封面
市场调查报告书
商品编码
1755971

2032 年电网形成逆变器市场预测:按类型、组件、额定功率、性别、技术、最终用户和地区进行的全球分析

Grid Forming Inverter Market Forecasts to 2032 - Global Analysis By Type (Voltage Source Inverter (VSI), Current Source Inverter (CSI) and Hybrid Inverter), Component, Power Rating, Connectivity, Technology, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球併网逆变器市场预计在 2025 年将达到 8.5 亿美元,到 2032 年将达到 16.7 亿美元,预测期内的复合年增长率为 10.2%。

微电网和可再生能源系统的运作得益于一种名为「电网形成逆变器」(GFI)的电力逆变器。与依赖现有电网讯号的「电网追踪逆变器」不同,电网形成逆变器可以独立运行,既可以采用孤岛模式,也可以与其他电源组合运行。它们透过模拟传统同步发电机的运作来提供稳定性和惯性。因此,它们对于在维持电网稳定性的同时吸收大量可再生能源至关重要,尤其是在偏远地区和停电期间。

根据国际能源总署(IEA)的数据,到2024年全球可再生能源装置容量可能达到550吉瓦。

提高可再生能源整合度

随着太阳能和风力发电不断扩大,惯性和系统稳定性成为主要问题。电网形成逆变器解决了这些问题,即使在没有传统同步发电机的情况下也能实现稳定的电压和频率。它们使可再生能够像传统能源一样运行,从而提高了电网的弹性。为了实现脱碳目标,政府和公用事业公司正在加大在这些逆变器上的投资。这一趋势正在推动全球对尖端电网形成技术的需求。

前期成本高且实施复杂

高昂的基础设施和设备成本使许多潜在客户对采用这项技术犹豫不决。复杂的实施程序需要专业人员和深度系统集成,这可能会延迟计划交付时间。这些技术难题增加了总成本和业务风险。缺乏标准化的安装技术进一步加剧了实施的复杂性。因此,儘管併网逆变器具有长期优势,但许多组织仍犹豫是否要全面采用它们。

智慧电网和微电网的扩展

併网逆变器的主要功能之一是提供这些先进电力系统所需的电压和频率参考。面对日益增加的分散式再生能源来源网逆变器有助于实现电网的稳定稳健运作。这些逆变器对于微电网在独立运作或併网模式下的运作至关重要,尤其是在偏远地区或灾害多发地区。此外,将分散式能源和动态负载整合到智慧电网中需要智慧且自适应的逆变器技术。正是这种日益增长的依赖性,持续推动全球对併网逆变器解决方案的需求。

技术标准化和互通性问题

缺乏标准化标准为消费者和生产者带来了复杂性,并减缓了整合的进程。由于需要专门的解决方案,这种碎片化增加了开发和部署成本。此外,它还限制了电网应用的扩充性和适应性,阻碍了其广泛应用。互通性问题引发了人们对系统使用安全性和可靠性的质疑。这些问题阻碍了併网逆变器的投资和技术进步,阻碍了市场扩张。

COVID-19的影响

新冠疫情最初扰乱了併网逆变器市场,原因是製造业停工、供应链瓶颈以及可再生能源计划延期。然而,随着世界各国政府优先考虑绿色復苏战略和永续能源投资,对高弹性和灵活电网解决方案的需求激增。这种转变促使人们对併网逆变器的兴趣日益浓厚,因为它们能够提高电网稳定性并整合可再生能源。疫情过后,人们对能源转型和电网现代化的关注度不断提高,这正在加速市场的復苏和长期成长前景。

预计预测期内电流源逆变器 (CSI) 部分将实现最大幅度成长。

电流源逆变器 (CSI) 领域预计将在预测期内占据最大市场占有率,这得益于其在可再生能源丰富的电力系统中增强的稳定性和容错能力。 CSI 提供卓越的输出电流控制,这对于需要维持电网电压和频率的电网整形应用至关重要。其固有的短路保护功能以及无需电压反馈即可运行的能力使其成为轻型电网和孤岛电网的理想选择。此外,半导体技术的进步提高了基于 CSI 的解决方案的效率和扩充性。随着公用事业公司向分散式和逆变器主导的电网转型,对稳健的 CSI 技术的需求持续稳定成长。

国防和军事部门预计将在预测期内实现最高复合年增长率

预计国防和军事领域将在预测期内实现最高成长率。这是因为偏远地区和恶劣环境下对可靠且有弹性的电力系统的需求至关重要。 GFI 能够支援稳定的微电网,从而支援敏感国防设备和通讯网路的不间断运作。军事基地越来越多地采用可再生能源,这推动了对能够无缝管理可变电源的先进 GFI 的需求。此外,军事现代化计划优先考虑能源安全和电网独立性,这推动了 GFI 的部署。此外,国防应用对行动和自主电源解决方案的需求也加速了 GFI 技术创新和市场成长。

占比最大的地区:

在预测期内,由于可再生能源(尤其是太阳能和风能)的日益普及,预计亚太地区将占据最大的市场占有率。新兴经济体快速的都市化和电气化进程,加上政府的奖励,正在推动逆变器的部署。该地区面临电网不稳定和电力供应波动等独特挑战,这导致其越来越依赖先进的逆变器解决方案来维持电网可靠性。此外,中国和印度等国家的基础设施现代化计划正在创造巨大的机会,国内外製造商都在竞相满足日益增长的需求。

复合年增长率最高的地区:

在预测期内,由于太阳能和风能等再生能源来源日益融入电网,北美预计将呈现最高的复合年增长率。各国政府不断推出的电网现代化和能源储存解决方案将进一步推动市场成长。国防和军事部门也推动了对可靠且弹性电力系统的需求。在分散式能源和微电网日益普及的背景下,美国和加拿大先进的电网基础设施有助于併网逆变器的采用,从而实现稳定的电网运作。

免费客製化服务:

订阅此报告的客户可享有以下免费自订选项之一:

  • 公司简介
    • 全面分析其他市场参与者(最多 3 家公司)
    • 主要企业的SWOT分析(最多3家公司)
  • 地理细分
    • 根据客户兴趣对主要国家市场进行估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 研究范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 限制因素
  • 机会
  • 威胁
  • 技术分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球併网逆变器市场(按类型)

  • 电压源逆变器(VSI)
  • 电流源逆变器(CSI)
  • 混合逆变器

6. 全球併网逆变器市场(按组件)

  • 硬体
  • 软体
  • 服务

7. 全球併网逆变器市场(依功率等级)

  • 小于10kW
  • 10kW~100kW
  • 超过100kW

8. 全球併网逆变器市场:依连接类型

  • 併网
  • 离网
  • 杂交种

9. 全球併网逆变器市场(按技术)

  • 下垂控制
  • 虚拟同步机器(VSM)
  • 同步调相机仿真
  • 机器学习控制

第 10 章全球併网逆变器市场(按最终用户)

  • 住房
  • 商业的
  • 产业
  • 公用事业
  • 国防/军事
  • 其他最终用户

第 11 章全球併网逆变器市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十二章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十三章 公司概况

  • Huawei Technologies Co., Ltd.
  • SMA Solar Technology AG
  • General Electric(GE)
  • Sungrow Power Supply Co., Ltd.
  • FIMER Group
  • SolarEdge Technologies Inc.
  • Enphase Energy, Inc.
  • Delta Electronics, Inc.
  • Schneider Electric SE
  • Fronius International GmbH
  • GoodWe Power Supply Technology Co., Ltd.
  • KACO new energy GmbH
  • Gamesa Electric
  • TMEIC Corporation
  • Mitsubishi Electric Corporation
  • ABB Ltd.
  • Ingeteam SA
  • Ginlong Technologies Co., Ltd.
Product Code: SMRC29865

According to Stratistics MRC, the Global Grid Forming Inverter Market is accounted for $0.85 billion in 2025 and is expected to reach $1.67 billion by 2032 growing at a CAGR of 10.2% during the forecast period. The stable operation of microgrids and renewable energy systems is made possible by a type of power inverter called a Grid Forming Inverter (GFI), which creates and controls voltage and frequency in an electrical grid. Grid-forming inverters can function independently in islanded mode or in conjunction with other power sources, in contrast to grid-following inverters, which depend on an existing grid signal. They provide stability and inertia by simulating the actions of conventional synchronous generators. They are therefore crucial for incorporating significant amounts of renewable energy while preserving grid stability, particularly in remote locations or during outages.

According to the International Energy Agency, global renewable capacity additions could potentially reach 550 GW in 2024.

Market Dynamics:

Driver:

Rising renewable energy integration

Inertia and system stability become major issues when solar and wind energy grow on the grid. By permitting steady voltage and frequency even in the absence of conventional synchronous generators, grid forming inverters solve these problems. They promote grid resilience by enabling renewables to behave similarly to traditional power sources. To reach decarbonisation targets, governments and utilities are spending more money on these inverters. Global demand for cutting-edge grid-forming technology is rising as a result of this trend.

Restraint:

High initial cost and complex implementation

The high cost of the infrastructure and equipment discourages many prospective customers from adopting this technology. Project deadlines may be delayed by the need for specialised staff and deep system integration for complex implementation procedures. These technical difficulties raise total expenses and operating risks. Deployment is further complicated by the absence of standardised installation techniques. Consequently, despite the long-term advantages of grid forming inverters, many organisations are hesitant to fully adopt them.

Opportunity:

Smart grid and microgrid expansion

One of the primary functions of grid-forming inverters is to provide voltage and frequency references, which these sophisticated power systems require. Grid-forming inverters facilitate steady and robust grid operations when decentralised renewable energy sources increase in number. These inverters are essential for microgrids to function independently or in grid-connected modes, particularly in isolated or disaster-prone locations. Additionally, dispersed energy supplies and dynamic loads are integrated into smart grids, necessitating clever and adaptable inverter technology. The continued need for grid-forming inverter solutions around the world is fuelled by this growing dependence.

Threat:

Technical standardization and interoperability issues

The absence of standardised standards complicates things for consumers and producers and slows down integration attempts. Because specialised solutions are needed, this fragmentation raises development and deployment costs. Additionally, it restricts grid applications' scalability and adaptability, which prevents widespread adoption. Interoperability issues can create questions regarding the safety and dependability of the system when it is in use. All things considered, these problems impede market expansion by deterring investments and technological advancements in grid-forming inverters.

Covid-19 Impact

The COVID-19 pandemic initially disrupted the Grid Forming Inverter Market due to halted manufacturing, supply chain bottlenecks, and delayed renewable energy projects. However, as governments emphasized green recovery strategies and sustainable energy investments, demand for resilient and flexible grid solutions surged. This shift boosted interest in grid forming inverters for their ability to enhance grid stability and integrate renewables. Post-pandemic, increased focus on energy transition and grid modernization has accelerated the market's recovery and long-term growth prospects.

The current source inverter (CSI) segment is expected to be the largest during the forecast period

The current source inverter (CSI) segment is expected to account for the largest market share during the forecast period by offering enhanced stability and fault-tolerant capabilities in renewable-rich power systems. CSIs provide superior control over output current, which is crucial for grid-forming applications where maintaining grid voltage and frequency is essential. Their inherent short-circuit protection and ability to operate without requiring voltage feedback make them ideal for weak or islanded grids. Additionally, advancements in semiconductor technology have improved the efficiency and scalability of CSI-based solutions. As utilities transition toward decentralized and inverter-dominated grids, the demand for robust CSI technologies continues to grow steadily.

The defense & military segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the defense & military segment is predicted to witness the highest growth rate, due to its critical need for reliable, resilient power systems in remote and harsh environments. GFIs enable stable microgrids that support uninterrupted operations of sensitive defense equipment and communication networks. Increasing adoption of renewable energy in military bases drives demand for advanced GFIs that can seamlessly manage variable power sources. Furthermore, military modernization programs emphasize energy security and grid independence, boosting GFI deployment. The requirement for mobile and autonomous power solutions in defense applications also accelerates innovation and market growth for GFIs.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to escalating renewable energy installations, especially solar and wind. Rapid urbanization and electrification efforts in emerging economies, alongside government incentives, encourage inverter deployment. The region faces unique challenges like grid instability and fluctuating power supply, increasing reliance on advanced inverter solutions to maintain grid reliability. Moreover, infrastructure modernization projects in countries like China and India create significant opportunities, with local and global manufacturers competing to meet the rising demand.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by increasing integration of renewable energy sources like solar and wind into the power grid. Growing government initiatives for grid modernization and energy storage solutions further accelerate market growth. The defense and military sectors also contribute due to their demand for reliable and resilient power systems. Advanced grid infrastructure in the U.S. and Canada supports adoption of grid forming inverters, enabling stable grid operation amid rising distributed energy resources and microgrid deployments.

Key players in the market

Some of the key players profiled in the Grid Forming Inverter Market include Huawei Technologies Co., Ltd., SMA Solar Technology AG, General Electric (GE), Sungrow Power Supply Co., Ltd., FIMER Group, SolarEdge Technologies Inc., Enphase Energy, Inc., Delta Electronics, Inc., Schneider Electric SE, Fronius International GmbH, GoodWe Power Supply Technology Co., Ltd., KACO new energy GmbH, Gamesa Electric, TMEIC Corporation, Mitsubishi Electric Corporation, ABB Ltd. and Ingeteam S.A.

Key Developments:

In March 2025, SMA America introduced the Sunny Central Storage UP-S, a high-efficiency grid-scale battery inverter featuring silicon carbide (SiC) MOSFET technology. This inverter boasts over 99.2% efficiency and supports dynamic grid support, making it suitable for large-scale energy storage projects.

In June 2024, Huawei introduced the world's first Cell-to-Grid Smart String & Grid-Forming ESS Platform. This platform integrates PV, energy storage systems (ESS), and grid-forming capabilities, enhancing the stability and efficiency of renewable energy integration. Notably, in a project in Qinghai, China, the system increased renewable energy output by 40% when the short circuit ratio (SCR) was 1.5.

Types Covered:

  • Voltage Source Inverter (VSI)
  • Current Source Inverter (CSI)
  • Hybrid Inverter

Components Covered:

  • Hardware
  • Software
  • Services

Power Ratings Covered:

  • Up to 10 kW
  • 10 kW - 100 kW
  • Above 100 kW

Connectivities Covered:

  • On-grid
  • Off-grid
  • Hybrid

Technologies Covered:

  • Droop Control
  • Virtual Synchronous Machine (VSM)
  • Synchronous Condenser Emulation
  • Machine Learning Enabled Control

End Users Covered:

  • Residential
  • Commercial
  • Industrial
  • Utilities
  • Defense & Military
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Grid Forming Inverter Market, By Type

  • 5.1 Introduction
  • 5.2 Voltage Source Inverter (VSI)
  • 5.3 Current Source Inverter (CSI)
  • 5.4 Hybrid Inverter

6 Global Grid Forming Inverter Market, By Component

  • 6.1 Introduction
  • 6.2 Hardware
  • 6.3 Software
  • 6.4 Services

7 Global Grid Forming Inverter Market, By Power Rating

  • 7.1 Introduction
  • 7.2 Up to 10 kW
  • 7.3 10 kW - 100 kW
  • 7.4 Above 100 kW

8 Global Grid Forming Inverter Market, By Connectivity

  • 8.1 Introduction
  • 8.2 On-grid
  • 8.3 Off-grid
  • 8.4 Hybrid

9 Global Grid Forming Inverter Market, By Technology

  • 9.1 Introduction
  • 9.2 Droop Control
  • 9.3 Virtual Synchronous Machine (VSM)
  • 9.4 Synchronous Condenser Emulation
  • 9.5 Machine Learning Enabled Control

10 Global Grid Forming Inverter Market, By End User

  • 10.1 Introduction
  • 10.2 Residential
  • 10.3 Commercial
  • 10.4 Industrial
  • 10.5 Utilities
  • 10.6 Defense & Military
  • 10.7 Other End Users

11 Global Grid Forming Inverter Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Huawei Technologies Co., Ltd.
  • 13.2 SMA Solar Technology AG
  • 13.3 General Electric (GE)
  • 13.4 Sungrow Power Supply Co., Ltd.
  • 13.5 FIMER Group
  • 13.6 SolarEdge Technologies Inc.
  • 13.7 Enphase Energy, Inc.
  • 13.8 Delta Electronics, Inc.
  • 13.9 Schneider Electric SE
  • 13.10 Fronius International GmbH
  • 13.11 GoodWe Power Supply Technology Co., Ltd.
  • 13.12 KACO new energy GmbH
  • 13.13 Gamesa Electric
  • 13.14 TMEIC Corporation
  • 13.15 Mitsubishi Electric Corporation
  • 13.16 ABB Ltd.
  • 13.17 Ingeteam S.A.
  • 13.18 Ginlong Technologies Co., Ltd.

List of Tables

  • Table 1 Global Grid Forming Inverter Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Grid Forming Inverter Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Grid Forming Inverter Market Outlook, By Voltage Source Inverter (VSI) (2024-2032) ($MN)
  • Table 4 Global Grid Forming Inverter Market Outlook, By Current Source Inverter (CSI) (2024-2032) ($MN)
  • Table 5 Global Grid Forming Inverter Market Outlook, By Hybrid Inverter (2024-2032) ($MN)
  • Table 6 Global Grid Forming Inverter Market Outlook, By Component (2024-2032) ($MN)
  • Table 7 Global Grid Forming Inverter Market Outlook, By Hardware (2024-2032) ($MN)
  • Table 8 Global Grid Forming Inverter Market Outlook, By Software (2024-2032) ($MN)
  • Table 9 Global Grid Forming Inverter Market Outlook, By Services (2024-2032) ($MN)
  • Table 10 Global Grid Forming Inverter Market Outlook, By Power Rating (2024-2032) ($MN)
  • Table 11 Global Grid Forming Inverter Market Outlook, By Up to 10 kW (2024-2032) ($MN)
  • Table 12 Global Grid Forming Inverter Market Outlook, By 10 kW - 100 kW (2024-2032) ($MN)
  • Table 13 Global Grid Forming Inverter Market Outlook, By Above 100 kW (2024-2032) ($MN)
  • Table 14 Global Grid Forming Inverter Market Outlook, By Connectivity (2024-2032) ($MN)
  • Table 15 Global Grid Forming Inverter Market Outlook, By On-grid (2024-2032) ($MN)
  • Table 16 Global Grid Forming Inverter Market Outlook, By Off-grid (2024-2032) ($MN)
  • Table 17 Global Grid Forming Inverter Market Outlook, By Hybrid (2024-2032) ($MN)
  • Table 18 Global Grid Forming Inverter Market Outlook, By Technology (2024-2032) ($MN)
  • Table 19 Global Grid Forming Inverter Market Outlook, By Droop Control (2024-2032) ($MN)
  • Table 20 Global Grid Forming Inverter Market Outlook, By Virtual Synchronous Machine (VSM) (2024-2032) ($MN)
  • Table 21 Global Grid Forming Inverter Market Outlook, By Synchronous Condenser Emulation (2024-2032) ($MN)
  • Table 22 Global Grid Forming Inverter Market Outlook, By Machine Learning Enabled Control (2024-2032) ($MN)
  • Table 23 Global Grid Forming Inverter Market Outlook, By End User (2024-2032) ($MN)
  • Table 24 Global Grid Forming Inverter Market Outlook, By Residential (2024-2032) ($MN)
  • Table 25 Global Grid Forming Inverter Market Outlook, By Commercial (2024-2032) ($MN)
  • Table 26 Global Grid Forming Inverter Market Outlook, By Industrial (2024-2032) ($MN)
  • Table 27 Global Grid Forming Inverter Market Outlook, By Utilities (2024-2032) ($MN)
  • Table 28 Global Grid Forming Inverter Market Outlook, By Defense & Military (2024-2032) ($MN)
  • Table 29 Global Grid Forming Inverter Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.