封面
市场调查报告书
商品编码
1503376

储氢合金市场预测至 2030 年 - 按类型(金属氢化物、复合氢化物、金属间化合物、化学氢化物和其他类型)、储存容量、销售通路、技术、应用和地理位置进行全球分析

Hydrogen Storage Alloys Market Forecasts to 2030 - Global Analysis By Type (Metal Hydrides, Complex Hydrides, Intermetallic Compounds, Chemical Hydrides and Other Types), Storage Capacity, Sales Channel, Technology, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,2024 年全球储氢合金市场规模为 35.4 亿美元,预计到 2030 年将达到 52.1 亿美元,预测期内复合年增长率为 7.8%。储氢合金是能够透过可逆化学反应吸收和释放氢气的材料。这些合金通常由镍、钛或稀土元素等金属组成,在吸收氢时会形成金属氢化物。它们的主要用途是在氢储存系统中,为燃料电池和能源储存等各种应用提供安全、高效的氢储存方式。这些合金因其高储存容量、稳定性以及在特定条件下以可控速率释放氢的能力而受到重视。

据国际能源总署称,透过电解机制产生的氢气在未来具有巨大的潜力,并显示出作为廉价燃料选择的巨大前景。

市场动态:

司机:

对清洁能源的需求不断增长

储氢合金在储存氢气(一种清洁能源载体)方面发挥关键作用,以便日后用于燃料电池和其他应用。随着产业和政府转向再生能源以减少碳排放,对储氢技术的需求不断增加。这推动了储氢合金的进步和投资,提高其效率、容量和成本效益,从而促进市场成长。

克制:

基础设施限制

加氢站稀缺等基础设施限制对储氢合金市场构成了重大挑战。有限的基础设施阻碍了氢燃料电池汽车的广泛采用,限制了对这些合金的需求。此外,建立加氢基础设施的高成本阻碍了投资和采用,从而减缓了市场成长。

机会:

汽车业的采用率不断上升

氢合金对于燃料电池中有效储存和释放氢气至关重要,而燃料电池对于车辆运作至关重要。随着对环保交通解决方案的需求增加,汽车製造商正在增加对氢燃料电池技术的投资。这推动了对先进储氢解决方案的需求,从而推动了储氢合金市场的发展。对减少碳排放的加强关注进一步加速了这一成长趋势。

威胁:

来自替代技术的竞争

来自压缩氢气和碳基材料等替代技术的竞争对储氢合金市场构成了挑战。压缩氢提供了更简单的基础设施和更低的成本,而碳基材料则有望提供更高的储存容量。这些替代品透过提供有竞争力的储存解决方案来阻碍合金市场,这些解决方案可能被认为更具成本效益或技术先进,可能会转移对储氢合金的投资和研究。

Covid-19 影响

由于供应链中断、关键产业需求下降和专案延迟,covid-19大流行扰乱了储氢合金市场。儘管遇到这些挫折,但在全球重视永续发展和减少碳排放的推动下,随着对清洁能源和氢技术的投资不断增加,市场有望復苏。大流行后对绿色能源的关注预计将推动该行业的长期成长。

复合氢化物部分预计将在预测期内成为最大的部分

复合氢化物领域预计将出现利润丰厚的成长。复合氢化物是一种储氢合金,其特征在于复杂的分子结构,可实现高储氢容量。它们包括铝氢化物和硼氢化物等材料,这些材料以其在中等温度和压力下储存和释放氢气的能力而闻名。复杂氢化物对于需要紧凑高效储氢解决方案的应用很有前景,例如燃料电池汽车和便携式电子产品,旨在推进永续能源技术。

化学吸收技术领域预计在预测期内复合年增长率最高

预计化学吸收技术领域在预测期内将出现最快的复合年增长率。储氢合金中的化学吸收技术涉及吸收和释放氢的可逆化学反应。该过程通常使用金属氢化物等材料,这些材料在某些条件下吸收氢气并在条件变化时释放氢气。它是一种安全、密集储存氢气的有效方法,对于寻求可靠氢气供应和分配的燃料电池、便携式电子产品和储能係统中的应用至关重要。

占比最大的地区:

由于对再生能源和氢燃料技术的投资不断增加,亚太地区的储氢合金市场正在经历显着成长。日本、韩国和中国等国家在政府大力支持和旨在发展氢经济的工业措施方面处于领先地位。日本的「氢基本战略」和韩国的氢路线图反映了这一承诺。此外,汽车行业向氢燃料电池汽车的转变以及储能技术的进步进一步推动了该地区的市场扩张。

复合年增长率最高的地区:

在清洁能源解决方案投资增加和氢基础设施发展的推动下,北美储氢合金市场正在强劲成长。美国和加拿大处于领先地位,政府和私营部门采取了大量措施支持氢储存和燃料电池技术。美国能源部将氢作为实现能源独立和减少碳排放的关键要素,强调了这一趋势。此外,产业领导者和研究机构之间的合作正在促进储氢材料的进步,并增强市场前景。

主要进展:

2023年4月,领先的综合氢能技术解决方案供应商Hydrexia能源科技(中国)(Hydrexia)宣布推出其创新型金属氢化物拖车(MH-100T),用于氢气储存和分配。

2022年8月,LAVO推出新型金属氢化物合金储能技术。由 LAVO 领导的合作计划还包括 UNSW、Design + Industry、Providence、GHD、Varley 和 Greater Springfield,已获得 AMGC 的 221,875 美元联合投资。

我们的报告提供了什么:

  • 区域和国家层面的市场份额评估
  • 对新进入者的策略建议
  • 涵盖2022年、2023年、2024年、2026年及2030年的市场资料
  • 市场趋势(驱动因素、限制因素、机会、威胁、挑战、投资机会和建议)
  • 根据市场预测提出关键业务部门的策略建议
  • 竞争性景观美化绘製主要共同趋势
  • 公司概况,包括详细的策略、财务状况和最新发展
  • 反映最新技术进步的供应链趋势

免费客製化产品:

本报告的所有客户都将有权获得以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 个)
    • 关键参与者的 SWOT 分析(最多 3 个)
  • 区域细分
    • 根据客户的兴趣对任何主要国家的市场估计、预测和复合年增长率(註:取决于可行性检查)
  • 竞争基准化分析
    • 根据产品组合、地理分布和策略联盟对主要参与者基准化分析

目录

第 1 章:执行摘要

第 2 章:前言

  • 抽象的
  • 股东
  • 研究范围
  • 研究方法论
    • 资料探勘
    • 数据分析
    • 数据验证
    • 研究方法
  • 研究来源
    • 主要研究来源
    • 二手研究来源
    • 假设

第 3 章:市场趋势分析

  • 介绍
  • 司机
  • 限制
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 新兴市场
  • Covid-19 的影响

第 4 章:波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争竞争

第 5 章:全球储氢合金市场:按类型

  • 介绍
  • 金属氢化物
  • 复合氢化物
  • 金属间化合物
  • 化学氢化物
  • 其他类型

第 6 章:全球储氢合金市场:按储存容量划分

  • 介绍
  • 低容量合金
  • 中等容量合金
  • 高容量合金

第 7 章:全球储氢合金市场:按销售管道

  • 介绍
  • 直销
  • 分销商/批发商
  • 网路零售
  • 第三方线上平台
  • 其他销售管道

第 8 章:全球储氢合金市场:依技术分类

  • 介绍
  • 氢化物技术
  • 物理吸附技术
  • 化学吸收技术

第 9 章:全球储氢合金市场:依应用分类

  • 介绍
  • 运输
  • 医疗的
  • 电子产品
  • 工业应用
  • 再生能源储存
  • 其他应用

第 10 章:全球储氢合金市场:依地理位置

  • 介绍
  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太地区其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿联酋
    • 卡达
    • 南非
    • 中东和非洲其他地区

第 11 章:主要进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 扩充
  • 其他关键策略

第 12 章:公司概况

  • BASF SE
  • AMETEK Specialty Metal Products
  • Mitsui Kinzoku ACT Corporation
  • Linde PLC
  • ESG Edelmetall-Service GmbH & Co. KG
  • Hitachi Corporation
  • Hydrogenious LOHC Technologies GmbH
  • ICL - Industrial Commodity Holdings
  • INFINIUM Metals
  • Magnesium Elektron Limited
  • Materion Corporation
  • Air Liquide S.A
  • China Rare Metal Material Corporation
  • Neo Performance Materials Inc.
  • Sandvik Materials Technology
  • ABSCO Limited
  • Hydrexia Energy Technology
  • LAVO System
Product Code: SMRC26543

According to Stratistics MRC, the Global Hydrogen Storage Alloys Market is accounted for $3.54 billion in 2024 and is expected to reach $5.21 billion by 2030 growing at a CAGR of 7.8% during the forecast period. Hydrogen storage alloys are materials that can absorb and release hydrogen gas through reversible chemical reactions. These alloys, often composed of metals such as nickel, titanium, or rare earth elements, form metal hydrides when they absorb hydrogen. Their primary use is in hydrogen storage systems, providing a safe, efficient means to store hydrogen for various applications, including fuel cells and energy storage. These alloys are valued for their high storage capacity, stability, and ability to release hydrogen at controllable rates under specific conditions.

According to the International Energy Agency, hydrogen produced via an electrolysis mechanism offers enormous potential for the future and shows great promise as a cheap fuel option.

Market Dynamics:

Driver:

Growing demand for clean energy

Hydrogen storage alloys play a critical role in storing hydrogen, a clean energy carrier, for later use in fuel cells and other applications. As industries and governments shift towards renewable energy sources to reduce carbon emissions, the demand for hydrogen storage technologies rises. This drives advancements and investments in hydrogen storage alloys, enhancing their efficiency, capacity, and cost-effectiveness, thereby boosting market growth.

Restraint:

Infrastructure limitations

Infrastructure limitations such as the scarcity of hydrogen refuelling stations pose a significant challenge to the hydrogen storage alloys market. Limited infrastructure hampers the widespread adoption of hydrogen fuel cell vehicles, restricting the demand for these alloys. Additionally, the high cost associated with establishing hydrogen refuelling infrastructure deters investment and adoption, thereby slowing down market growth.

Opportunity:

Rising adoption in automotive sector

Hydrogen alloys are essential for efficiently storing and releasing hydrogen in fuel cells, which are crucial for vehicle operation. As the demand for eco-friendly transportation solutions increases, automakers are investing more in hydrogen fuel cell technology. This drives the need for advanced hydrogen storage solutions, thus boosting the market for hydrogen storage alloys. Enhanced focus on reducing carbon emissions further accelerates this growth trend.

Threat:

Competition from alternative technologies

Competition from alternative technologies like compressed hydrogen gas and carbon-based materials pose a challenge to the hydrogen storage alloys market. Compressed hydrogen offers a simpler infrastructure and lower costs, while carbon-based materials promise higher storage capacities. These alternatives hamper the alloys market by providing competitive storage solutions that may be perceived as more cost-effective or technologically advanced, potentially diverting investment and research away from hydrogen storage alloys.

Covid-19 Impact

The covid-19 pandemic disrupted the hydrogen storage alloys market due to supply chain interruptions, decreased demand from key industries, and delayed projects. Despite these setbacks, the market is poised for recovery with increasing investments in clean energy and hydrogen technologies, spurred by the global emphasis on sustainable development and reducing carbon emissions. The post-pandemic focus on green energy is expected to drive long-term growth in this sector.

The complex hydrides segment is expected to be the largest during the forecast period

The complex hydrides segment is estimated to have a lucrative growth. Complex hydrides are a type of hydrogen storage alloy characterized by intricate molecular structures that enable high hydrogen storage capacities. They include materials like alanates and borohydrides, known for their ability to store and release hydrogen at moderate temperatures and pressures. Complex hydrides are promising for applications requiring compact and efficient hydrogen storage solutions, such as fuel cell vehicles and portable electronics, aiming to advance sustainable energy technologies.

The chemical absorption technology segment is expected to have the highest CAGR during the forecast period

The chemical absorption technology segment is anticipated to witness the fastest CAGR growth during the forecast period. Chemical absorption technology in hydrogen storage alloys involves reversible chemical reactions where hydrogen is absorbed and released. This process typically utilizes materials like metal hydrides, which absorb hydrogen under certain conditions and release it when conditions change. It's an efficient method for storing hydrogen safely and densely, crucial for applications in fuel cells, portable electronics, and energy storage systems seeking reliable hydrogen supply and distribution.

Region with largest share:

The hydrogen storage alloys market in the Asia Pacific region is experiencing significant growth due to increasing investments in renewable energy and hydrogen fuel technologies. Countries like Japan, South Korea, and China are leading the charge with substantial government support and industrial initiatives aimed at developing hydrogen economies. Japan's "Basic Hydrogen Strategy" and South Korea's hydrogen roadmap exemplify this commitment. Additionally, the automotive sector's shift towards hydrogen fuel cell vehicles and advancements in energy storage technologies further propel market expansion in this region.

Region with highest CAGR:

The hydrogen storage alloys market in North America is witnessing robust growth driven by rising investments in clean energy solutions and the development of hydrogen infrastructure. The U.S. and Canada are at the forefront, with substantial governmental and private sector initiatives supporting hydrogen storage and fuel cell technologies. The U.S. Department of Energy's focus on hydrogen as a key element in achieving energy independence and reducing carbon emissions underscores this trend. Moreover, collaborations between industry leaders and research institutions are fostering advancements in hydrogen storage materials, enhancing market prospects.

Key players in the market

Some of the key players profiled in the Hydrogen Storage Alloys Market include BASF SE, AMETEK Specialty Metal Products, Mitsui Kinzoku ACT Corporation, Linde PLC, ESG Edelmetall-Service GmbH & Co. KG, Hitachi Corporation, Hydrogenious LOHC Technologies GmbH, ICL - Industrial Commodity Holdings, INFINIUM Metals, Magnesium Elektron Limited, Materion Corporation, Air Liquide S.A, China Rare Metal Material Corporation, Neo Performance Materials Inc., Sandvik Materials Technology, ABSCO Limited, Hydrexia Energy Technology and LAVO System.

Key Developments:

In April 2023, Hydrexia Energy Technology (China) (Hydrexia), a leading integrated hydrogen technology solution provider, has announced the launch of its innovative Metal Hydride Trailer (MH-100T) for hydrogen storage and distribution.

In August 2022, LAVO unveils new metal hydride alloy energy storage technology. The LAVO-led collaborative initiative, which also includes UNSW, Design + Industry, Providence, GHD, Varley, and Greater Springfield, has received a $221,875 co-investment from AMGC.

Types Covered:

  • Metal Hydrides
  • Complex Hydrides
  • Intermetallic Compounds
  • Chemical Hydrides
  • Other Types

Storage Capacities Covered:

  • Low Capacity Alloys
  • Medium Capacity Alloys
  • High Capacity Alloys

Sales Channels Covered:

  • Direct Sales
  • Distributors/Wholesalers
  • Online Retail
  • Third-party Online Platforms
  • Other Sales Channels

Technologies Covered:

  • Hydride Technology
  • Physical Adsorption Technology
  • Chemical Absorption Technology

Applications Covered:

  • Transportation
  • Medical
  • Electronics
  • Industrial Applications
  • Renewable Energy Storage
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Hydrogen Storage Alloys Market, By Type

  • 5.1 Introduction
  • 5.2 Metal Hydrides
  • 5.3 Complex Hydrides
  • 5.4 Intermetallic Compounds
  • 5.5 Chemical Hydrides
  • 5.6 Other Types

6 Global Hydrogen Storage Alloys Market, By Storage Capacity

  • 6.1 Introduction
  • 6.2 Low Capacity Alloys
  • 6.3 Medium Capacity Alloys
  • 6.4 High Capacity Alloys

7 Global Hydrogen Storage Alloys Market, By Sales Channel

  • 7.1 Introduction
  • 7.2 Direct Sales
  • 7.3 Distributors/Wholesalers
  • 7.4 Online Retail
  • 7.5 Third-party Online Platforms
  • 7.6 Other Sales Channels

8 Global Hydrogen Storage Alloys Market, By Technology

  • 8.1 Introduction
  • 8.2 Hydride Technology
  • 8.3 Physical Adsorption Technology
  • 8.4 Chemical Absorption Technology

9 Global Hydrogen Storage Alloys Market, By Application

  • 9.1 Introduction
  • 9.2 Transportation
  • 9.3 Medical
  • 9.4 Electronics
  • 9.5 Industrial Applications
  • 9.6 Renewable Energy Storage
  • 9.7 Other Applications

10 Global Hydrogen Storage Alloys Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 BASF SE
  • 12.2 AMETEK Specialty Metal Products
  • 12.3 Mitsui Kinzoku ACT Corporation
  • 12.4 Linde PLC
  • 12.5 ESG Edelmetall-Service GmbH & Co. KG
  • 12.6 Hitachi Corporation
  • 12.7 Hydrogenious LOHC Technologies GmbH
  • 12.8 ICL - Industrial Commodity Holdings
  • 12.9 INFINIUM Metals
  • 12.10 Magnesium Elektron Limited
  • 12.11 Materion Corporation
  • 12.12 Air Liquide S.A
  • 12.13 China Rare Metal Material Corporation
  • 12.14 Neo Performance Materials Inc.
  • 12.15 Sandvik Materials Technology
  • 12.16 ABSCO Limited
  • 12.17 Hydrexia Energy Technology
  • 12.18 LAVO System

List of Tables

  • Table 1 Global Hydrogen Storage Alloys Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Hydrogen Storage Alloys Market Outlook, By Type (2022-2030) ($MN)
  • Table 3 Global Hydrogen Storage Alloys Market Outlook, By Metal Hydrides (2022-2030) ($MN)
  • Table 4 Global Hydrogen Storage Alloys Market Outlook, By Complex Hydrides (2022-2030) ($MN)
  • Table 5 Global Hydrogen Storage Alloys Market Outlook, By Intermetallic Compounds (2022-2030) ($MN)
  • Table 6 Global Hydrogen Storage Alloys Market Outlook, By Chemical Hydrides (2022-2030) ($MN)
  • Table 7 Global Hydrogen Storage Alloys Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 8 Global Hydrogen Storage Alloys Market Outlook, By Storage Capacity (2022-2030) ($MN)
  • Table 9 Global Hydrogen Storage Alloys Market Outlook, By Low Capacity Alloys (2022-2030) ($MN)
  • Table 10 Global Hydrogen Storage Alloys Market Outlook, By Medium Capacity Alloys (2022-2030) ($MN)
  • Table 11 Global Hydrogen Storage Alloys Market Outlook, By High Capacity Alloys (2022-2030) ($MN)
  • Table 12 Global Hydrogen Storage Alloys Market Outlook, By Sales Channel (2022-2030) ($MN)
  • Table 13 Global Hydrogen Storage Alloys Market Outlook, By Direct Sales (2022-2030) ($MN)
  • Table 14 Global Hydrogen Storage Alloys Market Outlook, By Distributors/Wholesalers (2022-2030) ($MN)
  • Table 15 Global Hydrogen Storage Alloys Market Outlook, By Online Retail (2022-2030) ($MN)
  • Table 16 Global Hydrogen Storage Alloys Market Outlook, By Third-party Online Platforms (2022-2030) ($MN)
  • Table 17 Global Hydrogen Storage Alloys Market Outlook, By Other Sales Channels (2022-2030) ($MN)
  • Table 18 Global Hydrogen Storage Alloys Market Outlook, By Technology (2022-2030) ($MN)
  • Table 19 Global Hydrogen Storage Alloys Market Outlook, By Hydride Technology (2022-2030) ($MN)
  • Table 20 Global Hydrogen Storage Alloys Market Outlook, By Physical Adsorption Technology (2022-2030) ($MN)
  • Table 21 Global Hydrogen Storage Alloys Market Outlook, By Chemical Absorption Technology (2022-2030) ($MN)
  • Table 22 Global Hydrogen Storage Alloys Market Outlook, By Application (2022-2030) ($MN)
  • Table 23 Global Hydrogen Storage Alloys Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 24 Global Hydrogen Storage Alloys Market Outlook, By Medical (2022-2030) ($MN)
  • Table 25 Global Hydrogen Storage Alloys Market Outlook, By Electronics (2022-2030) ($MN)
  • Table 26 Global Hydrogen Storage Alloys Market Outlook, By Industrial Applications (2022-2030) ($MN)
  • Table 27 Global Hydrogen Storage Alloys Market Outlook, By Renewable Energy Storage (2022-2030) ($MN)
  • Table 28 Global Hydrogen Storage Alloys Market Outlook, By Other Applications (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.