封面
市场调查报告书
商品编码
1569750

2030 年永续电池材料市场预测:按产品类型、材料来源、生产方法、应用和地区进行的全球分析

Sustainable Battery Materials Market Forecasts to 2030 - Global Analysis By Type, Material Source, Production Method, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据Stratistics MRC的数据,2024年全球永续电池材料市场规模为482.8亿美元,预计到2030年将达到743.4亿美元,预测期内复合年增长率为8.2%。

永续电池材料是指电池中使用的资源是环保的、可再生的,并且在整个生命週期中对生态系统影响很小。这些材料旨在减少对有限和危险资源的依赖,最大限度地减少污染和废弃物,并促进回收和再利用。目标是提高电池性能,同时支持长期环境和社会永续性。

根据太阳能产业协会统计,2023年第一季美国太阳能产业总设备容量约为6.1 GW-DC。

电动车 (EV) 需求不断增长

随着电动车 (EV) 变得越来越流行,製造商正在寻求传统电池材料的永续替代品,重点是减少对环境的影响并提高效率。这种转变将推动对锂、钴和镍等永续来源材料以及固态电池和回收电池等创新解决方案的需求。这将导致这些材料的研发和生产投资增加,刺激市场扩张,并有助于更广泛地推动绿色汽车技术的发展。

回收基础设施有限

永续电池材料的回收基础设施有限,为废弃旧电池的管理带来了挑战。回收设施和技术不足导致锂、钴和镍等有价值材料的回收效率低下,从而增加了成本和环境影响。基础设施的缺乏也限制了对电池技术的投资,并限制了回收材料的整体供应,从而阻碍了市场的成长,并阻碍了电池产业迈向更永续和循环经济的进步。

可再生能源产业的成长

随着太阳能和风能等可再生能源的使用不断扩大,对能源储存系统係统应对电源波动的需求不断增长。需求的激增推动了对由锂、钴和镍等永续材料製成的先进电池的需求。电池技术的新兴市场专注于提高效率和最大限度地减少对环境的影响,这进一步刺激了市场的成长。此外,减少碳排放和确保负责任地采购电池材料的全球运动正在支持永续能源解决方案领域的扩张。

生产成本高

永续电池材料的高生产成本是由于提取和加工锂、钴和镍等稀有和特殊元素的高成本造成的。此外,提高效率和永续性所需的先进技术也导致成本上升。与传统替代品相比,这些高昂的生产成本可能会降低永续电池的竞争力,并限制市场成长。因此,采用将受到阻碍,并向绿色能源解决方案的过渡将被推迟。

COVID-19 的影响

COVID-19 扰乱了供应链、减缓了生产并增加了原材料成本,从而影响了永续电池材料市场。疫情导致对绿色技术的投资减少,并减缓了新型永续材料的开发。但随着政府和企业在復苏计画中优先考虑韧性和永续性,清洁能源解决方案的推动也加速了。对可再生能源和绿色技术的关注正在加强对永续电池材料的长期需求。

再生材料产业预计将在预测期内成为最大的产业

预计再生材料领域将在整个预测期内获得最大的市场占有率。回收材料透过减少对原始资源的依赖并最大限度地减少对环境的影响,在永续电池生产中发挥重要作用。使用回收的锂、钴和镍可以降低生产成本并节省自然资源。它还减少了与采矿和加工相关的环境足迹。采用回收材料不仅支持循环经济,也使电池技术更具永续性,从长远来看更环保和经济可行。

预计绿色製造领域在预测期内复合年增长率最高

绿色製造领域预计将以最高的复合年增长率成长。永续电池材料的绿色製造方法着重于透过节能製程和废弃物最小化来减少对环境的影响。透过优化製造流程和确保原材料的道德采购,绿色製造旨在提高永续性并减少电池製造的碳排放,使能源储存产业整体上更加环保,并支持您的目标。

比最大的地区

由于对电动车(EV)、可再生能源储存的需求不断增加以及政府推广绿色技术的倡议,预计亚太地区将在预测期内占据最大的市场占有率。中国、日本和韩国等国家是主要参与者,它们大力投资先进电池技术和永续实践。该地区专注于采购和开发环保材料、改进回收流程并减少对关键原材料的依赖。这一趋势是由日益增强的环保意识和支持能源储存解决方案永续性的严格法规结构所推动的。

复合年增长率最高的地区:

由于电动车(EV)采用的快速成长、可再生能源储存的进步以及政府对绿色技术的大力支持,预计北美在预测期内的复合年增长率最高。在激励措施、研发资金和更严格的环境法规的推动下,美国和加拿大正在主导绿色电池材料的开发和实用化。这包括投资国内关键矿物的开采、创新的回收方法和替代材料的进步。该地区也致力于减少碳足迹和加强供应链的永续性。

免费客製化服务:

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争标基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究资讯来源
    • 主要研究资讯来源
    • 二次研究资讯来源
    • 先决条件

第三章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 新兴市场
  • COVID-19 的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第五章全球永续电池材料市场:按类型

  • 锂离子电池材料
    • 钴酸锂(LCO)
    • 磷酸锂铁(LFP)
    • 锂镍锰钴 (NMC)
    • 镍钴铝酸锂 (NCA)
  • 固态电池材料
    • 固体电解质
    • 陶瓷材料
  • 钠离子电池材料
  • 锌基电池材料
  • 有机电池材料
  • 其他类型

第六章全球永续电池材料市场:依材料来源分类

  • 采矿材料
  • 回收材料

第七章全球永续电池材料市场:依生产方法分类

  • 绿色製造
  • 积层製造
  • 生物合成
  • 化学合成
    • 热感合成
    • 水热合成
    • 电化学合成
  • 其他生产方法

第八章全球永续电池材料市场:依应用分类

  • 电动车(EV)
  • 家电
  • 能源储存系统(ESS)
  • 工业机械
  • 医疗设备
  • 其他用途

第九章全球永续电池材料市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东/非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第10章 主要进展

  • 合约、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十一章 公司概况

  • Tesla Inc.
  • CATL(Contemporary Amperex Technology Co. Limited)
  • LG Energy Solution
  • Panasonic Corporation
  • BYD Company
  • Samsung SDI
  • BASF SE
  • Johnson Matthey PLC
  • Brookfield Renewable Partners
  • AESC(Automotive Energy Supply Corporation)
  • Northvolt
  • Umicore
  • Albemarle Corporation
  • SQM(Sociedad Quimica y Minera de Chile)
  • Livent Corporation
  • Lithium Americas Corporation
  • Talon Metals Corporation
  • MP Materials Corporation
  • Ganfeng Lithium Corporation
  • Green Li-ion
Product Code: SMRC27255

According to Stratistics MRC, the Global Sustainable Battery Materials Market is accounted for $48.28 billion in 2024 and is expected to reach $74.34 billion by 2030 growing at a CAGR of 8.2% during the forecast period. Sustainable battery materials refer to resources used in batteries that are environmentally friendly, renewable, and have a lower ecological impact throughout their lifecycle. These materials aim to reduce dependence on finite and harmful resources, minimize pollution and waste, and promote recycling and reuse. The goal is to enhance battery performance while supporting long-term environmental and social sustainability.

According to the Solar Energy Industries Association, the United States solar industry installed a total capacity of around 6.1 gigawatts-direct current in the first quarter of 2023.

Market Dynamics:

Driver:

Rising demand for electric vehicles (EVs)

As EV adoption increases, manufacturers seek sustainable alternatives to traditional battery materials, focusing on reducing environmental impact and improving efficiency. This shift boosts the demand for materials like lithium, cobalt, and nickel sourced through sustainable practices, as well as for innovative solutions such as solid-state and recycled batteries. Consequently, investments in research & development, and production of these materials rise, fueling market expansion and contributing to the broader push for greener automotive technologies.

Restraint:

Limited recycling infrastructure

Limited recycling infrastructure for sustainable battery materials creates challenges in managing end-of-life batteries. Inadequate facilities and technologies for recycling lead to inefficiencies in recovering valuable materials like lithium, cobalt, and nickel, increasing costs and environmental impact. This lack of infrastructure also discourages investment in battery technologies and limits the overall supply of recycled materials, stifling market growth and hindering progress towards a more sustainable and circular economy in the battery sector.

Opportunity:

Growing renewable energy sector

With the growing use of renewable energy sources like solar and wind, there is a rising need for energy storage systems to handle fluctuating power supply. This surge in demand boosts the requirement for advanced batteries made from sustainable materials, including lithium, cobalt, and nickel. Developments in battery technology focus on improving efficiency and minimizing environmental impact, which further stimulates market growth. Moreover, the global drive to lower carbon emissions and ensure responsible sourcing of battery materials supports the expansion of the sustainable energy solutions sector.

Threat:

High production costs

High production costs in sustainable battery materials stem from the expensive extraction and processing of rare or specialized elements like lithium, cobalt, and nickel. Additionally, advanced technologies required for enhancing efficiency and sustainability contribute to elevated costs. These high production expenses can limit market growth by making sustainable batteries less competitive compared to traditional alternatives. This, in turn, hampers widespread adoption and slows the transition to greener energy solutions.

Covid-19 Impact

Covid-19 impacted the sustainable battery materials market by disrupting supply chains, delaying production, and increasing raw material costs. The pandemic led to reduced investment in green technologies and slowed the development of new sustainable materials. However, it also accelerated the push for cleaner energy solutions as governments and companies prioritized resilience and sustainability in their recovery plans. The focus on renewable energy and green technologies has strengthened long-term demand for sustainable battery materials.

The recycled materials segment is expected to be the largest during the forecast period

The recycled materials segment is predicted to secure the largest market share throughout the forecast period. Recycled materials play a crucial role in sustainable battery production by reducing reliance on virgin resources and minimizing environmental impact. Using recycled lithium, cobalt, and nickel helps lower production costs and conserve natural resources. It also reduces the environmental footprint of mining and processing. Incorporating recycled materials not only supports the circular economy but also enhances the sustainability of battery technologies, making them more eco-friendly and economically viable in the long term.

The green manufacturing segment is expected to have the highest CAGR during the forecast period

The green manufacturing segment is expected to grow at the highest CAGR. Green manufacturing production methods in sustainable battery materials focus on reducing environmental impact through energy-efficient processes and minimizing waste. By optimizing manufacturing processes and ensuring ethical sourcing of raw materials, green manufacturing aims to enhance sustainability and lower the carbon footprint of battery production, supporting the overall goal of a more eco-friendly energy storage industry.

Region with largest share:

Asia Pacific is expected to have the largest market share during the forecast period driven by increasing demand for electric vehicles (EVs), renewable energy storage, and government initiatives promoting green technologies. Countries like China, Japan, and South Korea are major players, investing heavily in advanced battery technologies and sustainable practices. The region is focusing on sourcing and developing eco-friendly materials, improving recycling processes, and reducing reliance on critical raw materials. This trend is bolstered by rising environmental awareness and stringent regulatory frameworks supporting sustainability in energy storage solutions.

Region with highest CAGR:

North America is projected to witness the highest CAGR over the forecast period, owing to the surge in electric vehicle (EV) adoption, advancements in renewable energy storage, and robust governmental support for green technologies. The U.S. and Canada are leading efforts to develop and implement eco-friendly battery materials, driven by incentives, research funding, and stricter environmental regulations. This includes investments in domestic mining of critical minerals, innovative recycling methods, and advancements in alternative materials. The region is also focusing on reducing carbon footprints and enhancing supply chain sustainability.

Key players in the market

Some of the key players profiled in the Sustainable Battery Materials Market include Tesla Inc., CATL (Contemporary Amperex Technology Co. Limited), LG Energy Solution, Panasonic Corporation, BYD Company, Samsung SDI, BASF SE, Johnson Matthey PLC, Brookfield Renewable Partners, AESC (Automotive Energy Supply Corporation), Northvolt, Umicore, Albemarle Corporation, SQM (Sociedad Quimica y Minera de Chile), Livent Corporation, Lithium Americas Corporation, Talon Metals Corporation, MP Materials Corporation, Ganfeng Lithium Corporation and Green Li-ion.

Key Developments:

In April 2024, Panasonic Energy announced plans to establish a new research and development (R&D) facility in Japan aimed at advancing battery production technologies. This initiative underscores Panasonic's commitment to strengthening its position in the rapidly evolving energy storage market, particularly in the electric vehicle (EV) and renewable energy sectors.

In April 2024, Green Li-ion launched its first commercial-scale installation to produce sustainable, battery-grade materials, the first of its kind in North America. The facility utilizes advanced technologies to enhance the efficiency and sustainability of battery material production. This includes cutting-edge recycling techniques and innovations in material processing.

Types Covered:

  • Lithium-Ion Battery Materials
  • Solid-State Battery Materials
  • Sodium-Ion Battery Materials
  • Zinc-Based Battery Materials
  • Organic Battery Materials
  • Other Types

Material Sources Covered:

  • Mined Materials
  • Recycled Materials

Production Methods Covered:

  • Green Manufacturing
  • Additive Manufacturing
  • Biological Synthesis
  • Chemical Synthesis
  • Other Production Methods

Applications Covered:

  • Electric Vehicles (EVs)
  • Consumer Electronics
  • Energy Storage Systems (ESS)
  • Industrial Machinery
  • Medical Devices
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Sustainable Battery Materials Market, By Type

  • 5.1 Introduction
  • 5.2 Lithium-Ion Battery Materials
    • 5.2.1 Lithium Cobalt Oxide (LCO)
    • 5.2.2 Lithium Iron Phosphate (LFP)
    • 5.2.3 Lithium Nickel Manganese Cobalt (NMC)
    • 5.2.4 Lithium Nickel Cobalt Aluminum Oxide (NCA)
  • 5.3 Solid-State Battery Materials
    • 5.3.1 Solid Electrolytes
    • 5.3.2 Ceramic Materials
  • 5.4 Sodium-Ion Battery Materials
  • 5.5 Zinc-Based Battery Materials
  • 5.6 Organic Battery Materials
  • 5.7 Other Types

6 Global Sustainable Battery Materials Market, By Material Source

  • 6.1 Introduction
  • 6.2 Mined Materials
  • 6.3 Recycled Materials

7 Global Sustainable Battery Materials Market, By Production Method

  • 7.1 Introduction
  • 7.2 Green Manufacturing
  • 7.3 Additive Manufacturing
  • 7.4 Biological Synthesis
  • 7.5 Chemical Synthesis
    • 7.5.1 Solvothermal Synthesis
    • 7.5.2 Hydrothermal Synthesis
    • 7.5.3 Electrochemical Synthesis
  • 7.6 Other Production Methods

8 Global Sustainable Battery Materials Market, By Application

  • 8.1 Introduction
  • 8.2 Electric Vehicles (EVs)
  • 8.3 Consumer Electronics
  • 8.4 Energy Storage Systems (ESS)
  • 8.5 Industrial Machinery
  • 8.6 Medical Devices
  • 8.7 Other Applications

9 Global Sustainable Battery Materials Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Tesla Inc.
  • 11.2 CATL (Contemporary Amperex Technology Co. Limited)
  • 11.3 LG Energy Solution
  • 11.4 Panasonic Corporation
  • 11.5 BYD Company
  • 11.6 Samsung SDI
  • 11.7 BASF SE
  • 11.8 Johnson Matthey PLC
  • 11.9 Brookfield Renewable Partners
  • 11.10 AESC (Automotive Energy Supply Corporation)
  • 11.11 Northvolt
  • 11.12 Umicore
  • 11.13 Albemarle Corporation
  • 11.14 SQM (Sociedad Quimica y Minera de Chile)
  • 11.15 Livent Corporation
  • 11.16 Lithium Americas Corporation
  • 11.17 Talon Metals Corporation
  • 11.18 MP Materials Corporation
  • 11.19 Ganfeng Lithium Corporation
  • 11.20 Green Li-ion

List of Tables

  • Table 1 Global Sustainable Battery Materials Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Sustainable Battery Materials Market Outlook, By Type (2022-2030) ($MN)
  • Table 3 Global Sustainable Battery Materials Market Outlook, By Lithium-Ion Battery Materials (2022-2030) ($MN)
  • Table 4 Global Sustainable Battery Materials Market Outlook, By Lithium Cobalt Oxide (LCO) (2022-2030) ($MN)
  • Table 5 Global Sustainable Battery Materials Market Outlook, By Lithium Iron Phosphate (LFP) (2022-2030) ($MN)
  • Table 6 Global Sustainable Battery Materials Market Outlook, By Lithium Nickel Manganese Cobalt (NMC) (2022-2030) ($MN)
  • Table 7 Global Sustainable Battery Materials Market Outlook, By Lithium Nickel Cobalt Aluminum Oxide (NCA) (2022-2030) ($MN)
  • Table 8 Global Sustainable Battery Materials Market Outlook, By Solid-State Battery Materials (2022-2030) ($MN)
  • Table 9 Global Sustainable Battery Materials Market Outlook, By Solid Electrolytes (2022-2030) ($MN)
  • Table 10 Global Sustainable Battery Materials Market Outlook, By Ceramic Materials (2022-2030) ($MN)
  • Table 11 Global Sustainable Battery Materials Market Outlook, By Sodium-Ion Battery Materials (2022-2030) ($MN)
  • Table 12 Global Sustainable Battery Materials Market Outlook, By Zinc-Based Battery Materials (2022-2030) ($MN)
  • Table 13 Global Sustainable Battery Materials Market Outlook, By Organic Battery Materials (2022-2030) ($MN)
  • Table 14 Global Sustainable Battery Materials Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 15 Global Sustainable Battery Materials Market Outlook, By Material Source (2022-2030) ($MN)
  • Table 16 Global Sustainable Battery Materials Market Outlook, By Mined Materials (2022-2030) ($MN)
  • Table 17 Global Sustainable Battery Materials Market Outlook, By Recycled Materials (2022-2030) ($MN)
  • Table 18 Global Sustainable Battery Materials Market Outlook, By Production Method (2022-2030) ($MN)
  • Table 19 Global Sustainable Battery Materials Market Outlook, By Green Manufacturing (2022-2030) ($MN)
  • Table 20 Global Sustainable Battery Materials Market Outlook, By Additive Manufacturing (2022-2030) ($MN)
  • Table 21 Global Sustainable Battery Materials Market Outlook, By Biological Synthesis (2022-2030) ($MN)
  • Table 22 Global Sustainable Battery Materials Market Outlook, By Chemical Synthesis (2022-2030) ($MN)
  • Table 23 Global Sustainable Battery Materials Market Outlook, By Solvothermal Synthesis (2022-2030) ($MN)
  • Table 24 Global Sustainable Battery Materials Market Outlook, By Hydrothermal Synthesis (2022-2030) ($MN)
  • Table 25 Global Sustainable Battery Materials Market Outlook, By Electrochemical Synthesis (2022-2030) ($MN)
  • Table 26 Global Sustainable Battery Materials Market Outlook, By Other Production Methods (2022-2030) ($MN)
  • Table 27 Global Sustainable Battery Materials Market Outlook, By Application (2022-2030) ($MN)
  • Table 28 Global Sustainable Battery Materials Market Outlook, By Electric Vehicles (EVs) (2022-2030) ($MN)
  • Table 29 Global Sustainable Battery Materials Market Outlook, By Consumer Electronics (2022-2030) ($MN)
  • Table 30 Global Sustainable Battery Materials Market Outlook, By Energy Storage Systems (ESS) (2022-2030) ($MN)
  • Table 31 Global Sustainable Battery Materials Market Outlook, By Industrial Machinery (2022-2030) ($MN)
  • Table 32 Global Sustainable Battery Materials Market Outlook, By Medical Devices (2022-2030) ($MN)
  • Table 33 Global Sustainable Battery Materials Market Outlook, By Other Applications (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.