
  • Picking and Packaging
  • Medication Dispensing
  • Drug Discovery
  • Inventory Management
  • Pharmacy Automation
  • Other Applications

End Users Covered:

  • Research Laboratories
  • Pharmaceutical Companies
  • Pharmaceutical Research and Development (R&D) Facilities
  • Clinical Laboratories
  • Hospitals and Healthcare Institutions
  • Biotechnology Companies
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Pharmaceutical Robots Market, By Product

  • 5.1 Introduction
  • 5.2 Traditional Robots
    • 5.2.1 Articulated Robots
    • 5.2.2 Cartesian Robots
    • 5.2.3 Delta/Parallel Robots
  • 5.3 Collaborative Pharmaceutical Robots
  • 5.4 Automated Dispensing Systems
  • 5.5 Liquid Handling Robots
  • 5.6 Pharmaceutical Packaging Robots
  • 5.7 Robotic Capsule Fillers
  • 5.8 Other Products

6 Global Pharmaceutical Robots Market, By Application

  • 6.1 Introduction
  • 6.2 Inspection of Pharmaceutical Drugs
  • 6.3 Laboratory Applications
  • 6.4 Picking and Packaging
  • 6.5 Medication Dispensing
  • 6.6 Drug Discovery
  • 6.7 Inventory Management
  • 6.8 Pharmacy Automation
  • 6.9 Other Applications

7 Global Pharmaceutical Robots Market, By End User

  • 7.1 Introduction
  • 7.2 Research Laboratories
  • 7.3 Pharmaceutical Companies
  • 7.4 Pharmaceutical Research and Development (R&D) Facilities
  • 7.5 Clinical Laboratories
  • 7.6 Hospitals and Healthcare Institutions
  • 7.7 Biotechnology Companies
  • 7.8 Other End Users

8 Global Pharmaceutical Robots Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 ABB Ltd.
  • 10.2 Denso Corporation
  • 10.3 Durr AG
  • 10.4 Epson Robots
  • 10.5 FANUC Corporation
  • 10.6 Kawasaki Heavy Industries Ltd.
  • 10.7 KUKA AG
  • 10.8 Marchesini Group
  • 10.9 Omron Corporation
  • 10.10 Schaeffler Group
  • 10.11 Seiko Epson Corporation
  • 10.12 Staubli International AG
  • 10.13 Thermo Fisher Scientific Inc.
  • 10.14 Universal Robots

List of Tables

  • Table 1 Global Pharmaceutical Robots Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Pharmaceutical Robots Market Outlook, By Product (2021-2030) ($MN)
  • Table 3 Global Pharmaceutical Robots Market Outlook, By Traditional Robots (2021-2030) ($MN)
  • Table 4 Global Pharmaceutical Robots Market Outlook, By Articulated Robots (2021-2030) ($MN)
  • Table 5 Global Pharmaceutical Robots Market Outlook, By Cartesian Robots (2021-2030) ($MN)
  • Table 6 Global Pharmaceutical Robots Market Outlook, By Delta/Parallel Robots (2021-2030) ($MN)
  • Table 7 Global Pharmaceutical Robots Market Outlook, By Collaborative Pharmaceutical Robots (2021-2030) ($MN)
  • Table 8 Global Pharmaceutical Robots Market Outlook, By Automated Dispensing Systems (2021-2030) ($MN)
  • Table 9 Global Pharmaceutical Robots Market Outlook, By Liquid Handling Robots (2021-2030) ($MN)
  • Table 10 Global Pharmaceutical Robots Market Outlook, By Pharmaceutical Packaging Robots (2021-2030) ($MN)
  • Table 11 Global Pharmaceutical Robots Market Outlook, By Robotic Capsule Fillers (2021-2030) ($MN)
  • Table 12 Global Pharmaceutical Robots Market Outlook, By Other Products (2021-2030) ($MN)
  • Table 13 Global Pharmaceutical Robots Market Outlook, By Application (2021-2030) ($MN)
  • Table 14 Global Pharmaceutical Robots Market Outlook, By Inspection of Pharmaceutical Drugs (2021-2030) ($MN)
  • Table 15 Global Pharmaceutical Robots Market Outlook, By Laboratory Applications (2021-2030) ($MN)
  • Table 16 Global Pharmaceutical Robots Market Outlook, By Picking and Packaging (2021-2030) ($MN)
  • Table 17 Global Pharmaceutical Robots Market Outlook, By Medication Dispensing (2021-2030) ($MN)
  • Table 18 Global Pharmaceutical Robots Market Outlook, By Drug Discovery (2021-2030) ($MN)
  • Table 19 Global Pharmaceutical Robots Market Outlook, By Inventory Management (2021-2030) ($MN)
  • Table 20 Global Pharmaceutical Robots Market Outlook, By Pharmacy Automation (2021-2030) ($MN)
  • Table 21 Global Pharmaceutical Robots Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 22 Global Pharmaceutical Robots Market Outlook, By End User (2021-2030) ($MN)
  • Table 23 Global Pharmaceutical Robots Market Outlook, By Research Laboratories (2021-2030) ($MN)
  • Table 24 Global Pharmaceutical Robots Market Outlook, By Pharmaceutical Companies (2021-2030) ($MN)
  • Table 25 Global Pharmaceutical Robots Market Outlook, By Pharmaceutical Research and Development (R&D) Facilities (2021-2030) ($MN)
  • Table 26 Global Pharmaceutical Robots Market Outlook, By Clinical Laboratories (2021-2030) ($MN)
  • Table 27 Global Pharmaceutical Robots Market Outlook, By Hospitals and Healthcare Institutions (2021-2030) ($MN)
  • Table 28 Global Pharmaceutical Robots Market Outlook, By Biotechnology Companies (2021-2030) ($MN)
  • Table 29 Global Pharmaceutical Robots Market Outlook, By Other End Users (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.