封面
市场调查报告书
商品编码
1744684

2032 年机器人放射肿瘤学市场预测:按产品、技术、应用、最终用户和地区进行的全球分析

Robotic Radiotherapy Market Forecasts to 2032 - Global Analysis By Product, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球机器人放射治疗市场预计在 2025 年将达到 14 亿美元,预计到 2032 年将达到 35 亿美元,预测期内的复合年增长率为 13.8%。

机器人放射治疗是一种先进的癌症治疗方法,利用机器人系统精准地向肿瘤发射高剂量的放射线,同时最大限度地减少对周围健康组织的照射。它整合了即时影像处理和自适应运动追踪技术,即使在动态解剖区域也能实现精准定位。此技术可提高治疗效果并减少副作用,是复杂或难以触及的肿瘤的理想选择。机器人放射治疗常用于立体定位放射治疗 (SBRT),透过提高精准度、效率和个人化治疗方案来改善患者预后。

根据美国国家生物技术资讯中心(NCBI)的数据,2010年至2014年,有12个中心进行机器人手术,占总数的18%,但到了2014年,这一数字已增至39个,占使用机器人手术中心的71%。

全球癌症发生率上升

早期诊断技术的进步以及人口老化导致各种癌症更容易发生,促使医疗保健提供者采用主导治疗方法。机器人放射治疗可以实现精准放射,最大限度地减少对健康组织的损伤,同时提高治疗效果。此外,个人化肿瘤治疗意识的不断增强,也促使医院和研究中心将机器人辅助解决方案纳入传统的放射治疗方案中。

复杂操作

即时影像处理、自适应运动追踪和自动化精密控制的整合需要专业知识才能实现无缝运作。医疗机构通常难以应对机器人系统带来的高额前期投资和漫长的学习週期。此外,维护和校准程序需要精通技术,这限制了它们在医疗基础设施有限的地区普及。

机器人放射治疗在非癌症疾病的兴起

机器人放射治疗不仅在癌症治疗中日益普及,在动静脉畸形、三叉神经痛、功能性疾病等非癌症疾病的治疗中也日益普及。它能够以毫米级的精度发射高剂量辐射,非常适合需要微创干预的病例。神经内科和整形外科的应用研究正在拓展机器人放射治疗的应用范围,同时,在慢性疼痛管理和血管异常治疗方面取得的良好成果也推动着市场的成长。

来自替代疗法的竞争

质子治疗、免疫疗法和先进手术机器人等技术正在成为癌症和神经系统疾病的可行替代疗法。此外,随着人工智慧优化和增强成像技术的融入,传统的放射治疗方法也不断改进。医疗机构在选择治疗方法时,优先考虑成本效益、患者治疗结果和基础设施适用性等因素,阻碍了市场的成长。

COVID-19的影响:

疫情改变了医疗保健的重点,由于资源被分配到急救和感染疾病控制,机器人放射治疗的需求暂时受到影响。然而,这场危机加速了远端医疗和远端患者监护,间接提升了人们对机器人辅助治疗的兴趣。随着医院恢復择期手术,精准放射治疗的需求也随之增加。

放射治疗系统部门预计将成为预测期内最大的部门

由于放射治疗系统在肿瘤中心和医院的广泛应用,预计将在预测期内占据最大的市场占有率。这些系统整合了机器人高精度、即时影像处理和自动化治疗计划功能,以提高治疗准确性。它们能够简化工作流程并减轻患者不适,使其成为放射肿瘤学领域的首选。

粒子束治疗领域预计在预测期内达到最高复合年增长率

在预测期内,受质子治疗和重离子治疗技术进步的推动,粒子治疗领域预计将实现最高成长率。这些治疗方法因其卓越的肿瘤靶向性以及更低的副作用,在敏感癌症病例中越来越受到青睐。在粒子治疗中,机器人的精准性进一步提高了治疗效果,并实现了持续的给药。随着研究检验粒子治疗的优势,随着医院和研究机构将粒子治疗系统纳入其肿瘤治疗项目,预计粒子治疗市场将进一步扩大。

占比最大的地区:

在预测期内,由于医疗基础设施的不断扩张和技术的进步,亚太地区预计将占据最大的市场占有率。中国、日本和印度等国家正大力投资肿瘤治疗解决方案,推动机器人放射治疗的需求。政府推动癌症早期发现和非侵入性治疗方法的倡议进一步推动了机器人放射治疗的普及。此外,医疗设备製造商和医疗保健提供者之间的合作正在加速全部区域机器人放射治疗系统的开发和普及。

复合年增长率最高的地区:

在预测期内,由于放射治疗技术的不断创新和强大的研发投入,北美预计将呈现最高的复合年增长率。该地区成熟的医疗生态系统支持机器人精准治疗与肿瘤治疗的整合。领先的医疗机构正积极进行临床试验,以提升机器人放射治疗的疗效,进而促进市场扩张。

提供免费客製化

订阅此报告的客户可享有以下免费自订选项之一:

  • 公司简介
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 地理细分
    • 根据客户兴趣对主要国家市场进行估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 研究范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 限制因素
  • 机会
  • 威胁
  • 产品分析
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球机器人放射肿瘤学市场(按产品)

  • 放射治疗系统
    • 电脑刀
    • 伽玛刀
    • 具有机器人患者定位的直线加速器 (LINAC)
  • 软体
    • 治疗计划系统(TPS)
    • 影像导航放射治疗(IGRT) 软体
    • 自适应放射治疗 (ART) 软体
  • 3D 摄影机(表面导引放射治疗 - SGRT)
  • 其他产品

6. 全球机器人放射治疗市场(依技术)

  • 线性加速器(LINAC)
  • 立体定位放射治疗(SRT)系统
  • 粒子束治疗
  • 影像导航放射治疗(IGRT)
  • 强度调控放射治疗(IMRT)
  • 其他技术

7. 全球机器人放射治疗市场(依应用)

  • 肺癌和摄护腺癌
  • 乳癌和结肠癌
  • 脑和脊髓肿瘤
  • 肝癌和胰臟癌
  • 其他用途

8. 全球机器人放射治疗市场(依最终用户)

  • 医院
  • 癌症研究所
  • 门诊手术中心
  • 专科诊所
  • 学术研究所
  • 其他最终用户

9. 全球机器人放射治疗市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十一章 公司概况

  • Accuray Incorporated
  • Varian Medical Systems
  • Elekta AB
  • Mevion Medical Systems
  • Hitachi Ltd.
  • ViewRay Inc.
  • IBA Group
  • Reflexion Medical
  • Theragenics Corporation
  • Medtronic
  • CIVCO Radiotherapy
  • Bionix Radiation Therapy
  • Zap Surgical Systems
  • Mitsubishi Electric Corporation
  • RaySearch Laboratories
  • Sumitomo Heavy Industries
  • Nordion Inc.
  • P-Cure Ltd.
Product Code: SMRC29732

According to Stratistics MRC, the Global Robotic Radiotherapy Market is accounted for $1.4 billion in 2025 and is expected to reach $3.5 billion by 2032 growing at a CAGR of 13.8% during the forecast period. Robotic radiotherapy is an advanced cancer treatment method that utilizes robotic systems to deliver precise, high-dose radiation to tumors while minimizing exposure to surrounding healthy tissues. Integrating real-time imaging and adaptive motion tracking, it ensures accurate targeting even in dynamic anatomical regions. This technology enhances treatment efficacy and reduces side effects, making it ideal for complex or hard-to-reach tumors. Commonly used in stereotactic body radiotherapy (SBRT), robotic radiotherapy improves patient outcomes through increased precision, efficiency, and personalized treatment delivery.

According to the National Center for Biotechnology Information (NCBI), from 2010 to 2014, 12 centers practicing robotic surgery represented 18% of the total while by 2014 this number grew to 39 centers which made up 71% of centers utilizing robotic surgery thus demonstrating rapid industry-wide adoption.

Market Dynamics:

Driver:

Increasing global cancer prevalence

The advancements in early diagnosis and an aging population susceptible to various cancer types, healthcare providers are increasingly adopting precision-driven treatment methods. Robotic radiotherapy enables targeted radiation delivery, minimizing damage to healthy tissues while improving therapeutic efficacy. Additionally, the growing awareness of personalized oncology care is prompting hospitals and research centers to integrate robotic-assisted solutions into conventional radiotherapy protocols.

Restraint:

Complexity of operation

The integration of real-time imaging, adaptive motion tracking, and automated precision control requires specialized expertise for seamless operation. Healthcare facilities often struggle with the high initial investment and extended learning curve associated with robotic systems. Moreover, maintenance and calibration procedures demand technical proficiency, limiting accessibility in regions with constrained medical infrastructure.

Opportunity:

Increasing use of robotic radiotherapy for non-cancerous conditions

Beyond oncology, robotic radiotherapy is gaining traction in treating non-cancerous conditions such as arteriovenous malformations, trigeminal neuralgia, and functional disorders. Its ability to deliver high-dose radiation with millimeter precision makes it suitable for cases requiring minimally invasive intervention. Research in neurology and orthopedic applications is expanding the scope of robotic radiotherapy, with promising outcomes for chronic pain management and vascular abnormalities boost the market growth.

Threat:

Competition from alternative therapies

Technologies like proton therapy, immunotherapy, and advanced surgical robotics are emerging as viable alternatives for cancer and neurological disorders. Additionally, traditional radiotherapy methods continue to improve, incorporating AI-driven optimization and enhanced imaging techniques. Healthcare institutions weigh factors such as cost-effectiveness, patient outcomes, and infrastructure compatibility when selecting treatment approaches hamper the market growth.

Covid-19 Impact:

The pandemic reshape healthcare priorities, temporarily affecting the demand for robotic radiotherapy due to resource allocation towards emergency care and infection control. However, the crisis also accelerated telemedicine adoption and remote patient monitoring, indirectly boosting interest in robotic-assisted treatment. As hospitals resumed elective procedures, the need for precision-driven radiotherapy gained momentum.

The radiotherapy systems segment is expected to be the largest during the forecast period

The radiotherapy systems segment is expected to account for the largest market share during the forecast period driven by widespread adoption in oncology centers and hospitals. These systems integrate robotic precision, real-time imaging, and automated treatment planning, enhancing therapeutic accuracy. Their ability to streamline workflows and reduce patient discomfort makes them a preferred choice for radiation oncology.

The particle therapy segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the particle therapy segment is predicted to witness the highest growth rate propelled by innovations in proton and heavy-ion therapy. These modalities offer superior tumor targeting with reduced side effects, making them increasingly favorable for sensitive cancer cases. Robotic precision further enhances treatment delivery in particle therapy, ensuring consistent radiation dosing. As research validates its advantages, market expansion is expected, with hospitals and research institutions incorporating particle therapy systems into oncology programs.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share owing to expanding healthcare infrastructure, and technological advancements. Countries such as China, Japan, and India are investing heavily in oncology solutions, fostering demand for robotic radiotherapy. Government initiatives promoting early cancer detection and non-invasive treatment approaches are further strengthening adoption. Additionally, collaborations between medical device manufacturers and healthcare providers are accelerating the development and deployment of robotic radiotherapy systems across the region.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR driven by continuous innovation in radiotherapy technologies and strong research investments. The region's well-established healthcare ecosystem supports the integration of robotic precision in oncology treatments. Leading institutions are actively conducting clinical trials to enhance the efficacy of robotic radiotherapy, contributing to market expansion.

Key players in the market

Some of the key players in Robotic Radiotherapy Market include Accuray Incorporated, Varian Medical Systems, Elekta AB, Mevion Medical Systems, Hitachi Ltd., ViewRay Inc., IBA Group, Reflexion Medical, Theragenics Corporation, Medtronic, CIVCO Radiotherapy, Bionix Radiation Therapy, Zap Surgical Systems, Mitsubishi Electric Corporation, RaySearch Laboratories, Sumitomo Heavy Industries, Nordion Inc., and P-Cure Ltd.

Key Developments:

In May 2025, Varian Medical Systems expanded its ten-year strategic collaboration with MedServe - NSIA Advanced Medical Services Limited to enhance cancer care services in Nigeria.

In May 2025, IBA Group signed a contract with PET Pharm Bio to install a Cyclone(R) IKON in Taiwan, expanding its cyclotron technology footprint in Asia.

In April 2025, Mitsubishi Electric Corporation signed an agreement with HD Renewable Energy to establish a joint venture in Japan, focusing on renewable energy solutions.

Products Covered:

  • Radiotherapy Systems
  • Software
  • 3D Cameras (Surface Guided Radiation Therapy - SGRT)
  • Other Products

Technologies Covered:

  • Linear Accelerators (LINACs)
  • Stereotactic Radiation Therapy (SRT) Systems
  • Particle Therapy
  • Image-Guided Radiation Therapy (IGRT)
  • Intensity-Modulated Radiation Therapy (IMRT)
  • Other Technologies

Applications Covered:

  • Lung Cancer & Prostate Cancer
  • Breast Cancer & Colorectal Cancer
  • Brain Tumors & Spinal Tumors
  • Liver Cancer & Pancreatic Cancer
  • Other Applications

End Users Covered:

  • Hospitals
  • Cancer Research Institutes
  • Ambulatory Surgical Centers
  • Specialty Clinics
  • Academic & Research Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 Application Analysis
  • 3.9 End User Analysis
  • 3.10 Emerging Markets
  • 3.11 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Robotic Radiotherapy Market, By Product

  • 5.1 Introduction
  • 5.2 Radiotherapy Systems
    • 5.2.1 CyberKnife
    • 5.2.2 Gamma Knife
    • 5.2.3 Linear Accelerators (LINACs) with Robotic Patient Positioning
  • 5.3 Software
    • 5.3.1 Treatment Planning Systems (TPS)
    • 5.3.2 Image-Guided Radiation Therapy (IGRT) software
    • 5.3.3 Adaptive Radiotherapy (ART) software
  • 5.4 3D Cameras (Surface Guided Radiation Therapy - SGRT)
  • 5.5 Other Products

6 Global Robotic Radiotherapy Market, By Technology

  • 6.1 Introduction
  • 6.2 Linear Accelerators (LINACs)
  • 6.3 Stereotactic Radiation Therapy (SRT) Systems
  • 6.4 Particle Therapy
  • 6.5 Image-Guided Radiation Therapy (IGRT)
  • 6.6 Intensity-Modulated Radiation Therapy (IMRT)
  • 6.7 Other Technologies

7 Global Robotic Radiotherapy Market, By Application

  • 7.1 Introduction
  • 7.2 Lung Cancer & Prostate Cancer
  • 7.3 Breast Cancer & Colorectal Cancer
  • 7.4 Brain Tumors & Spinal Tumors
  • 7.5 Liver Cancer & Pancreatic Cancer
  • 7.6 Other Applications

8 Global Robotic Radiotherapy Market, By End User

  • 8.1 Introduction
  • 8.2 Hospitals
  • 8.3 Cancer Research Institutes
  • 8.4 Ambulatory Surgical Centers
  • 8.5 Specialty Clinics
  • 8.6 Academic & Research Institutions
  • 8.7 Other End Users

9 Global Robotic Radiotherapy Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Accuray Incorporated
  • 11.2 Varian Medical Systems
  • 11.3 Elekta AB
  • 11.4 Mevion Medical Systems
  • 11.5 Hitachi Ltd.
  • 11.6 ViewRay Inc.
  • 11.7 IBA Group
  • 11.8 Reflexion Medical
  • 11.9 Theragenics Corporation
  • 11.10 Medtronic
  • 11.11 CIVCO Radiotherapy
  • 11.12 Bionix Radiation Therapy
  • 11.13 Zap Surgical Systems
  • 11.14 Mitsubishi Electric Corporation
  • 11.15 RaySearch Laboratories
  • 11.16 Sumitomo Heavy Industries
  • 11.17 Nordion Inc.
  • 11.18 P-Cure Ltd.

List of Tables

  • Table 1 Global Robotic Radiotherapy Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Robotic Radiotherapy Market Outlook, By Product (2024-2032) ($MN)
  • Table 3 Global Robotic Radiotherapy Market Outlook, By Radiotherapy Systems (2024-2032) ($MN)
  • Table 4 Global Robotic Radiotherapy Market Outlook, By CyberKnife (2024-2032) ($MN)
  • Table 5 Global Robotic Radiotherapy Market Outlook, By Gamma Knife (2024-2032) ($MN)
  • Table 6 Global Robotic Radiotherapy Market Outlook, By Linear Accelerators (LINACs) with Robotic Patient Positioning (2024-2032) ($MN)
  • Table 7 Global Robotic Radiotherapy Market Outlook, By Software (2024-2032) ($MN)
  • Table 8 Global Robotic Radiotherapy Market Outlook, By Treatment Planning Systems (TPS) (2024-2032) ($MN)
  • Table 9 Global Robotic Radiotherapy Market Outlook, By Image-Guided Radiation Therapy (IGRT) software (2024-2032) ($MN)
  • Table 10 Global Robotic Radiotherapy Market Outlook, By Adaptive Radiotherapy (ART) software (2024-2032) ($MN)
  • Table 11 Global Robotic Radiotherapy Market Outlook, By 3D Cameras (Surface Guided Radiation Therapy - SGRT) (2024-2032) ($MN)
  • Table 12 Global Robotic Radiotherapy Market Outlook, By Other Products (2024-2032) ($MN)
  • Table 13 Global Robotic Radiotherapy Market Outlook, By Technology (2024-2032) ($MN)
  • Table 14 Global Robotic Radiotherapy Market Outlook, By Linear Accelerators (LINACs) (2024-2032) ($MN)
  • Table 15 Global Robotic Radiotherapy Market Outlook, By Stereotactic Radiation Therapy (SRT) Systems (2024-2032) ($MN)
  • Table 16 Global Robotic Radiotherapy Market Outlook, By Particle Therapy (2024-2032) ($MN)
  • Table 17 Global Robotic Radiotherapy Market Outlook, By Image-Guided Radiation Therapy (IGRT) (2024-2032) ($MN)
  • Table 18 Global Robotic Radiotherapy Market Outlook, By Intensity-Modulated Radiation Therapy (IMRT) (2024-2032) ($MN)
  • Table 19 Global Robotic Radiotherapy Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 20 Global Robotic Radiotherapy Market Outlook, By Application (2024-2032) ($MN)
  • Table 21 Global Robotic Radiotherapy Market Outlook, By Lung Cancer & Prostate Cancer (2024-2032) ($MN)
  • Table 22 Global Robotic Radiotherapy Market Outlook, By Breast Cancer & Colorectal Cancer (2024-2032) ($MN)
  • Table 23 Global Robotic Radiotherapy Market Outlook, By Brain Tumors & Spinal Tumors (2024-2032) ($MN)
  • Table 24 Global Robotic Radiotherapy Market Outlook, By Liver Cancer & Pancreatic Cancer (2024-2032) ($MN)
  • Table 25 Global Robotic Radiotherapy Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 26 Global Robotic Radiotherapy Market Outlook, By End User (2024-2032) ($MN)
  • Table 27 Global Robotic Radiotherapy Market Outlook, By Hospitals (2024-2032) ($MN)
  • Table 28 Global Robotic Radiotherapy Market Outlook, By Cancer Research Institutes (2024-2032) ($MN)
  • Table 29 Global Robotic Radiotherapy Market Outlook, By Ambulatory Surgical Centers (2024-2032) ($MN)
  • Table 30 Global Robotic Radiotherapy Market Outlook, By Specialty Clinics (2024-2032) ($MN)
  • Table 31 Global Robotic Radiotherapy Market Outlook, By Academic & Research Institutions (2024-2032) ($MN)
  • Table 32 Global Robotic Radiotherapy Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.