封面
市场调查报告书
商品编码
1530705

2030 年量子运算市场预测:按组件、部署、应用程式、最终用户和地区进行的全球分析

Quantum Computing Market Forecasts to 2030 - Global Analysis By Component, Deployment, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据Stratistics MRC预测,2024年全球量子运算市场规模将达到16.6亿美元,预计2030年将达到110.7亿美元,预测期内复合年增长率为37.2%。

量子计算利用动态原理以与经典电脑完全不同的方式处理资讯。由于迭加和纠缠,量子位元可以同时具有 0、1 或两者的状态。这种能力使量子电脑能够同时执行大量计算,这可能使它们在解决某些类型的问题上比传统电脑更强大。量子电脑有望解决经典电脑无法达到的复杂计算,例如密码学、最佳化问题以及量子系统本身的模拟。

显着提高速度的可能性

量子电脑有可能变得更快,主要是因为它们利用了动态的基本特性。透过利用这项特性,量子电脑可以同时执行大量计算,从而可以以指数级的高速度处理特定问题。此外,量子位元可以纠缠。这意味着一个量子位元的状态会立即影响另一个量子位元,从而可以并行处理复杂的计算。这些因素正在推动市场成长。

错误率

错误率是量子运算的关键问题,对其可靠性和有效性有重大影响。与传统运算不同,传统运算中的错误通常可以透过冗余和错误检查通讯协定轻鬆修正,而量子位元(qubit)很脆弱,容易受到各种来源(包括杂讯和退相干)的错误的影响。这些错误可能是由于对量子位元的控制不完善、环境干扰以及当前量子硬体技术的限製造成的。然而,高错误率阻碍了准确可靠地执行复杂计算的能力,限制了量子计算的潜在应用。

投资及增资

量子计算的投资和资金筹措正在显着加速其发展。由于政府、私人公司和研究机构的大量资助,该领域近年来取得了显着进展。这些投资对于支援量子演算法、硬体开发和基础设施开发的基础研究极为重要。此外,资金还有助于聘请顶尖人才并在世界各地建立专用的量子运算设施。

道德和社会影响

量子电脑的发展受到伦理和社会影响的阻碍,这主要是由于对隐私、安全以及先进运算能力可能被滥用的担忧。量子电脑能够比经典电脑以指数速度更快地解决复杂问题,这带来了资料加密方法过时的问题。这可能会使个人资料或政府机密等敏感资讯面临风险。然而,量子技术的不平等分布可能会扩大现有的社会和经济差距,造成“量子鸿沟”,只有某些个人或群体才能获得强大的运算能力。

COVID-19 的影响:

COVID-19大流行对量子计算领域产生了重大影响。它扰乱了世界各地的研究活动,关闭了实验室,推迟了实验,并扰乱了对量子计算技术进步至关重要的合作。许多对于共用研究成果至关重要的学术和产业会议已被取消或转移到线上,限制了交流和合作的机会。疫情造成的财务不确定性也影响了量子运算倡议的资金投入,减缓了某些领域的进展。然而,这场大流行凸显了量子计算在药物发现、流行病学建模和供应链优化等领域的潜力。

预计软体产业在预测期内将是最大的产业

预计软体产业将在预测期内成为最大的产业。量子软体开发专注于开发利用量子系统独特属性(例如迭加和纠缠)的演算法和应用程序,以比经典电脑更快的速度解决复杂问题。该领域不仅需要动态和电脑科学的专业知识,还需要演算法设计和最佳化的创新方法。关键进展包括Qiskit和Quipper等量子程式语言的开发,这些语言使开发人员能够更有效地说明量子演算法。

预计本地产业在预测期内将实现最高的复合年增长率

预计本地细分市场在预测期内的复合年增长率最高。这部分使组织能够更好地控制其量子运算资源,使他们能够将敏感资料安全地保存在自己的基础设施内。需要即时处理或严格的资料隐私合规性的应用程式可以减少延迟并提高效能。此外,量子运算可以无缝整合到现有的 IT 环境中,从而可以轻鬆地试验和开发适合特定需求的量子演算法。

占比最高的地区

这种方法利用不同的专业知识和资源,透过促进研究机构、科技巨头和政府机构之间的合作来加速创新。产学合作将理论知识与实际应用结合,促进稳健量子演算法和硬体解决方案的发展。政府支持此类伙伴关係的努力确保了有利的法规环境和对重要研究倡议的资助。这样的协作生态系统不仅提高了北美公司在全球量子竞赛中的竞争力,也使该地区成为量子运算研发的领导者。

复合年增长率最高的地区:

预计欧洲地区在预测期内将实现盈利成长。欧洲申请量子运算相关专利的公司和研究机构数量不断增加,反映出人们对欧洲在这一前沿领域的专业知识和创新的日益认可。这些专利不仅保护智慧财产权,还能刺激进一步的研发投资,培育强大的创新和商业化生态系统。此外,专利申请的增加显示了欧洲公司在全球量子运算领域的战略定位,旨在利用未来的经济机会和技术领先地位。

免费客製化服务

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究资讯来源
    • 主要研究资讯来源
    • 二次研究资讯来源
    • 先决条件

第三章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第五章全球量子运算市场:按组成部分

  • 软体
  • 硬体

第六章全球量子运算市场:依发展划分

  • 本地

第七章全球量子运算市场:依应用分类

  • 生物医学模拟
  • 电子材料的发现
  • 金融服务
  • 流量优化
  • 其他用途

第八章全球量子运算市场:依最终用户划分

  • 化学品
  • 卫生保健
  • 航太和国防
  • 能源和电力
  • 其他最终用户

第九章全球量子运算市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东/非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第10章 主要进展

  • 合约、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十一章 公司概况

  • Accenture Plc
  • Amazon Web Services, Inc
  • D-WaveSystem Inc
  • Fujitsu Limited
  • Google LLC
  • IBM Corporation
  • Intel Corporation
  • Microsoft Corporation
  • Rigetti Computing, Inc
  • Zapata Computing
Product Code: SMRC26817

According to Stratistics MRC, the Global Quantum Computing Market is accounted for $1.66 billion in 2024 and is expected to reach $11.07 billion by 2030 growing at a CAGR of 37.2% during the forecast period. Quantum computing leverages principles of quantum mechanics to process information in fundamentally different ways than classical computers. At its core, it uses quantum bits, or qubits, which can exist in states of 0, 1, or both simultaneously due to superposition and entanglement. This ability allows quantum computers to perform vast numbers of calculations simultaneously, making them potentially much more powerful for certain types of problems than classical computers. Quantum computing holds promise for tackling complex computations that are beyond the reach of classical computers, such as cryptography, optimization problems, and simulations of quantum systems themselves.

Market Dynamics:

Driver:

Potential for exponential speedup

Quantum computing holds the potential for exponential speedup primarily due to its harnessing of quantum mechanics' fundamental properties. This property allows quantum computers to perform vast numbers of calculations simultaneously, leading to exponentially faster processing for certain problems. Moreover, qubits can be entangled, meaning the state of one qubit instantaneously affects another, enabling complex computations to be handled in parallel. These elements are boosting the market growth.

Restraint:

Error rates

Error rates are a critical challenge in quantum computing, significantly impacting its reliability and effectiveness. Unlike classical computing where errors can often be easily corrected through redundancy and error-checking protocols, quantum bits (qubits) are fragile and susceptible to errors from various sources such as noise and decoherence. These errors can arise due to imperfect control over qubits, environmental interference, and limitations in current quantum hardware technology. However, high error rates hinder the ability to perform complex calculations accurately and reliably, limiting the potential applications of quantum computing.

Opportunity:

Increasing investments and funding

Investments and funding in quantum computing have accelerated its development significantly. With substantial financial backing from governments, private companies, and research institutions, the field has made remarkable strides in recent years. These investments are crucial as they support fundamental research into quantum algorithms, hardware development, and infrastructure. Additionally, funding allows for the recruitment of top talent and the establishment of dedicated quantum computing facilities worldwide.

Threat:

Ethical and social implications

The development of quantum computing is hindered by ethical and social implications primarily due to concerns over privacy, security, and the potential for misuse of advanced computational power. Quantum computers have the capability to solve complex problems exponentially faster than classical computers, which raises issues about data encryption methods becoming obsolete. This could compromise sensitive information, such as personal data or classified government intelligence. However, the unequal distribution of quantum technology could widen existing social and economic disparities, creating a "quantum divide" where only certain individuals or entities have access to powerful computing capabilities.

Covid-19 Impact:

The COVID-19 pandemic significantly affected the field of quantum computing. It disrupted research activities globally, causing lab closures, delays in experiments, and interruptions in collaborative efforts essential for advancing quantum computing technology. Many academic and industry conferences crucial for sharing advancements were either canceled or moved online, limiting networking and collaboration opportunities. Financial uncertainties due to the pandemic also impacted funding for quantum computing initiatives, slowing down progress in some sectors. However, the pandemic also highlighted the potential of quantum computing in areas such as drug discovery, epidemiology modeling, and optimization of supply chains-issues critical during a global health crisis.

The Software segment is expected to be the largest during the forecast period

Software segment is expected to be the largest during the forecast period. Quantum software development focuses on creating algorithms and applications that harness the unique properties of quantum systems, such as superposition and entanglement, to solve complex problems exponentially faster than classical computers. This field not only requires expertise in quantum mechanics and computer science but also demands innovative approaches to algorithm design and optimization. Key areas of progress include the development of quantum programming languages like Qiskit and Quipper, which enable developers to write quantum algorithms more efficiently.

The On-premise segment is expected to have the highest CAGR during the forecast period

On-premise segment is expected to have the highest CAGR during the forecast period. This segment provides organizations with greater control over their quantum computing resources, ensuring sensitive data remains secure within their own infrastructure. It can reduce latency and improve performance for applications that require real-time processing or strict data privacy compliance. Additionally, it enables organizations to integrate quantum computing seamlessly into their existing IT environments, facilitating easier experimentation and development of quantum algorithms tailored to specific needs.

Region with largest share:

By fostering alliances between research institutions, tech giants, and governmental bodies, this approach leverages diverse expertise and resources to accelerate innovation, North America region commanded the largest share of the market over the projected period. Academic-industry partnerships bring together theoretical insights with practical applications, driving the development of robust quantum algorithms and hardware solutions. Government initiatives supporting these partnerships ensure a conducive regulatory environment and provide funding for critical research initiatives. This collaborative ecosystem not only enhances the competitiveness of North American companies in the global quantum race but also positions the region as a leader in quantum computing research and development.

Region with highest CAGR:

Europe region is estimated to witness profitable growth during the extrapolated period. As more companies and research institutions in Europe file patents in quantum computing, it reflects a growing recognition of the region's expertise and innovation in this cutting-edge field. These patents not only protect intellectual property but also stimulate further research and development investments, fostering a robust ecosystem of innovation and commercialization. Moreover, the increase in patent filings indicates a strategic positioning of European entities in the global quantum computing landscape, aiming to capitalize on future economic opportunities and technological leadership.

Key players in the market

Some of the key players in Quantum Computing market include Accenture Plc, Amazon Web Services, Inc, D-WaveSystem Inc, Fujitsu Limited, Google LLC, IBM Corporation, Intel Corporation, Microsoft Corporation, Rigetti Computing, Inc and Zapata Computing.

Key Developments:

In November 2023, Terra Quantum, a quantum service provider, collaborated with NVIDIA to develop quantum-accelerated applications. The deal would help bridge the gap between classical and quantum computing, leveraging hybrid algorithms.

In April 2023, IBM Corporation in collaboration with Moderna, Inc., a biotechnology company developing messenger RNA (mRNA) vaccines under which Moderna invests in developing quantum computing skills and artificial intelligence technology to bring advancement in mRNA research and science.

In January 2023, Multiverse Computing and PINQ2 announced a partnership aimed at merging their expertise in quantum and classical computing. This collaboration is designed to advance industrial projects by combining knowledge from both academia and industry to promote innovation in the field.

In November 2022, IBM entered a collaboration with Vodafone on quantum-safe cybersecurity by joining the IBM Quantum Network. This collaboration would help validate and progress potential quantum use cases in telecommunications.

Components Covered:

  • Software
  • Hardware

Deployments Covered:

  • Cloud
  • On-premise

Applications Covered:

  • Biomedical Simulations
  • Electronic Material Discovery
  • Financial Services
  • Traffic Optimization
  • Other Applications

End Users Covered:

  • Automotive
  • Chemical
  • Healthcare
  • Aerospace & Defense
  • Energy & Power
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Quantum Computing Market, By Component

  • 5.1 Introduction
  • 5.2 Software
  • 5.3 Hardware

6 Global Quantum Computing Market, By Deployment

  • 6.1 Introduction
  • 6.2 Cloud
  • 6.3 On-premise

7 Global Quantum Computing Market, By Application

  • 7.1 Introduction
  • 7.2 Biomedical Simulations
  • 7.3 Electronic Material Discovery
  • 7.4 Financial Services
  • 7.5 Traffic Optimization
  • 7.6 Other Applications

8 Global Quantum Computing Market, By End User

  • 8.1 Introduction
  • 8.2 Automotive
  • 8.3 Chemical
  • 8.4 Healthcare
  • 8.5 Aerospace & Defense
  • 8.6 Energy & Power
  • 8.7 Other End Users

9 Global Quantum Computing Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Accenture Plc
  • 11.2 Amazon Web Services, Inc
  • 11.3 D-WaveSystem Inc
  • 11.4 Fujitsu Limited
  • 11.5 Google LLC
  • 11.6 IBM Corporation
  • 11.7 Intel Corporation
  • 11.8 Microsoft Corporation
  • 11.9 Rigetti Computing, Inc
  • 11.10 Zapata Computing

List of Tables

  • Table 1 Global Quantum Computing Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Quantum Computing Market Outlook, By Component (2022-2030) ($MN)
  • Table 3 Global Quantum Computing Market Outlook, By Software (2022-2030) ($MN)
  • Table 4 Global Quantum Computing Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 5 Global Quantum Computing Market Outlook, By Deployment (2022-2030) ($MN)
  • Table 6 Global Quantum Computing Market Outlook, By Cloud (2022-2030) ($MN)
  • Table 7 Global Quantum Computing Market Outlook, By On-premise (2022-2030) ($MN)
  • Table 8 Global Quantum Computing Market Outlook, By Application (2022-2030) ($MN)
  • Table 9 Global Quantum Computing Market Outlook, By Biomedical Simulations (2022-2030) ($MN)
  • Table 10 Global Quantum Computing Market Outlook, By Electronic Material Discovery (2022-2030) ($MN)
  • Table 11 Global Quantum Computing Market Outlook, By Financial Services (2022-2030) ($MN)
  • Table 12 Global Quantum Computing Market Outlook, By Traffic Optimization (2022-2030) ($MN)
  • Table 13 Global Quantum Computing Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 14 Global Quantum Computing Market Outlook, By End User (2022-2030) ($MN)
  • Table 15 Global Quantum Computing Market Outlook, By Automotive (2022-2030) ($MN)
  • Table 16 Global Quantum Computing Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 17 Global Quantum Computing Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 18 Global Quantum Computing Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 19 Global Quantum Computing Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 20 Global Quantum Computing Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 21 North America Quantum Computing Market Outlook, By Country (2022-2030) ($MN)
  • Table 22 North America Quantum Computing Market Outlook, By Component (2022-2030) ($MN)
  • Table 23 North America Quantum Computing Market Outlook, By Software (2022-2030) ($MN)
  • Table 24 North America Quantum Computing Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 25 North America Quantum Computing Market Outlook, By Deployment (2022-2030) ($MN)
  • Table 26 North America Quantum Computing Market Outlook, By Cloud (2022-2030) ($MN)
  • Table 27 North America Quantum Computing Market Outlook, By On-premise (2022-2030) ($MN)
  • Table 28 North America Quantum Computing Market Outlook, By Application (2022-2030) ($MN)
  • Table 29 North America Quantum Computing Market Outlook, By Biomedical Simulations (2022-2030) ($MN)
  • Table 30 North America Quantum Computing Market Outlook, By Electronic Material Discovery (2022-2030) ($MN)
  • Table 31 North America Quantum Computing Market Outlook, By Financial Services (2022-2030) ($MN)
  • Table 32 North America Quantum Computing Market Outlook, By Traffic Optimization (2022-2030) ($MN)
  • Table 33 North America Quantum Computing Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 34 North America Quantum Computing Market Outlook, By End User (2022-2030) ($MN)
  • Table 35 North America Quantum Computing Market Outlook, By Automotive (2022-2030) ($MN)
  • Table 36 North America Quantum Computing Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 37 North America Quantum Computing Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 38 North America Quantum Computing Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 39 North America Quantum Computing Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 40 North America Quantum Computing Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 41 Europe Quantum Computing Market Outlook, By Country (2022-2030) ($MN)
  • Table 42 Europe Quantum Computing Market Outlook, By Component (2022-2030) ($MN)
  • Table 43 Europe Quantum Computing Market Outlook, By Software (2022-2030) ($MN)
  • Table 44 Europe Quantum Computing Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 45 Europe Quantum Computing Market Outlook, By Deployment (2022-2030) ($MN)
  • Table 46 Europe Quantum Computing Market Outlook, By Cloud (2022-2030) ($MN)
  • Table 47 Europe Quantum Computing Market Outlook, By On-premise (2022-2030) ($MN)
  • Table 48 Europe Quantum Computing Market Outlook, By Application (2022-2030) ($MN)
  • Table 49 Europe Quantum Computing Market Outlook, By Biomedical Simulations (2022-2030) ($MN)
  • Table 50 Europe Quantum Computing Market Outlook, By Electronic Material Discovery (2022-2030) ($MN)
  • Table 51 Europe Quantum Computing Market Outlook, By Financial Services (2022-2030) ($MN)
  • Table 52 Europe Quantum Computing Market Outlook, By Traffic Optimization (2022-2030) ($MN)
  • Table 53 Europe Quantum Computing Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 54 Europe Quantum Computing Market Outlook, By End User (2022-2030) ($MN)
  • Table 55 Europe Quantum Computing Market Outlook, By Automotive (2022-2030) ($MN)
  • Table 56 Europe Quantum Computing Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 57 Europe Quantum Computing Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 58 Europe Quantum Computing Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 59 Europe Quantum Computing Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 60 Europe Quantum Computing Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 61 Asia Pacific Quantum Computing Market Outlook, By Country (2022-2030) ($MN)
  • Table 62 Asia Pacific Quantum Computing Market Outlook, By Component (2022-2030) ($MN)
  • Table 63 Asia Pacific Quantum Computing Market Outlook, By Software (2022-2030) ($MN)
  • Table 64 Asia Pacific Quantum Computing Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 65 Asia Pacific Quantum Computing Market Outlook, By Deployment (2022-2030) ($MN)
  • Table 66 Asia Pacific Quantum Computing Market Outlook, By Cloud (2022-2030) ($MN)
  • Table 67 Asia Pacific Quantum Computing Market Outlook, By On-premise (2022-2030) ($MN)
  • Table 68 Asia Pacific Quantum Computing Market Outlook, By Application (2022-2030) ($MN)
  • Table 69 Asia Pacific Quantum Computing Market Outlook, By Biomedical Simulations (2022-2030) ($MN)
  • Table 70 Asia Pacific Quantum Computing Market Outlook, By Electronic Material Discovery (2022-2030) ($MN)
  • Table 71 Asia Pacific Quantum Computing Market Outlook, By Financial Services (2022-2030) ($MN)
  • Table 72 Asia Pacific Quantum Computing Market Outlook, By Traffic Optimization (2022-2030) ($MN)
  • Table 73 Asia Pacific Quantum Computing Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 74 Asia Pacific Quantum Computing Market Outlook, By End User (2022-2030) ($MN)
  • Table 75 Asia Pacific Quantum Computing Market Outlook, By Automotive (2022-2030) ($MN)
  • Table 76 Asia Pacific Quantum Computing Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 77 Asia Pacific Quantum Computing Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 78 Asia Pacific Quantum Computing Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 79 Asia Pacific Quantum Computing Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 80 Asia Pacific Quantum Computing Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 81 South America Quantum Computing Market Outlook, By Country (2022-2030) ($MN)
  • Table 82 South America Quantum Computing Market Outlook, By Component (2022-2030) ($MN)
  • Table 83 South America Quantum Computing Market Outlook, By Software (2022-2030) ($MN)
  • Table 84 South America Quantum Computing Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 85 South America Quantum Computing Market Outlook, By Deployment (2022-2030) ($MN)
  • Table 86 South America Quantum Computing Market Outlook, By Cloud (2022-2030) ($MN)
  • Table 87 South America Quantum Computing Market Outlook, By On-premise (2022-2030) ($MN)
  • Table 88 South America Quantum Computing Market Outlook, By Application (2022-2030) ($MN)
  • Table 89 South America Quantum Computing Market Outlook, By Biomedical Simulations (2022-2030) ($MN)
  • Table 90 South America Quantum Computing Market Outlook, By Electronic Material Discovery (2022-2030) ($MN)
  • Table 91 South America Quantum Computing Market Outlook, By Financial Services (2022-2030) ($MN)
  • Table 92 South America Quantum Computing Market Outlook, By Traffic Optimization (2022-2030) ($MN)
  • Table 93 South America Quantum Computing Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 94 South America Quantum Computing Market Outlook, By End User (2022-2030) ($MN)
  • Table 95 South America Quantum Computing Market Outlook, By Automotive (2022-2030) ($MN)
  • Table 96 South America Quantum Computing Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 97 South America Quantum Computing Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 98 South America Quantum Computing Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 99 South America Quantum Computing Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 100 South America Quantum Computing Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 101 Middle East & Africa Quantum Computing Market Outlook, By Country (2022-2030) ($MN)
  • Table 102 Middle East & Africa Quantum Computing Market Outlook, By Component (2022-2030) ($MN)
  • Table 103 Middle East & Africa Quantum Computing Market Outlook, By Software (2022-2030) ($MN)
  • Table 104 Middle East & Africa Quantum Computing Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 105 Middle East & Africa Quantum Computing Market Outlook, By Deployment (2022-2030) ($MN)
  • Table 106 Middle East & Africa Quantum Computing Market Outlook, By Cloud (2022-2030) ($MN)
  • Table 107 Middle East & Africa Quantum Computing Market Outlook, By On-premise (2022-2030) ($MN)
  • Table 108 Middle East & Africa Quantum Computing Market Outlook, By Application (2022-2030) ($MN)
  • Table 109 Middle East & Africa Quantum Computing Market Outlook, By Biomedical Simulations (2022-2030) ($MN)
  • Table 110 Middle East & Africa Quantum Computing Market Outlook, By Electronic Material Discovery (2022-2030) ($MN)
  • Table 111 Middle East & Africa Quantum Computing Market Outlook, By Financial Services (2022-2030) ($MN)
  • Table 112 Middle East & Africa Quantum Computing Market Outlook, By Traffic Optimization (2022-2030) ($MN)
  • Table 113 Middle East & Africa Quantum Computing Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 114 Middle East & Africa Quantum Computing Market Outlook, By End User (2022-2030) ($MN)
  • Table 115 Middle East & Africa Quantum Computing Market Outlook, By Automotive (2022-2030) ($MN)
  • Table 116 Middle East & Africa Quantum Computing Market Outlook, By Chemical (2022-2030) ($MN)
  • Table 117 Middle East & Africa Quantum Computing Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 118 Middle East & Africa Quantum Computing Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 119 Middle East & Africa Quantum Computing Market Outlook, By Energy & Power (2022-2030) ($MN)
  • Table 120 Middle East & Africa Quantum Computing Market Outlook, By Other End Users (2022-2030) ($MN)