封面
市场调查报告书
商品编码
1503379

到 2030 年的分子建模市场预测 - 按类型、组件、建模规模、应用、最终用户和地理位置进行的全球分析

Molecular Modelling Market Forecasts to 2030 - Global Analysis By Type, Component, Scale of Modelling, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,2024 年全球分子建模市场规模为 2.6 亿美元,预计到 2030 年将达到 9.7 亿美元,预测期内复合年增长率为 16.2%。分子建模是指用于研究分子的结构、性质和行为的计算技术。它涉及计算机模拟和数学模型来预测原子层面上的分子相互作用和动力学。分子建模透过提供对分子结构的深入了解,在推进科学研究方面发挥着至关重要的作用,而这些分子结构通常仅靠直接实验观察是无法获得的。

根据国际糖尿病联盟(IDF)2021年12月的报告,2021年约有5.37亿20-79岁的成年人患有糖尿病,其中90%以上患有第2型糖尿病。

市场动态:

司机:

扩大材料科学的应用

材料科学领域的应用不断扩大,对分子结构和行为的精确模拟的需求不断增加,从而推动了分子建模市场的成长。这些模型透过在实验测试之前预测新材料的特性、相互作用和反应,促进製药、化学品和奈米技术等各个行业的研究和开发。这种预测能力可加速创新、降低成本并提高产品效率和安全性。

克制:

复杂性和解释挑战

分子建模的复杂性源自于影响分子行为的大量变量,例如分子间力和量子效应。这种复杂性使准确的模拟和解释变得复杂。此外,不同的建模方法和不同的准确度等级带来了解释挑战,影响药物发现、材料科学和其他领域的可靠性和决策。因此,与硬体和软体开发相关的高成本限制了可访问性,阻碍了市场成长。

机会:

计算技术的进步

计算技术的进步提高了模拟的准确性和速度,使得能够以更高的保真度研究复杂的分子交互作用。高效能运算可以分析更大的数据集和更复杂的分子结构,从而促进药物发现、材料科学进步和个人化医疗。这些技术进步正在彻底改变製药、生物技术和材料科学的研究,以前所未有的能力推动分子建模市场向前发展。

威胁:

验证和准确性问题

分子建模中的验证问题包括力场、溶剂化模型和计算演算法的准确性,影响预测分子结构和相互作用的可靠性。不准确可能会误导药物发现工作,导致代价高昂的失败和产品开发的延误。这些担忧削弱了人们对计算方法的信心,阻碍了市场采用对製药和材料科学产业至关重要的分子建模服务和软体解决方案。

Covid-19 影响

随着製药公司越来越依赖计算技术进行药物发现和疫苗开发,covid-19 大流行加速了分子建模市场的成长。加快研究过程和尽量减少物理相互作用的需求推动了虚拟筛选和分子模拟的采用。对计算工具的需求激增推动了对分子建模领域的投资,在疫情期间和之后促进了创新并显着扩大了其市场规模。

微观建模领域预计在预测期内将是最大的

微观建模领域预计将出现利润丰厚的成长。微观建模涉及模拟原子层级的分子结构和相互作用。它采用分子动力学和量子力学等计算技术来研究分子的能量、结构和行为等特性。透过分析这些微观细节,研究人员可以预测分子在生物系统或材料中如何相互作用,帮助药物发现、材料科学,并从根本上理解复杂的生化过程。

药物发现和开发领域预计在预测期内复合年增长率最高

预计药物发现和开发领域在预测期内将出现最快的复合年增长率。分子建模利用计算方法来设计和优化新的药物化合物。它使研究人员能够预测分子如何与生物标靶相互作用,评估其功效并优化其特性以获得所需的治疗效果。这种方法加速了潜在候选药物的识别,简化了药物发现过程,并促进了更安全、更有效的治疗方法的开发。

占比最大的地区:

在亚太地区,由于製药和生物技术领域投资的增加以及计算技术的进步,分子建模市场正在大幅成长。在研究能力不断扩大和医疗保健支出不断增加的推动下,中国、印度、日本和韩国等国家是主要贡献者。该地区受益于熟练的劳动力和促进科学研究和创新的政府支持措施。此外,学术机构和产业参与者之间的合作正在促进技术进步和市场扩张。

复合年增长率最高的地区:

在北美,在製药和生物技术产业的强大推动下,分子建模市场强劲且迅速扩张。该地区受益于广泛的研发活动、医疗保健领域的大量资金以及先进的技术基础设施。美国和加拿大等主要国家是分子建模创新的领先中心,在药物发现、材料科学和其他研究领域对计算技术的采用率很高。研究机构和产业参与者之间的合作进一步支持了市场的成长,确保了北美的持续进步和市场扩张。

主要进展:

2022 年7 月,Cadence Design Systems Inc. 签署了收购私人公司OpenEye Scientific Software, Inc. 的最终协议。广泛且越来越多地用于药物发现。

2022 年 3 月,PerkinElmer, Inc. 发布了其 ChemDraw(R) 软体 V21,该软体能够一键在 Microsoft(R) PowerPoint(R) 应用程式中本地导入、製作动画和共享 3D 化学结构。全球数百万科学家使用的工具的关键增强功能可帮助化学家快速轻鬆地创建更聪明的研究报告 - 改善资讯共享和协作并支援即时决策。

我们的报告提供了什么:

  • 区域和国家层面的市场份额评估
  • 对新进入者的策略建议
  • 涵盖2022年、2023年、2024年、2026年及2030年的市场资料
  • 市场趋势(驱动因素、限制因素、机会、威胁、挑战、投资机会和建议)
  • 根据市场预测提出关键业务部门的策略建议
  • 竞争性景观美化绘製主要共同趋势
  • 公司概况,包括详细的策略、财务状况和最新发展
  • 反映最新技术进步的供应链趋势

免费客製化产品:

本报告的所有客户都将有权获得以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 个)
    • 关键参与者的 SWOT 分析(最多 3 个)
  • 区域细分
    • 根据客户的兴趣对任何主要国家的市场估计、预测和复合年增长率(註:取决于可行性检查)
  • 竞争基准化分析
    • 根据产品组合、地理分布和策略联盟对主要参与者基准化分析

目录

第 1 章:执行摘要

第 2 章:前言

  • 抽象的
  • 股东
  • 研究范围
  • 研究方法论
    • 资料探勘
    • 数据分析
    • 数据验证
    • 研究方法
  • 研究来源
    • 主要研究来源
    • 二手研究来源
    • 假设

第 3 章:市场趋势分析

  • 介绍
  • 司机
  • 限制
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • Covid-19 的影响

第 4 章:波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争竞争

第 5 章:全球分子建模市场:按类型

  • 介绍
  • 同源建模
  • 从头开始建模
  • 分子动力学建模
  • 药效团建模
  • 其他类型

第 6 章:全球分子建模市场:按组成部分

  • 介绍
  • 软体
    • 量子化学软体
    • 视觉化软体
    • 药物设计软体
    • 对接软体
  • 硬体
    • 高效能运算 (HPC) 系统
    • 专用工作站
    • 储存解决方案
  • 服务
    • 咨询服务
    • 培训和支援服务
    • 建模与模拟服务

第 7 章:全球分子建模市场:依建模规模划分

  • 介绍
  • 宏观建模
  • 微观建模
  • 介观建模

第 8 章:全球分子建模市场:按应用分类

  • 介绍
  • 药物发现与开发
  • 材料科学
  • 化学工程
  • 环境建模
  • 其他应用

第 9 章:全球分子建模市场:依最终用户分类

  • 介绍
  • 製药与生物技术公司
  • 学术及研究机构
  • 合约研究组织 (CRO)
  • 其他最终用户

第 10 章:全球分子建模市场:依地理位置

  • 介绍
  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太地区其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿联酋
    • 卡达
    • 南非
    • 中东和非洲其他地区

第 11 章:主要进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 扩充
  • 其他关键策略

第 12 章:公司概况

  • Thermo Fisher Scientific Inc.
  • Dassault Systems
  • Schrodinger
  • Certara
  • Bio-Rad Laboratories
  • OpenEye Scientific Software
  • Chemical Computing Group
  • Cresset
  • Forge Therapeutics
  • Cadence Design Systems Inc.
  • PerkinElmer Inc.
  • Molecular Networks GmbH
  • Genedata AG
  • Bioinformatics Inc.
  • Optibrium Limited
  • Rosa & Co. LLC
Product Code: SMRC26547

According to Stratistics MRC, the Global Molecular Modelling Market is accounted for $0.26 billion in 2024 and is expected to reach $0.97 billion by 2030 growing at a CAGR of 16.2% during the forecast period. Molecular modelling refers to computational techniques used to study the structure, properties, and behaviour of molecules. It involves computer simulations and mathematical models to predict molecular interactions and dynamics at atomic levels. Molecular modelling plays a crucial role in advancing scientific research by providing insights into molecular structures that are often inaccessible to direct experimental observation alone.

According to the December 2021 report of the International Diabetes Federation (IDF), about 537 million adults of age 20-79 years were living with diabetes in 2021, and more than 90% of this population have Type 2 diabetes.

Market Dynamics:

Driver:

Expanding applications in material science

Expanding applications in material science drive the growth of the molecular modelling market by increasing demand for accurate simulations of molecular structures and behaviours. These models facilitate research and development across various industries, such as pharmaceuticals, chemicals, and nanotechnology, by predicting properties, interactions, and reactions of new materials before experimental testing. This predictive capability accelerates innovation, reduces costs, and enhances product efficiency and safety.

Restraint:

Complexity and interpretation challenges

Complexity in molecular modelling arises from the vast array of variables influencing molecular behaviour, such as intermolecular forces and quantum effects. This complexity complicates accurate simulations and interpretations. Additionally, diverse modeling approaches and varying accuracy levels pose interpretation challenges, impacting reliability and decision-making in drug discovery, material science, and other fields. Consequently, high costs associated with hardware and software development limit accessibility, hindering market growth.

Opportunity:

Advancements in computational technologies

Advancements in computational technologies enhances simulation accuracy and speed, enabling complex molecular interactions to be studied with higher fidelity. High-performance computing allows for larger datasets and more intricate molecular structures to be analyzed, facilitating drug discovery, material science advancements, and personalized medicine. These technological strides are revolutionizing research in pharmaceuticals, biotechnology, and materials science, propelling the molecular modelling market forward with unprecedented capabilities.

Threat:

Validation and accuracy concerns

Validation concerns in molecular modeling include the accuracy of force fields, solvation models, and computational algorithms, impacting the reliability of predicted molecular structures and interactions. Inaccuracies can misguide drug discovery efforts, leading to costly failures and delays in product development. Such concerns undermine confidence in computational approaches, discouraging market adoption of molecular modeling services and software solutions essential for pharmaceutical and material science industries.

Covid-19 Impact

The covid-19 pandemic has accelerated the growth of the molecular modelling market as pharmaceutical companies increasingly relied on computational techniques for drug discovery and vaccine development. The need to expedite research processes and minimize physical interactions propelled the adoption of virtual screening and molecular simulations. This surge in demand for computational tools has driven investment in the molecular modelling sector, fostering innovations and expanding its market size significantly during and beyond the pandemic.

The microscopic modelling segment is expected to be the largest during the forecast period

The microscopic modelling segment is estimated to have a lucrative growth. Microscopic modelling involves simulating molecular structures and interactions at the atomic level. It employs computational techniques like molecular dynamics and quantum mechanics to study properties such as energy, structure, and behaviour of molecules. By analyzing these microscopic details, researchers can predict how molecules interact in biological systems or materials, aiding drug discovery, materials science, and understanding complex biochemical processes at a fundamental level.

The drug discovery & development segment is expected to have the highest CAGR during the forecast period

The drug discovery & development segment is anticipated to witness the fastest CAGR growth during the forecast period. Molecular modeling utilizes computational methods to design and optimize new pharmaceutical compounds. It enables researchers to predict how molecules interact with biological targets, assess their efficacy, and optimize their properties for desired therapeutic effects. This approach accelerates the identification of potential drug candidates, streamlining the drug discovery process and facilitating the development of safer and more effective treatments.

Region with largest share:

In the Asia-Pacific region, the molecular modelling market is witnessing substantial growth due to increasing investments in pharmaceutical and biotechnology sectors, coupled with advancements in computational technologies. Countries like China, India, Japan, and South Korea are key contributors, driven by expanding research capabilities and rising healthcare expenditure. The region benefits from a skilled workforce and supportive government initiatives promoting scientific research and innovation. Furthermore, collaborations between academic institutions and industry players are fostering technological advancements and market expansion.

Region with highest CAGR:

In North America, the molecular modelling market is robust and expanding rapidly, driven by a strong presence of pharmaceutical and biotechnology industries. The region benefits from extensive research and development activities, substantial funding in healthcare, and advanced technological infrastructure. Key countries such as the United States and Canada are leading hubs for molecular modelling innovations, with a high adoption rate of computational techniques in drug discovery, material science, and other research areas. The market growth is further supported by collaborations between research organizations, and industry players, ensuring continuous advancements and market expansion in North America.

Key players in the market

Some of the key players profiled in the Molecular Modelling Market include Thermo Fisher Scientific Inc., Dassault Systems, Schrodinger, Certara, Bio-Rad Laboratories, OpenEye Scientific Software, Chemical Computing Group, Cresset, Forge Therapeutics, Cadence Design Systems Inc., PerkinElmer Inc., Molecular Networks GmbH, Genedata AG, Bioinformatics Inc., Optibrium Limited and Rosa & Co. LLC.

Key Developments:

In July 2022, Cadence Design Systems Inc. has entered into a definitive agreement to acquire privately held OpenEye Scientific Software, Inc., a leading provider of computational molecular modeling and simulation software being widely and increasingly used by pharmaceutical and biotechnology companies for drug discovery.

In March 2022, PerkinElmer, Inc., announced V21 of its ChemDraw(R) software featuring the ability to import, animate and share 3D chemical structures natively in the Microsoft(R) PowerPoint(R) application with one click. The key enhancement, to a tool used by millions of scientists around the world, helps chemists create more intelligent research reports quickly and easily -- improving information sharing and collaboration and supporting real-time decision making.

Types Covered:

  • Homology Modelling
  • Ab Initio Modelling
  • Molecular Dynamics Modelling
  • Pharmacophore Modelling
  • Other Types

Components Covered:

  • Software
  • Hardware
  • Service

Scale of Modellings Covered:

  • Macroscopic Modelling
  • Microscopic Modelling
  • Mesoscopic Modelling

Applications Covered:

  • Drug Discovery & Development
  • Material Science
  • Chemical Engineering
  • Environmental Modelling
  • Other Applications

End Users Covered:

  • Pharmaceutical & Biotechnology Companies
  • Academic & Research Institutes
  • Contract Research Organizations (CROs)
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Molecular Modelling Market, By Type

  • 5.1 Introduction
  • 5.2 Homology Modelling
  • 5.3 Ab Initio Modelling
  • 5.4 Molecular Dynamics Modelling
  • 5.5 Pharmacophore Modelling
  • 5.6 Other Types

6 Global Molecular Modelling Market, By Component

  • 6.1 Introduction
  • 6.2 Software
    • 6.2.1 Quantum Chemistry software
    • 6.2.2 Visualization software
    • 6.2.3 Drug Design software
    • 6.2.4 Docking Software
  • 6.3 Hardware
    • 6.3.1 High-Performance Computing (HPC) Systems
    • 6.3.2 Dedicated Workstations
    • 6.3.3 Storage Solutions
  • 6.4 Service
    • 6.4.1 Consulting Services
    • 6.4.2 Training & Support Services
    • 6.4.3 Modeling & Simulation Services

7 Global Molecular Modelling Market, By Scale of Modelling

  • 7.1 Introduction
  • 7.2 Macroscopic Modelling
  • 7.3 Microscopic Modelling
  • 7.4 Mesoscopic Modelling

8 Global Molecular Modelling Market, By Application

  • 8.1 Introduction
  • 8.2 Drug Discovery & Development
  • 8.3 Material Science
  • 8.4 Chemical Engineering
  • 8.5 Environmental Modelling
  • 8.6 Other Applications

9 Global Molecular Modelling Market, By End User

  • 9.1 Introduction
  • 9.2 Pharmaceutical & Biotechnology Companies
  • 9.3 Academic & Research Institutes
  • 9.4 Contract Research Organizations (CROs)
  • 9.5 Other End Users

10 Global Molecular Modelling Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Thermo Fisher Scientific Inc.
  • 12.2 Dassault Systems
  • 12.3 Schrodinger
  • 12.4 Certara
  • 12.5 Bio-Rad Laboratories
  • 12.6 OpenEye Scientific Software
  • 12.7 Chemical Computing Group
  • 12.8 Cresset
  • 12.9 Forge Therapeutics
  • 12.10 Cadence Design Systems Inc.
  • 12.11 PerkinElmer Inc.
  • 12.12 Molecular Networks GmbH
  • 12.13 Genedata AG
  • 12.14 Bioinformatics Inc.
  • 12.15 Optibrium Limited
  • 12.16 Rosa & Co. LLC

List of Tables

  • Table 1 Global Molecular Modelling Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Molecular Modelling Market Outlook, By Type (2022-2030) ($MN)
  • Table 3 Global Molecular Modelling Market Outlook, By Homology Modelling (2022-2030) ($MN)
  • Table 4 Global Molecular Modelling Market Outlook, By Ab Initio Modelling (2022-2030) ($MN)
  • Table 5 Global Molecular Modelling Market Outlook, By Molecular Dynamics Modelling (2022-2030) ($MN)
  • Table 6 Global Molecular Modelling Market Outlook, By Pharmacophore Modelling (2022-2030) ($MN)
  • Table 7 Global Molecular Modelling Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 8 Global Molecular Modelling Market Outlook, By Component (2022-2030) ($MN)
  • Table 9 Global Molecular Modelling Market Outlook, By Software (2022-2030) ($MN)
  • Table 10 Global Molecular Modelling Market Outlook, By Quantum Chemistry software (2022-2030) ($MN)
  • Table 11 Global Molecular Modelling Market Outlook, By Visualization software (2022-2030) ($MN)
  • Table 12 Global Molecular Modelling Market Outlook, By Drug Design software (2022-2030) ($MN)
  • Table 13 Global Molecular Modelling Market Outlook, By Docking Software (2022-2030) ($MN)
  • Table 14 Global Molecular Modelling Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 15 Global Molecular Modelling Market Outlook, By High-Performance Computing (HPC) Systems (2022-2030) ($MN)
  • Table 16 Global Molecular Modelling Market Outlook, By Dedicated Workstations (2022-2030) ($MN)
  • Table 17 Global Molecular Modelling Market Outlook, By Storage Solutions (2022-2030) ($MN)
  • Table 18 Global Molecular Modelling Market Outlook, By Service (2022-2030) ($MN)
  • Table 19 Global Molecular Modelling Market Outlook, By Consulting Services (2022-2030) ($MN)
  • Table 20 Global Molecular Modelling Market Outlook, By Training & Support Services (2022-2030) ($MN)
  • Table 21 Global Molecular Modelling Market Outlook, By Modeling & Simulation Services (2022-2030) ($MN)
  • Table 22 Global Molecular Modelling Market Outlook, By Scale of Modelling (2022-2030) ($MN)
  • Table 23 Global Molecular Modelling Market Outlook, By Macroscopic Modelling (2022-2030) ($MN)
  • Table 24 Global Molecular Modelling Market Outlook, By Microscopic Modelling (2022-2030) ($MN)
  • Table 25 Global Molecular Modelling Market Outlook, By Mesoscopic Modelling (2022-2030) ($MN)
  • Table 26 Global Molecular Modelling Market Outlook, By Application (2022-2030) ($MN)
  • Table 27 Global Molecular Modelling Market Outlook, By Drug Discovery & Development (2022-2030) ($MN)
  • Table 28 Global Molecular Modelling Market Outlook, By Material Science (2022-2030) ($MN)
  • Table 29 Global Molecular Modelling Market Outlook, By Chemical Engineering (2022-2030) ($MN)
  • Table 30 Global Molecular Modelling Market Outlook, By Environmental Modelling (2022-2030) ($MN)
  • Table 31 Global Molecular Modelling Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 32 Global Molecular Modelling Market Outlook, By End User (2022-2030) ($MN)
  • Table 33 Global Molecular Modelling Market Outlook, By Pharmaceutical & Biotechnology Companies (2022-2030) ($MN)
  • Table 34 Global Molecular Modelling Market Outlook, By Academic & Research Institutes (2022-2030) ($MN)
  • Table 35 Global Molecular Modelling Market Outlook, By Contract Research Organizations (CROs) (2022-2030) ($MN)
  • Table 36 Global Molecular Modelling Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.