封面
市场调查报告书
商品编码
1587695

到 2030 年机器人焊接市场预测:按组件、类型、最终用户和地区分類的全球分析

Robotic Welding Market Forecasts to 2030 - Global Analysis By Component, Type, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据Stratistics MRC预测,2024年全球机器人焊接市场规模将达102亿美元,预计2030年将达到208亿美元,预测期内复合年增长率为12.7%。

机器人焊接是一种利用机器人系统执行焊接任务的自动化过程,大大提高了製造的效率和准确性。利用可程式逻辑控制器 (PLC) 和人工智慧等先进技术,机器人焊接系统可以以高重复性和最少的人工干预来执行复杂的焊接。这些机器人配备了各种焊接工具,包括 MIG、TIG 和点焊机,使其能够处理各种材料和配置。

根据牛津经济研究院发布的报告,过去 20 年来,全球使用的机器人数量增加了两倍,达到 225 万台。

扩大工业 4.0 原则的采用

工业 4.0 原则的日益普及正在整合物联网 (IoT)、人工智慧 (AI) 和巨量资料分析等先进技术,以显着增强机器人焊接。这些创新实现了焊接机器人的即时监控和资料收集,促进预测性维护并提高工作效率。智慧感测器和连网型系统使製造商能够分析焊接流程并优化参数,以减少缺陷并提高焊接品质。人工智慧演算法可以根据特定的材料特性和环境条件调整焊接技术,确保结果一致。

监管挑战

监管挑战严重阻碍了机器人焊接技术在各行业的进步。这些挑战通常源自于严格的安全标准、合规性要求以及管理自动化系统使用的产业特定法规。例如,製造商必须遵守区域职业安全组织和环境保护机构所建立的复杂框架。这可能会导致新机器人焊接系统的成本增加和核准流程更长。因此,许多公司对于投资机器人焊接解决方案犹豫不决,因为担心违规和潜在的法律后果。

雷射和等离子焊接技术的出现

雷射和等离子焊接技术的出现透过提高精度、速度和多功能性增强了机器人焊接能力。雷射焊接利用聚焦光束以最小的热变形形成高品质的焊缝,使其成为复杂设计和薄材料的理想选择。这种精度减少了焊后加工时间并提高了整体生产率。等离子焊接使用电离气体产生热电弧,从而实现更深的熔深并更好地控制焊接性能。当与机器人系统整合时,这两种技术都有助于实现焊接过程自动化、减少人为错误并提高生产一致性。

整合挑战

机器人焊接的整合挑战通常源自于组合不同系统和技术的复杂性。这些挑战包括确保机械手臂、焊接设备和控制软体之间的无缝通讯,而这些通信在製造商之间可能存在很大差异。将视觉系统和人工智慧等先进技术整合到现有工作流程中可能会使实施过程变得复杂,并且需要大量的培训和适应。人们也担心与遗留系统和现有基础设施的兼容性,这可能会限制机器人焊接解决方案的扩充性。

COVID-19 的影响:

COVID-19 大流行对机器人焊接(现代製造业的关键要素)产生了重大影响。最初,供应链中断导致重要零件的生产和交付停止,导致计划延迟并影响整体生产力。由于卫生法规,许多製造工厂面临暂时关闭,导致营运能力下降和劳动力短缺。随着企业寻求提高效率并减少对人力的依赖,这种流行病加速了自动化和机器人技术的采用。这项转变凸显了对先进技术的需求,以确保面对未来破坏时的营运弹性。

金属惰性气体产业预计在预测期内规模最大

预计金属惰性气体领域在预测期内将占据最大份额。机器人 MIG 焊接系统结合了精度和一致性,使製造商能够以更快的速度实现高品质的焊接。这些自动化解决方案透过在危险环境中处理重复性任务来减少人为错误并提高安全性。机器人系统的适应性为生产线带来了灵活性,因为它们可以针对从汽车到航太的各种应用进行程式设计。即时监控和自适应控制等先进功能可提高流程效率并确保最佳结果。

预计航太和国防部门在预测期内复合年增长率最高

航太和国防领域预计将在预测期内实现快速成长,以满足航太零件需要高结构完整性和最小重量的复杂需求。机器人焊接系统提供一致的品质和可重复性,显着降低人为错误的风险并提高焊接强度。透过采用先进的感测器和机器学习演算法,这些机器人可以即时适应材料和焊接条件的变化,以确保最佳性能。此外,焊接过程的自动化可以缩短生产週期,减少前置作业时间和营运成本。这对于快速原型设计和生产至关重要的国防部门尤其重要。

比最大的地区

亚太地区可能在整个预测期内占据最大的市场份额。日本、韩国和中国等国家处于领先地位,汇集了学术界、工业界和政府的资源和专业知识。这些伙伴关係关係重点关注焊接技术的进步,例如自动化系统和人工智慧的集成,以提高准确性并降低生产成本。协作努力促进了知识交流,并能够快速适应汽车和航太等领域的最尖端科技。这些合作关係中对永续实践的重视也促进了环保焊接解决方案并符合全球环境标准。

复合年增长率最高的地区:

由于建立安全标准、促进技术创新和鼓励永续性,预计欧洲地区在预测期内的复合年增长率最高。政府法规确保焊接工艺符合严格的安全和环境标准,从而保护工人并减少对生态的影响。劳动力技能提升计画确保员工具备良好的能力来操作先进的机器人系统,并培养持续改进和创新的文化。因此,欧洲机器人焊接行业变得更加高效和环保,并正在确立全球市场领导者的地位。

提供免费客製化:

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争标基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究资讯来源
    • 主要研究资讯来源
    • 二次研究资讯来源
    • 先决条件

第三章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第五章全球机器人焊接市场:按组成部分

  • 硬体
  • 服务
  • 软体

第六章全球机器人焊接市场:依类型

  • 点焊
  • 电弧焊接
  • 金属惰性气体
  • 钨惰性气体
  • 雷射焊接
  • 其他类型

第七章全球机器人焊接市场:依最终用户分类

  • 航太和国防
  • 电力/电子
  • 汽车/交通
  • 石油和天然气
  • 其他最终用户

第八章全球机器人焊接市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东/非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第九章 主要进展

  • 合约、伙伴关係、合作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第 10 章 公司概况

  • ABB Ltd
  • Daihen Corporation
  • Estun Automation Co., Ltd
  • Fanuc Corporation
  • Kawasaki Heavy Industries, Ltd
  • Kuka AG
  • Mitsubishi Electric Corporation
  • Panasonic Corporation
  • Siasun Robot & Automation Co. Ltd
  • Toshiba Corporation
  • Yaskawa Electric Corporation
Product Code: SMRC27683

According to Stratistics MRC, the Global Robotic Welding Market is accounted for $10.2 billion in 2024 and is expected to reach $20.8 billion by 2030 growing at a CAGR of 12.7% during the forecast period. Robotic welding is an automated process that employs robotic systems to perform welding tasks, significantly enhancing efficiency and precision in manufacturing. Utilizing advanced technologies such as programmable logic controllers (PLCs) and artificial intelligence, robotic welding systems can execute complex welds with high repeatability and minimal human intervention. These robots are equipped with various welding tools, including MIG, TIG, and spot welding machines, allowing them to work with different materials and configurations.

According to a report published by Oxford Economics, the number of robots in use worldwide multiplied three-fold over the past 2 decades to 2.25 million.

Market Dynamics:

Driver:

Growing adoption of industry 4.0 principles

Growing adoption of Industry 4.0 principles is substantially enhancing robotic welding by integrating advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI) and big data analytics. These innovations enable real-time monitoring and data collection from welding robots, facilitating predictive maintenance and improving operational efficiency. With smart sensors and connected systems, manufacturers can analyze welding processes to optimize parameters, reducing defects and improving weld quality. AI algorithms can adapt welding techniques based on specific material properties and environmental conditions, ensuring consistent results.

Restraint:

Regulatory challenges

Regulatory challenges significantly hinder the advancement of robotic welding technology across various industries. These challenges often stem from stringent safety standards, compliance requirements, and industry-specific regulations that govern the use of automated systems. For instance, manufacturers must navigate complex frameworks established by occupational safety organizations and environmental protection agencies, which can vary by region. This can lead to increased costs and lengthy approval processes for new robotic welding systems. As a result, many businesses may hesitate to invest in robotic welding solutions, fearing non-compliance or potential legal ramifications.

Opportunity:

Emergence of laser and plasma welding technologies

The emergence of laser and plasma welding technologies is enhancing robotic welding capabilities by improving precision, speed, and versatility. Laser welding utilizes focused beams of light to create high-quality welds with minimal heat distortion, making it ideal for intricate designs and thin materials. This precision reduces post-weld processing time and enhances overall productivity. Plasma welding employs ionized gas to produce a high-temperature arc, allowing for deeper penetration and better control over weld characteristics. When integrated with robotic systems, both technologies facilitate automation in welding processes, reducing human error and increasing consistency in output.

Threat:

Integration challenges

Integration challenges in robotic welding often stem from the complexity of combining various systems and technologies. These challenges include ensuring seamless communication between robotic arms, welding equipment, and control software, which can vary significantly across manufacturers. The integration of advanced technologies such as vision systems and artificial intelligence into existing workflows can complicate the implementation process, requiring extensive training and adaptation. There are also concerns regarding compatibility with legacy systems and existing infrastructure, which can limit the scalability of robotic welding solutions.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted robotic welding, a critical component of modern manufacturing. Initially, supply chain disruptions halted the production and delivery of essential components, causing delays in projects and affecting overall productivity. Many manufacturing facilities faced temporary shutdowns due to health regulations, leading to reduced operational capacity and workforce shortages. The pandemic accelerated the adoption of automation and robotics as companies sought to enhance efficiency and reduce reliance on human labor. This shift emphasized the need for advanced technology to ensure operational resilience in the face of future disruptions.

The Metal Inert Gas segment is expected to be the largest during the forecast period

Metal Inert Gas segment is expected to dominate the largest share over the estimated period. Robotic MIG welding systems integrate precision and consistency, enabling manufacturers to achieve high-quality welds at accelerated speeds. These automated solutions reduce human error and improve safety by handling repetitive tasks in hazardous environments. The adaptability of robotic systems allows them to be programmed for various applications, from automotive to aerospace, providing flexibility in production lines. Advanced features, such as real-time monitoring and adaptive control, enhance process efficiency and ensure optimal results.

The Aerospace & Defense segment is expected to have the highest CAGR during the forecast period

Aerospace & Defense segment is estimated to grow at a rapid pace during the forecast period as it addresses the complex demands of aerospace components, which require high structural integrity and minimal weight. Robotic welding systems offer consistent quality and repeatability, significantly reducing the risk of human error and improving weld strength. By employing advanced sensors and machine learning algorithms, these robots can adapt in real time to variations in materials and welding conditions, ensuring optimal performance. Additionally, the automation of welding processes leads to faster production cycles, reducing lead times and operational costs. This is particularly vital in the defense sector, where rapid prototyping and production are essential.

Region with largest share:

Asia Pacific region is poised to hold the largest share of the market throughout the extrapolated period. Countries like Japan, South Korea, and China are leading the way by pooling resources and expertise from academia, industry, and government. These partnerships focus on advancing welding technologies, such as automated systems and artificial intelligence integration, improving precision and reducing production costs. Collaborative efforts facilitate knowledge exchange, enabling the rapid adaptation of cutting-edge techniques across various sectors, including automotive and aerospace. The emphasis on sustainable practices within these collaborations also promotes eco-friendly welding solutions, aligning with global environmental standards.

Region with highest CAGR:

Europe region is estimated to witness the highest CAGR during the projected time frame by establishing safety standards, promoting innovation, and encouraging sustainability. Government regulations ensure that welding processes meet stringent safety and environmental criteria, thereby protecting workers and reducing ecological impact. Initiatives aimed at upskilling the workforce ensure that employees are well-equipped to operate sophisticated robotic systems, fostering a culture of continuous improvement and innovation. As a result, the European robotic welding industry is becoming more efficient and eco-friendly, positioning itself as a leader in the global market.

Key players in the market

Some of the key players in Robotic Welding market include ABB Ltd, Daihen Corporation, Estun Automation Co., Ltd, Fanuc Corporation, Kawasaki Heavy Industries, Ltd, Kuka AG, Mitsubishi Electric Corporation, Panasonic Corporation, Siasun Robot & Automation Co. Ltd, Toshiba Corporation and Yaskawa Electric Corporation.

Key Developments:

In December 2022, Alma and Yaskawa Europe entered into a partnership agreement for off-line programming of welding robots. Off-line programming, which enables a robot to be graphically programmed from a virtual scene and its movements to be simulated, is easier to learn than an alternative to traditional programming.

In December 2022, OTC Daihen unveiled a several pre-engineered, production robotic arc-welding systems packed into its booth, all featuring robotic arms matched with welding power supplies and part-positioning equipment, and committing to deliver low-spatter welding on a variety of materials.

In February 2021, Ola entered into a partnership with ABB for the implementation of robotics & automation solutions in its mega-factory in India, which is slated to roll out the much-anticipated Ola electric scooter. As per the partnership, Ola will utilize ABB's automation solutions in its factory's key manufacturing process lines including the painting & welding lines while the ABB robots will be deployed extensively for the battery & motor assembly lines.

Components Covered:

  • Hardware
  • Services
  • Software

Types Covered:

  • Spot Welding
  • Arc Welding
  • Metal Inert Gas
  • Tungsten Inert Gas
  • Laser Welding
  • Other Types

End Users Covered:

  • Aerospace & Defense
  • Electrical & Electronics
  • Automotive & Transportation
  • Oil & Gas
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Robotic Welding Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Services
  • 5.4 Software

6 Global Robotic Welding Market, By Type

  • 6.1 Introduction
  • 6.2 Spot Welding
  • 6.3 Arc Welding
  • 6.4 Metal Inert Gas
  • 6.5 Tungsten Inert Gas
  • 6.6 Laser Welding
  • 6.7 Other Types

7 Global Robotic Welding Market, By End User

  • 7.1 Introduction
  • 7.2 Aerospace & Defense
  • 7.3 Electrical & Electronics
  • 7.4 Automotive & Transportation
  • 7.5 Oil & Gas
  • 7.6 Other End Users

8 Global Robotic Welding Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 ABB Ltd
  • 10.2 Daihen Corporation
  • 10.3 Estun Automation Co., Ltd
  • 10.4 Fanuc Corporation
  • 10.5 Kawasaki Heavy Industries, Ltd
  • 10.6 Kuka AG
  • 10.7 Mitsubishi Electric Corporation
  • 10.8 Panasonic Corporation
  • 10.9 Siasun Robot & Automation Co. Ltd
  • 10.10 Toshiba Corporation
  • 10.11 Yaskawa Electric Corporation

List of Tables

  • Table 1 Global Robotic Welding Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Robotic Welding Market Outlook, By Component (2022-2030) ($MN)
  • Table 3 Global Robotic Welding Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 4 Global Robotic Welding Market Outlook, By Services (2022-2030) ($MN)
  • Table 5 Global Robotic Welding Market Outlook, By Software (2022-2030) ($MN)
  • Table 6 Global Robotic Welding Market Outlook, By Type (2022-2030) ($MN)
  • Table 7 Global Robotic Welding Market Outlook, By Spot Welding (2022-2030) ($MN)
  • Table 8 Global Robotic Welding Market Outlook, By Arc Welding (2022-2030) ($MN)
  • Table 9 Global Robotic Welding Market Outlook, By Metal Inert Gas (2022-2030) ($MN)
  • Table 10 Global Robotic Welding Market Outlook, By Tungsten Inert Gas (2022-2030) ($MN)
  • Table 11 Global Robotic Welding Market Outlook, By Laser Welding (2022-2030) ($MN)
  • Table 12 Global Robotic Welding Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 13 Global Robotic Welding Market Outlook, By End User (2022-2030) ($MN)
  • Table 14 Global Robotic Welding Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 15 Global Robotic Welding Market Outlook, By Electrical & Electronics (2022-2030) ($MN)
  • Table 16 Global Robotic Welding Market Outlook, By Automotive & Transportation (2022-2030) ($MN)
  • Table 17 Global Robotic Welding Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 18 Global Robotic Welding Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 19 North America Robotic Welding Market Outlook, By Country (2022-2030) ($MN)
  • Table 20 North America Robotic Welding Market Outlook, By Component (2022-2030) ($MN)
  • Table 21 North America Robotic Welding Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 22 North America Robotic Welding Market Outlook, By Services (2022-2030) ($MN)
  • Table 23 North America Robotic Welding Market Outlook, By Software (2022-2030) ($MN)
  • Table 24 North America Robotic Welding Market Outlook, By Type (2022-2030) ($MN)
  • Table 25 North America Robotic Welding Market Outlook, By Spot Welding (2022-2030) ($MN)
  • Table 26 North America Robotic Welding Market Outlook, By Arc Welding (2022-2030) ($MN)
  • Table 27 North America Robotic Welding Market Outlook, By Metal Inert Gas (2022-2030) ($MN)
  • Table 28 North America Robotic Welding Market Outlook, By Tungsten Inert Gas (2022-2030) ($MN)
  • Table 29 North America Robotic Welding Market Outlook, By Laser Welding (2022-2030) ($MN)
  • Table 30 North America Robotic Welding Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 31 North America Robotic Welding Market Outlook, By End User (2022-2030) ($MN)
  • Table 32 North America Robotic Welding Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 33 North America Robotic Welding Market Outlook, By Electrical & Electronics (2022-2030) ($MN)
  • Table 34 North America Robotic Welding Market Outlook, By Automotive & Transportation (2022-2030) ($MN)
  • Table 35 North America Robotic Welding Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 36 North America Robotic Welding Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 37 Europe Robotic Welding Market Outlook, By Country (2022-2030) ($MN)
  • Table 38 Europe Robotic Welding Market Outlook, By Component (2022-2030) ($MN)
  • Table 39 Europe Robotic Welding Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 40 Europe Robotic Welding Market Outlook, By Services (2022-2030) ($MN)
  • Table 41 Europe Robotic Welding Market Outlook, By Software (2022-2030) ($MN)
  • Table 42 Europe Robotic Welding Market Outlook, By Type (2022-2030) ($MN)
  • Table 43 Europe Robotic Welding Market Outlook, By Spot Welding (2022-2030) ($MN)
  • Table 44 Europe Robotic Welding Market Outlook, By Arc Welding (2022-2030) ($MN)
  • Table 45 Europe Robotic Welding Market Outlook, By Metal Inert Gas (2022-2030) ($MN)
  • Table 46 Europe Robotic Welding Market Outlook, By Tungsten Inert Gas (2022-2030) ($MN)
  • Table 47 Europe Robotic Welding Market Outlook, By Laser Welding (2022-2030) ($MN)
  • Table 48 Europe Robotic Welding Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 49 Europe Robotic Welding Market Outlook, By End User (2022-2030) ($MN)
  • Table 50 Europe Robotic Welding Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 51 Europe Robotic Welding Market Outlook, By Electrical & Electronics (2022-2030) ($MN)
  • Table 52 Europe Robotic Welding Market Outlook, By Automotive & Transportation (2022-2030) ($MN)
  • Table 53 Europe Robotic Welding Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 54 Europe Robotic Welding Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 55 Asia Pacific Robotic Welding Market Outlook, By Country (2022-2030) ($MN)
  • Table 56 Asia Pacific Robotic Welding Market Outlook, By Component (2022-2030) ($MN)
  • Table 57 Asia Pacific Robotic Welding Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 58 Asia Pacific Robotic Welding Market Outlook, By Services (2022-2030) ($MN)
  • Table 59 Asia Pacific Robotic Welding Market Outlook, By Software (2022-2030) ($MN)
  • Table 60 Asia Pacific Robotic Welding Market Outlook, By Type (2022-2030) ($MN)
  • Table 61 Asia Pacific Robotic Welding Market Outlook, By Spot Welding (2022-2030) ($MN)
  • Table 62 Asia Pacific Robotic Welding Market Outlook, By Arc Welding (2022-2030) ($MN)
  • Table 63 Asia Pacific Robotic Welding Market Outlook, By Metal Inert Gas (2022-2030) ($MN)
  • Table 64 Asia Pacific Robotic Welding Market Outlook, By Tungsten Inert Gas (2022-2030) ($MN)
  • Table 65 Asia Pacific Robotic Welding Market Outlook, By Laser Welding (2022-2030) ($MN)
  • Table 66 Asia Pacific Robotic Welding Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 67 Asia Pacific Robotic Welding Market Outlook, By End User (2022-2030) ($MN)
  • Table 68 Asia Pacific Robotic Welding Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 69 Asia Pacific Robotic Welding Market Outlook, By Electrical & Electronics (2022-2030) ($MN)
  • Table 70 Asia Pacific Robotic Welding Market Outlook, By Automotive & Transportation (2022-2030) ($MN)
  • Table 71 Asia Pacific Robotic Welding Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 72 Asia Pacific Robotic Welding Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 73 South America Robotic Welding Market Outlook, By Country (2022-2030) ($MN)
  • Table 74 South America Robotic Welding Market Outlook, By Component (2022-2030) ($MN)
  • Table 75 South America Robotic Welding Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 76 South America Robotic Welding Market Outlook, By Services (2022-2030) ($MN)
  • Table 77 South America Robotic Welding Market Outlook, By Software (2022-2030) ($MN)
  • Table 78 South America Robotic Welding Market Outlook, By Type (2022-2030) ($MN)
  • Table 79 South America Robotic Welding Market Outlook, By Spot Welding (2022-2030) ($MN)
  • Table 80 South America Robotic Welding Market Outlook, By Arc Welding (2022-2030) ($MN)
  • Table 81 South America Robotic Welding Market Outlook, By Metal Inert Gas (2022-2030) ($MN)
  • Table 82 South America Robotic Welding Market Outlook, By Tungsten Inert Gas (2022-2030) ($MN)
  • Table 83 South America Robotic Welding Market Outlook, By Laser Welding (2022-2030) ($MN)
  • Table 84 South America Robotic Welding Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 85 South America Robotic Welding Market Outlook, By End User (2022-2030) ($MN)
  • Table 86 South America Robotic Welding Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 87 South America Robotic Welding Market Outlook, By Electrical & Electronics (2022-2030) ($MN)
  • Table 88 South America Robotic Welding Market Outlook, By Automotive & Transportation (2022-2030) ($MN)
  • Table 89 South America Robotic Welding Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 90 South America Robotic Welding Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 91 Middle East & Africa Robotic Welding Market Outlook, By Country (2022-2030) ($MN)
  • Table 92 Middle East & Africa Robotic Welding Market Outlook, By Component (2022-2030) ($MN)
  • Table 93 Middle East & Africa Robotic Welding Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 94 Middle East & Africa Robotic Welding Market Outlook, By Services (2022-2030) ($MN)
  • Table 95 Middle East & Africa Robotic Welding Market Outlook, By Software (2022-2030) ($MN)
  • Table 96 Middle East & Africa Robotic Welding Market Outlook, By Type (2022-2030) ($MN)
  • Table 97 Middle East & Africa Robotic Welding Market Outlook, By Spot Welding (2022-2030) ($MN)
  • Table 98 Middle East & Africa Robotic Welding Market Outlook, By Arc Welding (2022-2030) ($MN)
  • Table 99 Middle East & Africa Robotic Welding Market Outlook, By Metal Inert Gas (2022-2030) ($MN)
  • Table 100 Middle East & Africa Robotic Welding Market Outlook, By Tungsten Inert Gas (2022-2030) ($MN)
  • Table 101 Middle East & Africa Robotic Welding Market Outlook, By Laser Welding (2022-2030) ($MN)
  • Table 102 Middle East & Africa Robotic Welding Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 103 Middle East & Africa Robotic Welding Market Outlook, By End User (2022-2030) ($MN)
  • Table 104 Middle East & Africa Robotic Welding Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 105 Middle East & Africa Robotic Welding Market Outlook, By Electrical & Electronics (2022-2030) ($MN)
  • Table 106 Middle East & Africa Robotic Welding Market Outlook, By Automotive & Transportation (2022-2030) ($MN)
  • Table 107 Middle East & Africa Robotic Welding Market Outlook, By Oil & Gas (2022-2030) ($MN)
  • Table 108 Middle East & Africa Robotic Welding Market Outlook, By Other End Users (2022-2030) ($MN)