封面
市场调查报告书
商品编码
1617069

2030年余热发电市场预测:按热源、技术、温区、应用、最终用户和地区进行全球分析

Waste Heat to Power Market Forecasts to 2030 - Global Analysis By Source, Technology, Temperature Range, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,2024 年全球余热发电 (WHP) 市场规模为 284.2 亿美元,预计将以 12.8% 的复合年增长率成长,到 2030 年达到 585.5 亿美元。

回收工业活动产生的废热并将其转化为电能而不添加燃料的过程称为废热发电(WHP)。余热发电系统从钢铁、水泥和化学工业的蒸气、废气和热流体等来源回收热量。透过使用蒸气朗肯迴圈(SRC)、有机朗肯迴圈(ORC)和卡林纳循环等技术,WHP将废热转化为有用的能源,减少能源浪费,提高效率,并减少碳排放并支持永续性。

总部位于美国的政府间组织联合国经济和社会事务部预计,到2023年,世界人口的56.9%将居住在都市区,预计2050年将上升至68%。

对永续能源的需求不断增长

随着公司寻求环保方法来减少能源浪费和碳排放,对永续能源不断增长的需求正在推动该产业的发展。透过利用余热发电系统将工业过程中的废热转化为电能,可以在不增加燃料消耗的情况下提高能源效率。由于关注清洁能源转型的国际计划和更严格的环境法规,余热发电系统在钢铁、水泥和化学等行业中得到更频繁的采用。这项技术在现代能源领域发挥着至关重要的作用,因为它不仅有助于实现永续性目标,而且还可以透过减少对传统能源来源的依赖来降低成本。

变动余热利用率

间歇性热源会降低余热发电系统的运作,并降低整体效率和能量输出。该系统可能无法产生足够的电力来支付初始投资成本,这可能会影响WHP计划的经济永续性。此外,热输入的变化可能会导致系统组件产生热应力,从而缩短其使用寿命并增加维护要求。透过使用先进的控制系统和能源储存选项,您可以最大限度地提高 WHP 系统的效能,最大限度地减少这些负面影响,并确保即使在废热利用率波动时也能稳定发电。

政府奖励和补贴

余热发电(WHP)技术的采用很大程度上受到政府补贴和奖励的影响。这些融资来源可以显着降低企业的初始投资成本,并增加WHP计划的经济吸引力。政府经常提供资本补贴、上网电价补贴和税收减免等奖励。此外,WHP 还可以受益于支持可再生能源和能源效率的法律体制。建立支持性的法律体制和政府的财政支持可以促进 WHP 系统的实施,有助于创造一个更永续和节能的未来。

缺乏意识和教育

由于缺乏知识和指导,余热发电 (WHP) 技术的采用可能会受到严重阻碍。余热发电可以提供的潜在节能和环境效益在许多行业中可能不太为人所知。这种无知可能会导致错失将废热转化为有用能源来源的机会。潜在投资者也可能因缺乏对WHP计划的技术困难和财务可行性的了解而被拒之门外。为了解决这个问题,重要的是透过密集的宣传活动、研讨会和教育活动来提高意识。

COVID-19 的影响

由于供应链中断、工业活动关闭和能源计划延误,新冠肺炎 (COVID-19) 疫情的爆发暂时导致余热发电 (WHP) 市场停滞不前。许多产业都缩减了营运规模,减少了余热发电和新的余热发电装置。然而,随着经济復苏,人们重新关注能源效率和永续性,推动了 WHP 的采用。支持绿色能源措施的政府奖励策略也正在加速市场復苏,凸显余热发电系统作为疫情后经济高效且环保的能源解决方案。

预计工业废热领域将在预测期内成为最大的领域

据估计,工业废热产业是最大的,因为金属冶炼、水泥製造和化学製造等作业过程中会产生大量废热。不断上升的能源成本和对业务效率的需求正在鼓励工业界利用废热发电,从而减少能源费用和环境影响。政府有关排放和永续性的严格法规正在推动产业进一步采用余热发电技术,将废热转化为宝贵的能源。

预计水泥业在预测期内复合年增长率最高

水泥业预计在预测期内复合年增长率最高,因为它是一个能源集中行业,会从窑炉和预热器中产生大量废热。不断上升的能源成本和产业减少温室气体排放的努力正在推动 WHP 的采用。严格的环境法规和全球永续性目标进一步推动了对余热发电系统的需求。此外,低温热回收技术的进步和政府对节能实践的激励措施使余热发电成为寻求节省成本和永续性的水泥製造商的可行解决方案。

比最大的地区

由于快速工业化,亚太地区将在预测期内占据最大的市场占有率,特别是在中国和印度等国家,预计这些国家在水泥、钢铁和化学等行业产生大量废热。不断上升的能源成本和日益严格的环境法规正在刺激对节能解决方案的需求。此外,政府促进可再生能源和能源效率的措施以及余热发电系统的技术进步正在加速市场成长。该地区对永续性和工业现代化的关注进一步支持了 WHP 的采用。

复合年增长率最高的地区:

由于严格的环境法规、不断上升的能源成本以及对永续性的高度重视,预计北美在预测期内的复合年增长率最高。水泥、钢铁和石化等工业部门是废热的主要来源,促使人们采用余热发电系统来提高能源效率并减少碳足迹。政府对可再生能源计划的激励措施和税额扣抵进一步鼓励了余热发电技术的使用。此外,有机朗肯迴圈等余热发电技术的进步正在推动该地区的市场成长。

免费客製化服务

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争标基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究资讯来源
    • 主要研究资讯来源
    • 二次研究资讯来源
    • 先决条件

第三章市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第五章全球余热发电 (WHP) 市场:依热源分类

  • 工业废热
  • 电厂余热
  • 资料中心余热
  • 石化余热
  • 其他余热源

第六章全球余热发电 (WHP) 市场:依技术分类

  • 蒸气朗肯迴圈(SRC)
  • 有机朗肯迴圈(ORC)
  • 船底座循环
  • 燃料电池
  • 史特灵引擎
  • 其他技术

第七章全球余热发电 (WHP) 市场:依温度区域

  • 高温余热
  • 中温余热
  • 低温余热

第八章全球余热发电 (WHP) 市场:依应用分类

  • 工业製程
  • 发电
  • 空间供暖和冷气
  • 区域供热
  • 汽电共生
  • 热电联产 (CHP)
  • 其他用途

第九章全球余热发电 (WHP) 市场:依最终用户分类

  • 水泥
  • 化学和石化
  • 石油和天然气工业
  • 食品饮料业
  • 金属/重工业
  • 纸浆和造纸工业
  • 玻璃工业
  • 其他最终用户

第十章全球余热发电 (WHP) 市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东/非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第十一章 主要进展

  • 合约、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十二章 公司概况

  • General Electric Company(GE)
  • Siemens AG
  • ABB Ltd.
  • Mitsubishi Heavy Industries Ltd.
  • Ormat Technologies, Inc.
  • Thermax Limited
  • Bosch Thermotechnology GmbH
  • Durr Group
  • Turboden SpA
  • Kawasaki Heavy Industries, Ltd.
  • Alfa Laval AB
  • Echogen Power Systems, LLC
  • IHI Corporation
  • ElectraTherm, Inc.
  • MAN Energy Solutions
  • Triveni Turbine Limited
  • Siemens Energy
  • Exergy SpA
  • Johnson Controls International
Product Code: SMRC27947

According to Stratistics MRC, the Global Waste Heat to Power (WHP) Market is accounted for $28.42 billion in 2024 and is expected to reach $58.55 billion by 2030 growing at a CAGR of 12.8% during the forecast period. The process of collecting waste heat produced by industrial operations and turning it into electricity without the need for additional fuel is known as waste heat to power, or WHP. WHP systems recuperate heat from sources including steam, exhaust gases, or hot fluids in steel, cement, and chemical industries. WHP converts waste heat into a useful energy resource, reducing energy waste, increasing efficiency, lowering carbon emissions, and supporting sustainability through the use of technologies like Steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), or Kalina Cycle.

According to the United Nations Department of Economic and Social Affairs, a US-Based intergovernmental organization, 56.9% of the world's population resided in urban regions in 2023 and it is projected to rise to 68% by 2050.

Market Dynamics:

Driver:

Growing demand for sustainable energy

As organizations seek environmentally friendly methods to cut down on energy waste and carbon emissions, the industry is being driven by the growing demand for sustainable energy. Waste heat from industrial processes can be converted into power with WHP systems, increasing energy efficiency without using more fuel. WHP systems are being adopted by industries including steel, cement, and chemicals more frequently as a result of international programs focusing on clean energy transitions and stringent environmental restrictions. This technology is a crucial part of the contemporary energy environment because it not only helps achieve sustainability goals but also saves money by lowering reliance on traditional energy sources.

Restraint:

Fluctuating waste heat availability

An intermittent heat source can cause WHP systems to operate less steadily, which lowers overall efficiency and energy output. The systems might not produce enough electricity to cover the original investment expenses, which could have an effect on the WHP projects' economic sustainability. Furthermore, the system components may experience thermal stress as a result of varying heat input, which could shorten their lifespan and increase maintenance needs. Advanced control systems and energy storage options can be used to maximize WHP system performance and minimize these negative impacts, guaranteeing steady power generation even when waste heat availability fluctuates.

Opportunity:

Government incentives and subsidies

The adoption of Waste Heat to Power (WHP) technologies is significantly influenced by government subsidies and incentives. These funding sources have the potential to drastically lower firms' initial investment costs, increasing the economic appeal of WHP projects. Governments frequently provide incentives like as capital grants, feed-in tariffs, and tax reductions. Furthermore, WHP can benefit from legislative frameworks that support renewable energy and energy efficiency. The adoption of WHP systems can be accelerated by governments through the creation of supportive legislative frameworks and financial support, which will help create a more sustainable and energy-efficient future.

Threat:

Lack of awareness and education

The deployment of Waste Heat to Power (WHP) technology can be severely hampered by a lack of knowledge and instruction. The potential energy savings and environmental advantages that WHP can provide may not be well known to many industries. This ignorance may result in lost chances to turn waste heat into a useful energy source. Potential investors may also be turned off by a lack of knowledge about the technical difficulties and financial viability of WHP projects. Raising awareness through focused campaigns, workshops, and educational activities is crucial to addressing this problem.

Covid-19 Impact

The COVID-19 pandemic temporarily slowed the Waste Heat to Power (WHP) market due to disrupted supply chains, halted industrial activities, and delayed energy projects. Many industries scaled back operations, reducing waste heat generation and new WHP installations. However, as economies recover, there is renewed focus on energy efficiency and sustainability, driving WHP adoption. Government stimulus packages supporting green energy initiatives have also accelerated market recovery, emphasizing WHP systems as a cost-effective and eco-friendly energy solution post-pandemic.

The industrial waste heat segment is expected to be the largest during the forecast period

The industrial waste heat segment is estimated to be the largest, due to it produces a lot of waste heat during operations like metal smelting, cement production, and chemical production. Rising energy costs and the need for operational efficiency encourage industries to harness waste heat for power generation, reducing energy bills and environmental impact. Strict government regulations on emissions and sustainability goals further push industrial players to adopt WHP technologies, transforming waste heat into a valuable energy resource.

The cement segment is expected to have the highest CAGR during the forecast period

The cement segment is anticipated to witness the highest CAGR during the forecast period, due to its energy-intensive operations that produce substantial waste heat from kilns and preheaters. Rising energy costs and the industry's commitment to reducing greenhouse gas emissions encourage WHP adoption. Stringent environmental regulations and global sustainability goals further propel demand for WHP systems. Additionally, advancements in low-temperature heat recovery technologies and government incentives for energy-efficient practices make WHP a viable solution for cement manufacturers seeking cost savings and sustainability.

Region with largest share:

Asia Pacific is expected to have the largest market share during the forecast period due to rapid industrialization, particularly in countries like China and India, which generate significant waste heat in sectors like cement, steel, and chemicals. Rising energy costs and increasing environmental regulations fuel the demand for energy-efficient solutions. Additionally, government initiatives promoting renewable energy and energy efficiency, along with technological advancements in WHP systems, are accelerating market growth. The region's focus on sustainability and industrial modernization further boosts WHP adoption.

Region with highest CAGR:

North America is projected to witness the highest CAGR over the forecast period, driven by stringent environmental regulations, rising energy costs, and a strong focus on sustainability. Industrial sectors such as cement, steel, and petrochemicals are major contributors to waste heat generation, prompting the adoption of WHP systems to improve energy efficiency and reduce carbon footprints. Government incentives and tax credits for renewable energy projects further encourage the use of WHP technologies. Additionally, advancements in WHP technologies, such as organic Rankine cycle systems, are enhancing market growth in the region.

Key players in the market

Some of the key players profiled in the Waste Heat to Power (WHP) Market include General Electric Company (GE), Siemens AG, ABB Ltd., Mitsubishi Heavy Industries Ltd., Ormat Technologies, Inc., Thermax Limited, Bosch Thermotechnology GmbH, Durr Group, Turboden S.p.A, Kawasaki Heavy Industries, Ltd., Alfa Laval AB, Echogen Power Systems, LLC, IHI Corporation, ElectraTherm, Inc., MAN Energy Solutions, Triveni Turbine Limited, Siemens Energy, Exergy S.p.A, and Johnson Controls International.

Key Developments:

In March 2023, Climeon unveiled a new waste heat recovery unit, designed to further improve energy efficiency in manufacturing and other high-heat industries.

In March 2023, Energy International launched an advanced heat recovery system in, enhancing efficiency in utilizing low-temperature waste heat for power generation across industrial sectors.

In September 2022, Mitsubishi Heavy Industries introduced a binary power generation system, utilizing organic Rankine cycle (ORC) technology to recover waste heat from sulfur-free fuel-burning engines.

Sources Covered:

  • Industrial Waste Heat
  • Power Plant Waste Heat
  • Data Center Waste Heat
  • Petrochemical Waste Heat
  • Other Waste Heat Sources

Technologies Covered:

  • Steam Rankine Cycle (SRC)
  • Organic Rankine Cycle (ORC)
  • Kalina Cycle
  • Fuel Cells
  • Stirling Engine
  • Other Technologies

Temperature Ranges Covered:

  • High-Temperature Waste Heat
  • Medium-Temperature Waste Heat
  • Low-Temperature Waste Heat

Applications Covered:

  • Industrial Processes
  • Electricity Generation
  • Space Heating and Cooling
  • District Heating
  • Cogeneration
  • Combined Heat and Power (CHP)
  • Other Applications

End Users Covered:

  • Cement
  • Chemical and Petrochemical
  • Oil and Gas Industry
  • Food and Beverage Industry
  • Metal & Heavy Industries
  • Pulp and Paper Industry
  • Glass Industry
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Waste Heat to Power (WHP) Market, By Source

  • 5.1 Introduction
  • 5.2 Industrial Waste Heat
  • 5.3 Power Plant Waste Heat
  • 5.4 Data Center Waste Heat
  • 5.5 Petrochemical Waste Heat
  • 5.6 Other Waste Heat Sources

6 Global Waste Heat to Power (WHP) Market, By Technology

  • 6.1 Introduction
  • 6.2 Steam Rankine Cycle (SRC)
  • 6.3 Organic Rankine Cycle (ORC)
  • 6.4 Kalina Cycle
  • 6.5 Fuel Cells
  • 6.6 Stirling Engine
  • 6.7 Other Technologies

7 Global Waste Heat to Power (WHP) Market, By Temperature Range

  • 7.1 Introduction
  • 7.2 High-Temperature Waste Heat
  • 7.3 Medium-Temperature Waste Heat
  • 7.4 Low-Temperature Waste Heat

8 Global Waste Heat to Power (WHP) Market, By Application

  • 8.1 Introduction
  • 8.2 Industrial Processes
  • 8.3 Electricity Generation
  • 8.4 Space Heating and Cooling
  • 8.5 District Heating
  • 8.6 Cogeneration
  • 8.7 Combined Heat and Power (CHP)
  • 8.8 Other Applications

9 Global Waste Heat to Power (WHP) Market, By End User

  • 9.1 Introduction
  • 9.2 Cement
  • 9.3 Chemical and Petrochemical
  • 9.4 Oil and Gas Industry
  • 9.5 Food and Beverage Industry
  • 9.6 Metal & Heavy Industries
  • 9.7 Pulp and Paper Industry
  • 9.8 Glass Industry
  • 9.9 Other End Users

10 Global Waste Heat to Power (WHP) Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 General Electric Company (GE)
  • 12.2 Siemens AG
  • 12.3 ABB Ltd.
  • 12.4 Mitsubishi Heavy Industries Ltd.
  • 12.5 Ormat Technologies, Inc.
  • 12.6 Thermax Limited
  • 12.7 Bosch Thermotechnology GmbH
  • 12.8 Durr Group
  • 12.9 Turboden S.p.A
  • 12.10 Kawasaki Heavy Industries, Ltd.
  • 12.11 Alfa Laval AB
  • 12.12 Echogen Power Systems, LLC
  • 12.13 IHI Corporation
  • 12.14 ElectraTherm, Inc.
  • 12.15 MAN Energy Solutions
  • 12.16 Triveni Turbine Limited
  • 12.17 Siemens Energy
  • 12.18 Exergy S.p.A
  • 12.19 Johnson Controls International

List of Tables

  • Table 1 Global Waste Heat to Power (WHP) Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Waste Heat to Power (WHP) Market Outlook, By Source (2022-2030) ($MN)
  • Table 3 Global Waste Heat to Power (WHP) Market Outlook, By Industrial Waste Heat (2022-2030) ($MN)
  • Table 4 Global Waste Heat to Power (WHP) Market Outlook, By Power Plant Waste Heat (2022-2030) ($MN)
  • Table 5 Global Waste Heat to Power (WHP) Market Outlook, By Data Center Waste Heat (2022-2030) ($MN)
  • Table 6 Global Waste Heat to Power (WHP) Market Outlook, By Petrochemical Waste Heat (2022-2030) ($MN)
  • Table 7 Global Waste Heat to Power (WHP) Market Outlook, By Other Waste Heat Sources (2022-2030) ($MN)
  • Table 8 Global Waste Heat to Power (WHP) Market Outlook, By Technology (2022-2030) ($MN)
  • Table 9 Global Waste Heat to Power (WHP) Market Outlook, By Steam Rankine Cycle (SRC) (2022-2030) ($MN)
  • Table 10 Global Waste Heat to Power (WHP) Market Outlook, By Organic Rankine Cycle (ORC) (2022-2030) ($MN)
  • Table 11 Global Waste Heat to Power (WHP) Market Outlook, By Kalina Cycle (2022-2030) ($MN)
  • Table 12 Global Waste Heat to Power (WHP) Market Outlook, By Fuel Cells (2022-2030) ($MN)
  • Table 13 Global Waste Heat to Power (WHP) Market Outlook, By Stirling Engine (2022-2030) ($MN)
  • Table 14 Global Waste Heat to Power (WHP) Market Outlook, By Other Technologies (2022-2030) ($MN)
  • Table 15 Global Waste Heat to Power (WHP) Market Outlook, By Temperature Range (2022-2030) ($MN)
  • Table 16 Global Waste Heat to Power (WHP) Market Outlook, By High-Temperature Waste Heat (2022-2030) ($MN)
  • Table 17 Global Waste Heat to Power (WHP) Market Outlook, By Medium-Temperature Waste Heat (2022-2030) ($MN)
  • Table 18 Global Waste Heat to Power (WHP) Market Outlook, By Low-Temperature Waste Heat (2022-2030) ($MN)
  • Table 19 Global Waste Heat to Power (WHP) Market Outlook, By Application (2022-2030) ($MN)
  • Table 20 Global Waste Heat to Power (WHP) Market Outlook, By Industrial Processes (2022-2030) ($MN)
  • Table 21 Global Waste Heat to Power (WHP) Market Outlook, By Electricity Generation (2022-2030) ($MN)
  • Table 22 Global Waste Heat to Power (WHP) Market Outlook, By Space Heating and Cooling (2022-2030) ($MN)
  • Table 23 Global Waste Heat to Power (WHP) Market Outlook, By District Heating (2022-2030) ($MN)
  • Table 24 Global Waste Heat to Power (WHP) Market Outlook, By Cogeneration (2022-2030) ($MN)
  • Table 25 Global Waste Heat to Power (WHP) Market Outlook, By Combined Heat and Power (CHP) (2022-2030) ($MN)
  • Table 26 Global Waste Heat to Power (WHP) Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 27 Global Waste Heat to Power (WHP) Market Outlook, By End User (2022-2030) ($MN)
  • Table 28 Global Waste Heat to Power (WHP) Market Outlook, By Cement (2022-2030) ($MN)
  • Table 29 Global Waste Heat to Power (WHP) Market Outlook, By Chemical and Petrochemical (2022-2030) ($MN)
  • Table 30 Global Waste Heat to Power (WHP) Market Outlook, By Oil and Gas Industry (2022-2030) ($MN)
  • Table 31 Global Waste Heat to Power (WHP) Market Outlook, By Food and Beverage Industry (2022-2030) ($MN)
  • Table 32 Global Waste Heat to Power (WHP) Market Outlook, By Metal & Heavy Industries (2022-2030) ($MN)
  • Table 33 Global Waste Heat to Power (WHP) Market Outlook, By Pulp and Paper Industry (2022-2030) ($MN)
  • Table 34 Global Waste Heat to Power (WHP) Market Outlook, By Glass Industry (2022-2030) ($MN)
  • Table 35 Global Waste Heat to Power (WHP) Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.