封面
市场调查报告书
商品编码
1636653

2030 年空间基因组学和转录组学市场预测:按产品、技术、应用、最终用户和地区进行的全球分析

Spatial Genomics and Transcriptomics Market Forecasts to 2030 - Global Analysis By Product (Consumables, Instruments, Software & Analytics, Services and Other Products), Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球空间基因组学和转录组学市场预计在 2024 年价值 3.032 亿美元,到 2030 年将达到 6.725 亿美元,预测期内的复合年增长率为 14.2%。

空间基因组学和转录组学是一种将空间资讯与分子资料相结合以高解析度研究细胞和组织的组织、功能和动态的先进技术。这些技术提供了对基因表现和调控的洞察,使研究人员能够绘製生物样本内 DNA 和 RNA 的空间分布图。空间基因组学专注于了解细胞核内基因组的3D结构和组织,而转录组学则捕捉 RNA 转录本在组织中的空间分布,提供原位基因表现模式的全面视图。

根据美国疾病管制中心(CDC)估计,光是 2020 年美国医院就发生了 170 万例医院内感染疾病。然而,报告发现,因手术而感染疾病的患者平均住院时间要多出 6.5 天,出院后再次入院的可能性高出五倍。

强调个人化医疗

个人化医疗旨在根据患者的基因、分子和细胞特征为其提供量身定制的医疗服务。为此,必须利用空间基因组学和转录组学来研究特定组织区域的基因活动并揭示组织内异质性。空间工具可以绘製不同组织区域细胞之间复杂的相互作用,有助于识别癌症、神经系统疾病和自体免疫疾病等疾病的疾病机制和治疗目标。

资料分析的复杂性

空间基因组学和转录组学会产生大量复杂的资料,需要专门的工具和专业知识。挑战包括需要专业知识、缺乏可用的工具、漫长的学习曲线以及资源限制。临床医生和分子生物学家等非专业人士很难将这些技术融入他们的工作流程中。可存取的工具通常是专有的或开放原始码的,但需要高级编码技能,限制了非技术用户的可用性。此外,小型实验室可能缺乏预算或人力来聘请生物资讯学家或投资于他们的培训。

成像、定序和计算工具的持续创新

超高解析度和光片显微镜等现代成像技术可以详细地可视化组织中的基因表现和分子相互作用。活细胞成像提供了对即时细胞和分子过程的动态洞察,以增强转化研究应用。改进的成像工具将吸引新的研究人员,推动发育生物学、肿瘤学和神经科学等领域对空间基因组学技术的需求,从而促进市场成长。

缺乏标准化通讯协定和基准

空间基因组学和转录组学涉及复杂的工作流程,包括组织准备、成像、定序和资料分析。由于缺乏通用协议,结果可能不一致。样品製备的变化,包括组织固定方法、切片技术、储存条件、成像和定序之间的差异以及资料分析的挑战,可能导致基因表现表现谱、空间分辨率和资料品质的变化。此外,资料处理和解释的计算流程可能会引入影响基因表现资料可靠性的偏差。

COVID-19 的影响

COVID-19 疫情对空间基因组学和转录组学市场产生了重大影响,加速了采用先进的分子技术来了解病毒机制和宿主反应。研究人员正在利用空间基因组学来探索 SARS-CoV-2 与人体组织的相互作用,这推动了对尖端工具的需求。但疫情也导致供应链中断。儘管存在这些挑战,但对 COVID-19 和其他疾病的研究的迫切需求正在刺激创新和投资,对市场的长期成长前景产生积极影响。

碳纤维市场预计将成为预测期内最大的市场

在预测期内,高压釜部分预计将占据最大的市场占有率,因为显微镜载物台、镜头和支架等高性能光学元件可以提高成像系统的准确性和稳定性,尤其是在空间转录组学方面。碳纤维整体式装置功能强大且经久耐用,使空间基因组学工具更加高效,对研究人员更具吸引力,并有可能增加其在实验室、医院和研究机构的应用。

预计高压釜处理部门在预测期内将实现最高复合年增长率

预计预测期内高压釜处理部分将以最高的复合年增长率成长。高压釜对于与组织样本和基因组材料接触的仪器的消毒以及防止空间转录组学实验期间的污染至关重要。它还透过使蛋白质变性和稳定组织来帮助组织固定,保持组织切片的空间完整性,这对于准确的空间基因表现研究至关重要。灭菌和组织固定对于有效的基因表现研究至关重要。

占比最高的地区

预计预测期内北美地区将占据最大的市场占有率。这是因为先进的医疗保健系统能够将空间基因组学融入临床实践,从而实现肿瘤学、神经病学和免疫学领域的精准医疗。北美的医院和诊断中心拥有部署复杂技术的能力和财力,使个人化医疗成为现实。空间基因组学可以帮助发现生物标记、开发药物和标靶治疗,特别是对于癌症和神经系统疾病等复杂疾病。

复合年增长率最高的地区:

预计亚太地区将在整个预测期内以最高的复合年增长率成长,这主要得益于中国、印度、日本和韩国对基因组研究的投资,尤其是个人化医疗、癌症研究和感染疾病基因组学。这些国家正致力于基因组定序、精准医疗和太空转录组学,以从组织特异性层级了解疾病生物学。亚太地区主要研究中心,包括北京基因组研究所、生物资讯研究所、理化学研究所等。

免费客製化服务:

订阅此报告的客户可享有以下免费自订选项之一:

  • 公司简介
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 主要企业的 SWOT 分析(最多 3 家公司)
  • 地理细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争性基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业进行基准化分析

目录

第一章执行摘要

第 2 章 前言

  • 概述
  • 相关利益者
  • 研究范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究资讯来源
    • 主要研究资讯来源
    • 二手研究资料资讯来源
    • 先决条件

第三章 市场走势分析

  • 驱动程式
  • 限制因素
  • 机会
  • 威胁
  • 产品分析
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第 4 章 波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球空间基因体学和转录组学市场(按产品)

  • 耗材
    • 试剂和探针
    • 检测套件
  • 装置
    • 影像系统
    • 定序平台
    • 组织分析设备
  • 软体和分析
    • 生物资讯学工具
    • 影像分析软体
    • 资料管理解决方案
  • 服务
    • 合约研究服务
    • 自订解决方案
    • 资料分析服务
  • 其他产品

6. 全球空间基因体学和转录组学市场(按技术)

  • 空间转录组学
    • 原位杂交
    • 原位定序
    • 空间条码
  • 空间基因体学
    • 萤光原位杂合反应
    • 染色质结构捕捉(3C)
  • 其他技术

7. 全球空间基因体学与转录组学市场(按应用)

  • 肿瘤异质性
  • 抗药性
  • 免疫疗法
  • 大脑发育
  • 神经退化性疾病
  • 神经迴路
  • 对感染的免疫反应
  • 组织发展
  • 器官发生及干细胞生物学
  • 病原体-宿主相互作用
  • 抗菌
  • 其他用途

8. 全球空间基因体学和转录组学市场(按最终用户划分)

  • 製药和生物技术公司
  • 学术研究所
  • 医院和诊所
  • 肿瘤科/神经科
  • 免疫学和发育生物学
  • 其他最终用户

9. 全球空间基因体学和转录组学市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十章 主要进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十一章 公司概况

  • 10X Genomics, Inc.
  • Akoya Biosciences, Inc.
  • BioSpyder Technologies Inc.
  • Bio-Techne Corporation
  • Dovetail Genomics, LLC
  • Fluidigm Corporation
  • Genomic Vision SA, Illumina, Inc.
  • Lunaphore Technologies SA
  • Nanostring Technologies, Inc.
  • Natera Inc.
  • PerkinElmer Inc.
  • Rarecyte, Inc.
  • Resolve Biosciences
  • S2 Genomic
  • Seven Bridges Genomics
  • Singular Genomics System, Inc.
  • Veranome Biosystems LLC
Product Code: SMRC28294

According to Stratistics MRC, the Global Spatial Genomics & Transcriptomics Market is accounted for $303.2 million in 2024 and is expected to reach $672.5 million by 2030 growing at a CAGR of 14.2% during the forecast period. Spatial genomics and transcriptomics are advanced technologies that combine spatial information with molecular data to study the organization, function, and dynamics of cells and tissues at high resolution. They provide insights into gene expression and regulation in their native spatial context, allowing researchers to map the spatial distribution of DNA and RNA within a biological sample. Spatial genomics focuses on understanding the three-dimensional structure and organization of the genome within the nucleus, while transcriptomics captures the spatial distribution of RNA transcripts across tissues, providing a comprehensive view of gene expression patterns in situ.

According to the Centers for Disease Control (CDC) In 2020, In American Hospitals alone, hospital-acquired infections alone accounted for an estimated 1.7 million infections. However, the report states that patients who acquire infections from surgery spend, on average, an additional 6.5 days in the hospital and are five times more likely to be readmitted after discharge.

Market Dynamics:

Driver:

Increasing emphasis on personalized therapies

Personalized medicine aims to tailor healthcare to individual patients based on their genetic, molecular, and cellular profiles. To be effective, spatial genomics and transcriptomics are used to study gene activity in specific tissue regions, revealing heterogeneity within tissues. Spatial tools can map complex interactions between cells in different tissue regions, helping to pinpoint disease mechanisms and treatment targets in diseases like cancer, neurological disorders, and autoimmune diseases.

Restraint:

Complexity of data analysis

Spatial genomics and transcriptomics generate large, complex datasets that require specialized tools and expertise. Challenges include specialized knowledge requirements, lack of accessible tools, time-intensive learning curve, and resource constraints. Non-specialists, such as clinical practitioners or molecular biologists, struggle to integrate these technologies into their workflows. Accessible tools, often proprietary or open-source, require advanced coding skills, limiting usability for non-technical users. Additionally, smaller research labs may lack the budget or personnel to employ bioinformaticians or invest in training.

Opportunity:

Continuous innovation in imaging, sequencing, and computational tools

Modern imaging technologies like super-resolution microscopy and light-sheet microscopy enable detailed visualization of gene expression and molecular interactions in tissues. Live-cell imaging provides dynamic insights into real-time cellular and molecular processes, enhancing translational research applications. Improved imaging tools attract new researchers and drive demand for spatial genomics technologies in areas like developmental biology, oncology, and neuroscience propelling the market growth.

Threat:

Lack of standardized protocols and benchmarking

Spatial genomics and transcriptomics involve complex workflows like tissue preparation, imaging, sequencing, and data analysis. The absence of universal protocols can lead to inconsistencies in results. Sample preparation variability, such as tissue fixation methods, sectioning techniques, storage conditions, imaging and sequencing differences, and data analysis challenges, can result in varying gene expression profiles, spatial resolution, and data quality. Additionally, computational pipelines for data processing and interpretation can introduce biases, affecting the reliability of gene expression data.

Covid-19 Impact

The COVID-19 pandemic significantly impacted the Spatial Genomics & Transcriptomics Market, accelerating the adoption of advanced molecular technologies for understanding viral mechanisms and host responses. Researchers utilized spatial genomics to explore SARS-CoV-2 interactions with human tissues, fueling demand for cutting-edge tools. However, the pandemic also led to disruptions in supply chains. Despite these challenges, the urgency to study COVID-19 and other diseases has spurred innovations and investments, positively influencing the market's long-term growth prospects.

The carbon fiber segment is expected to be the largest during the forecast period

Over the forecasted timeframe, the autoclave processing segment is anticipated to be the largest market share owing to high-performance optical components like microscope stages, lenses, and supports, improving precision and stability in imaging systems, especially in spatial transcriptomics. Carbon fiber-integrated equipment offers better functionality and durability, making spatial genomics tools more efficient and attractive to researchers, potentially increasing adoption rates in labs, hospitals, and research institutions.

The autoclave processing segment is expected to have the highest CAGR during the forecast period

The autoclave processing segment is expected to have the highest CAGR growth during the estimation period autoclaving is crucial for sterilizing tissue samples and instruments that come into contact with genomic material, preventing contamination during spatial transcriptomics experiments. It also helps in tissue fixation by denaturing proteins and stabilizing tissues, preserving the spatial integrity of tissue sections, essential for accurate spatial gene expression studies. Both sterilization and tissue fixation are essential for efficient gene expression studies.

Region with largest share:

During the projected timeframe, the North America region is expected to hold the largest market share during the forecast period due to the advanced healthcare systems that enable the integration of spatial genomics into clinical practices, enabling precision medicine in oncology, neurology, and immunology. With the ability to adopt complex technologies and financial resources, North American hospitals and diagnostic centers are able to make personalized medicine a reality. Spatial genomics aids in biomarker discovery, drug development, and targeted therapies, particularly for complex diseases like cancer and neurological disorders.

Region with highest CAGR:

The Asia Pacific region is predicted to witness the highest CAGR growth rate throughout the forecast period owing to china, India, Japan, and South Korea investing heavily in genomic research, particularly for personalized medicine, cancer research, and infectious disease genomics. These nations are focusing on genomic sequencing, precision medicine, and spatial transcriptomics to understand disease biology at a tissue-specific level. Leading research centers in the APAC region, such as the beijing genomics institute, the institute of bioinformatics, and riken institute.

Key players in the market

Some of the key players in Spatial Genomics & Transcriptomics market include 10X Genomics, Inc., Akoya Biosciences, Inc., BioSpyder Technologies Inc., Bio-Techne Corporation, Dovetail Genomics, LLC, Fluidigm Corporation, Genomic Vision SA, Illumina, Inc., Lunaphore Technologies SA, Nanostring Technologies, Inc., Natera Inc., PerkinElmer Inc., Rarecyte, Inc., Resolve Biosciences, S2 Genomic, Seven Bridges Genomics, Singular Genomics System, Inc. and Veranome Biosystems LLC.

Key Developments:

In November 2024, Illumina, Inc. announced that it will release TruSight(TM) Oncology 500 v2 (TSO 500 v2), a new version of its flagship cancer research assay to enable comprehensive genomic profiling (CGP). The assay is currently under development, with global release planned for mid-2025.

In October 2024, Illumina, Inc. unveiled its MiSeq(TM) i100 Series of sequencing systems, delivering unparalleled benchtop speed and simplicity to advance next-generation sequencing (NGS) for labs.

In January 2024, PerkinElmer announced that it has acquired Covaris, a leading developer of solutions to empower life science innovations. The merger will accelerate Covaris' growth potential and expand PerkinElmer's existing life sciences portfolio into the high-growth diagnostics end market.

Products Covered:

  • Consumables
  • Instruments
  • Software & Analytics
  • Services
  • Other Products

Technologies Covered:

  • Spatial Transcriptomics
  • Spatial Genomics
  • Other Technologies

Applications Covered:

  • Tumor Heterogeneity
  • Drug Resistance
  • Immunotherapy
  • Brain Development
  • Neurodegenerative Diseases
  • Neural Circuits
  • Immune Response to Infection
  • Tissue Development
  • Organogenesis & Stem Cell Biology
  • Pathogen-Host Interactions
  • Antimicrobial Resistant
  • Other Applications

End Users Covered:

  • Pharmaceutical & Biotechnology Companies
  • Academic Research Institutions
  • Hospitals & Clinics
  • Oncology & Neurology
  • Immunology & Developmental Biology
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 Application Analysis
  • 3.9 End User Analysis
  • 3.10 Emerging Markets
  • 3.11 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Spatial Genomics & Transcriptomics Market, By Product

  • 5.1 Introduction
  • 5.2 Consumables
    • 5.2.1 Reagents & Probes
    • 5.2.2 Assay Kits
  • 5.3 Instruments
    • 5.3.1 Imaging Systems
    • 5.3.2 Sequencing Platforms
    • 5.3.3 Tissue Analyzers
  • 5.4 Software & Analytics
    • 5.4.1 Bioinformatics Tools
    • 5.4.2 Image Analysis Software
    • 5.4.3 Data Management Solutions
  • 5.5 Services
    • 5.5.1 Contract Research Services
    • 5.5.2 Custom Solutions
    • 5.5.3 Data Analysis Services
  • 5.6 Other Products

6 Global Spatial Genomics & Transcriptomics Market, By Technology

  • 6.1 Introduction
  • 6.2 Spatial Transcriptomics
    • 6.2.1 In-situ Hybridization
    • 6.2.2 In-situ Sequencing
    • 6.2.3 Spatial Barcoding
  • 6.3 Spatial Genomics
    • 6.3.1 Fluorescence In Situ Hybridization
    • 6.3.2 Chromatin Conformation Capture (3C)
  • 6.4 Other Technologies

7 Global Spatial Genomics & Transcriptomics Market, By Application

  • 7.1 Introduction
  • 7.2 Tumor Heterogeneity
  • 7.3 Drug Resistance
  • 7.4 Immunotherapy
  • 7.5 Brain Development
  • 7.6 Neurodegenerative Diseases
  • 7.7 Neural Circuits
  • 7.8 Immune Response to Infection
  • 7.9 Tissue Development
  • 7.10 Organogenesis & Stem Cell Biology
  • 7.11 Pathogen-Host Interactions
  • 7.12 Antimicrobial Resistant
  • 7.13 Other Applications

8 Global Spatial Genomics & Transcriptomics Market, By End User

  • 8.1 Introduction
  • 8.2 Pharmaceutical & Biotechnology Companies
  • 8.3 Academic Research Institutions
  • 8.4 Hospitals & Clinics
  • 8.5 Oncology & Neurology
  • 8.6 Immunology & Developmental Biology
  • 8.7 Other End Users

9 Global Spatial Genomics & Transcriptomics Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 10X Genomics, Inc.
  • 11.2 Akoya Biosciences, Inc.
  • 11.3 BioSpyder Technologies Inc.
  • 11.4 Bio-Techne Corporation
  • 11.5 Dovetail Genomics, LLC
  • 11.6 Fluidigm Corporation
  • 11.7 Genomic Vision SA, Illumina, Inc.
  • 11.8 Lunaphore Technologies SA
  • 11.9 Nanostring Technologies, Inc.
  • 11.10 Natera Inc.
  • 11.11 PerkinElmer Inc.
  • 11.12 Rarecyte, Inc.
  • 11.13 Resolve Biosciences
  • 11.14 S2 Genomic
  • 11.15 Seven Bridges Genomics
  • 11.16 Singular Genomics System, Inc.
  • 11.17 Veranome Biosystems LLC

List of Tables

  • Table 1 Global Spatial Genomics & Transcriptomics Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Spatial Genomics & Transcriptomics Market Outlook, By Product (2022-2030) ($MN)
  • Table 3 Global Spatial Genomics & Transcriptomics Market Outlook, By Consumables (2022-2030) ($MN)
  • Table 4 Global Spatial Genomics & Transcriptomics Market Outlook, By Reagents & Probes (2022-2030) ($MN)
  • Table 5 Global Spatial Genomics & Transcriptomics Market Outlook, By Assay Kits (2022-2030) ($MN)
  • Table 6 Global Spatial Genomics & Transcriptomics Market Outlook, By Instruments (2022-2030) ($MN)
  • Table 7 Global Spatial Genomics & Transcriptomics Market Outlook, By Imaging Systems (2022-2030) ($MN)
  • Table 8 Global Spatial Genomics & Transcriptomics Market Outlook, By Sequencing Platforms (2022-2030) ($MN)
  • Table 9 Global Spatial Genomics & Transcriptomics Market Outlook, By Tissue Analyzers (2022-2030) ($MN)
  • Table 10 Global Spatial Genomics & Transcriptomics Market Outlook, By Software & Analytics (2022-2030) ($MN)
  • Table 11 Global Spatial Genomics & Transcriptomics Market Outlook, By Bioinformatics Tools (2022-2030) ($MN)
  • Table 12 Global Spatial Genomics & Transcriptomics Market Outlook, By Image Analysis Software (2022-2030) ($MN)
  • Table 13 Global Spatial Genomics & Transcriptomics Market Outlook, By Data Management Solutions (2022-2030) ($MN)
  • Table 14 Global Spatial Genomics & Transcriptomics Market Outlook, By Services (2022-2030) ($MN)
  • Table 15 Global Spatial Genomics & Transcriptomics Market Outlook, By Contract Research Services (2022-2030) ($MN)
  • Table 16 Global Spatial Genomics & Transcriptomics Market Outlook, By Custom Solutions (2022-2030) ($MN)
  • Table 17 Global Spatial Genomics & Transcriptomics Market Outlook, By Data Analysis Services (2022-2030) ($MN)
  • Table 18 Global Spatial Genomics & Transcriptomics Market Outlook, By Other Products (2022-2030) ($MN)
  • Table 19 Global Spatial Genomics & Transcriptomics Market Outlook, By Technology (2022-2030) ($MN)
  • Table 20 Global Spatial Genomics & Transcriptomics Market Outlook, By Spatial Transcriptomics (2022-2030) ($MN)
  • Table 21 Global Spatial Genomics & Transcriptomics Market Outlook, By In-situ Hybridization (2022-2030) ($MN)
  • Table 22 Global Spatial Genomics & Transcriptomics Market Outlook, By In-situ Sequencing (2022-2030) ($MN)
  • Table 23 Global Spatial Genomics & Transcriptomics Market Outlook, By Spatial Barcoding (2022-2030) ($MN)
  • Table 24 Global Spatial Genomics & Transcriptomics Market Outlook, By Spatial Genomics (2022-2030) ($MN)
  • Table 25 Global Spatial Genomics & Transcriptomics Market Outlook, By Fluorescence In Situ Hybridization (2022-2030) ($MN)
  • Table 26 Global Spatial Genomics & Transcriptomics Market Outlook, By Chromatin Conformation Capture (3C) (2022-2030) ($MN)
  • Table 27 Global Spatial Genomics & Transcriptomics Market Outlook, By Other Technologies (2022-2030) ($MN)
  • Table 28 Global Spatial Genomics & Transcriptomics Market Outlook, By Application (2022-2030) ($MN)
  • Table 29 Global Spatial Genomics & Transcriptomics Market Outlook, By Tumor Heterogeneity (2022-2030) ($MN)
  • Table 30 Global Spatial Genomics & Transcriptomics Market Outlook, By Drug Resistance (2022-2030) ($MN)
  • Table 31 Global Spatial Genomics & Transcriptomics Market Outlook, By Immunotherapy (2022-2030) ($MN)
  • Table 32 Global Spatial Genomics & Transcriptomics Market Outlook, By Brain Development (2022-2030) ($MN)
  • Table 33 Global Spatial Genomics & Transcriptomics Market Outlook, By Neurodegenerative Diseases (2022-2030) ($MN)
  • Table 34 Global Spatial Genomics & Transcriptomics Market Outlook, By Neural Circuits (2022-2030) ($MN)
  • Table 35 Global Spatial Genomics & Transcriptomics Market Outlook, By Immune Response to Infection (2022-2030) ($MN)
  • Table 36 Global Spatial Genomics & Transcriptomics Market Outlook, By Tissue Development (2022-2030) ($MN)
  • Table 37 Global Spatial Genomics & Transcriptomics Market Outlook, By Organogenesis & Stem Cell Biology (2022-2030) ($MN)
  • Table 38 Global Spatial Genomics & Transcriptomics Market Outlook, By Pathogen-Host Interactions (2022-2030) ($MN)
  • Table 39 Global Spatial Genomics & Transcriptomics Market Outlook, By Antimicrobial Resistant (2022-2030) ($MN)
  • Table 40 Global Spatial Genomics & Transcriptomics Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 41 Global Spatial Genomics & Transcriptomics Market Outlook, By End User (2022-2030) ($MN)
  • Table 42 Global Spatial Genomics & Transcriptomics Market Outlook, By Pharmaceutical & Biotechnology Companies (2022-2030) ($MN)
  • Table 43 Global Spatial Genomics & Transcriptomics Market Outlook, By Academic Research Institutions (2022-2030) ($MN)
  • Table 44 Global Spatial Genomics & Transcriptomics Market Outlook, By Hospitals & Clinics (2022-2030) ($MN)
  • Table 45 Global Spatial Genomics & Transcriptomics Market Outlook, By Oncology & Neurology (2022-2030) ($MN)
  • Table 46 Global Spatial Genomics & Transcriptomics Market Outlook, By Immunology & Developmental Biology (2022-2030) ($MN)
  • Table 47 Global Spatial Genomics & Transcriptomics Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.