封面
市场调查报告书
商品编码
1776721

2032 年量子运算市场预测:按组件、部署模式、技术、应用、最终用户和地区进行的全球分析

Quantum Computing Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Deployment Mode, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球量子计算市场预计在 2025 年达到 15 亿美元,到 2032 年将达到 104 亿美元,预测期内的复合年增长率为 31.5%。

量子计算是一种革命性的计算形式,它利用动态原理来处理资讯。与使用位元(0 或 1)的传统电脑不同,量子电脑使用量子位元(qubit)。量子位元可以透过迭加同时存在于多种状态。量子位元还可以纠缠,从而实现复杂的关联和强大的平行计算。这使得量子电脑能够以比传统系统更快的速度解决某些问题,例如分解大数或模拟分子。儘管量子电脑仍处于发展阶段,但它拥有巨大的潜力,能够在密码学、材料科学和人工智慧等领域提供超越传统限制的变革性能力。

分析师估计,到 2025 年,全球对量子工程师的需求将达到 10,000 名左右,而供应量可能会降至 5,000 名以下。

高效能运算的需求不断增长

高效能运算 (HPC) 需求的不断增长是量子运算市场成长的主要驱动力。 HPC 在处理复杂模拟和海量资料方面的局限性,正在加速对量子技术的投资。这种转变正在推动量子处理器的创新,增强製药、网路安全和气候建模等产业的能力。学术界和产业界之间资金投入的活性化和合作的加强,进一步推动了量子技术的进步,使其成为下一代运算能力的战略前沿。

开发成本高

量子电脑的高昂开发成本是市场发展的一大障碍。建构和维护量子系统需要在专用硬体、研究和熟练人才方面投入大量资金。这使得参与度仅限于少数资金雄厚的公司,从而阻碍了创新和竞争。规模较小的公司难以进入市场,减缓了多样化应用开发和市场拓展。这导致商业化进程不均衡,阻碍了应用的普及,并限制了该技术的变革潜力。

量子硬体和演算法的进步

量子硬体和量子演算法的突破正在为运算速度、可扩展性和准确性提升新的维度,从而推动量子运算市场的快速成长。增强的量子位元稳定性、纠错能力和量子霸权基准测试正在吸引各行各业的大量投资。演算法的进步正在拓宽优化、机器学习、加密等领域的使用案例,而硬体创新则正在赋能更可靠的量子系统。这些创新的结合正在加速商业化进程,并促进学术界、科技产业和企业之间的合作。

量子比特的技术挑战与脆弱性

由于技术挑战和量子位元的脆弱性,量子运算市场正面临重大挫折。它们易受环境干扰,导致计算错误频数,并限制了可扩展性。维持量子位元的一致性需要复杂的基础设施,这会增加营运成本,并减缓实际部署速度。这些限制阻碍了量子系统的商业化,减缓了创新,抑制了投资者信心,并最终扼杀了量子技术在各行各业的普及和发展。

COVID-19的影响

新冠疫情对量子运算市场产生了双重影响。全球供应链中断导致硬体开发延迟,但这场危机也加速了药物研发、分子建模和物流对量子解决方案的需求。各大公司为疫情相关研究提供云端基础的量子访问,从而提升了公众认知度和应用范围。这项转变凸显了量子运算的战略价值,刺激了投资成长,并将其定位为能够应对未来全球挑战的韧性技术。

预计在预测期内,捕获离子部分将占最大份额

预计在预测期内,离子阱将占据最大的市场占有率,因为其精确控制能够实现可扩展架构和平行处理,从而加快演算法执行速度并降低错误率。诸如“辣肉馅捲饼饼馅陷阱”和微波驱动门之类的技术创新在提高性能的同时降低了功耗。这些进步使离子阱成为建立容错量子系统的关键,促进了其商业性可行性,并吸引了密码学、模拟和最佳化等领域的投资。

预测期内加密货币产业将以最高复合年增长率成长

由于量子系统威胁传统加密技术,各行各业都在投资后量子密码学和量子金钥分发(QKD) 来保护资料。这种迫切性正在加速网路安全、金融和国防领域的创新、资金筹措和合作。密码学领域不仅将量子运算定位为更具现实意义的领域,而且将其作为下一代安全基础设施的关键推动因素,从而促进市场的长期扩张。

比最大的地区

在预测期内,由于政府的大力支持、不断增加的研究投入以及日益增长的技术型人口,亚太地区预计将占据最大的市场占有率。中国、日本和印度等国家正大力投资量子技术,以应用于网路安全、医疗保健和金融领域。学术机构与科技公司之间的合作正在激发创新,而对高效能运算解决方案日益增长的需求也推动着市场的成长。所有这些势头使得亚太地区成为量子计算发展的全球中心。

复合年增长率最高的地区:

由于科技巨头的强劲投资、政府的倡议以及蓬勃发展的新兴企业生态系统,北美预计将在预测期内实现最高的复合年增长率。该地区先进的研究基础设施和产学研合作正在加速创新。量子技术在医疗保健、金融和网路安全等领域的应用日益广泛,使其能够加快资料处理速度并增强解决问题的能力。这项颠覆性技术正在培育竞争优势,并使北美成为量子创新和商业化的领导者。

免费客製化服务:

订阅此报告的客户可享有以下免费自订选项之一:

  • 公司简介
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家市场进行估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球量子计算市场(按组件)

  • 硬体
  • 软体
  • 服务

6. 全球量子运算市场(依部署模式)

  • 本地
  • 云端基础

7. 全球量子计算市场(按技术)

  • 超导性比特
  • 光子量子运算
  • 捕获离子
  • 拓朴量子比特
  • 量子退火

第八章全球量子计算市场(按应用)

  • 模拟
  • 量子化学
  • 最佳化
  • 加密
  • 机器学习
  • 其他用途

9. 全球量子计算市场(以最终用户划分)

  • 医疗保健和医学
  • 银行、金融服务和保险(BFSI)
  • 运输/物流
  • 资讯科技/通讯
  • 航太/国防
  • 化学品
  • 能源与电力
  • 其他最终用户

第 10 章全球量子计算市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章 公司概况

  • IBM
  • Google(Alphabet Inc.)
  • Microsoft
  • Intel Corporation
  • D-Wave Systems
  • Rigetti Computing
  • IonQ
  • Honeywell Quantum Solutions
  • Alibaba Group
  • Baidu Inc.
  • Zapata Computing
  • Xanadu
  • QC Ware
  • PsiQuantum
  • Fujitsu
  • Toshiba
  • Quantinuum
  • Atos
  • Quantum Circuits Inc.
Product Code: SMRC30052

According to Stratistics MRC, the Global Quantum Computing Market is accounted for $1.5 billion in 2025 and is expected to reach $10.4 billion by 2032 growing at a CAGR of 31.5% during the forecast period. Quantum computing is a revolutionary form of computation that leverages the principles of quantum mechanics to process information. Unlike classical computers that use bits (0 or 1), quantum computers use quantum bits or qubits, which can exist in multiple states simultaneously due to superposition. Qubits can also be entangled, allowing complex correlations that enable powerful parallel computations. This allows quantum computers to solve certain problems-like factoring large numbers or simulating molecules-exponentially faster than traditional systems. Though still in development, quantum computing holds immense potential in fields such as cryptography, material science, and artificial intelligence, offering transformative capabilities beyond classical limits.

According to an analyst survey, there could be a demand for around 10,000 quantum skilled workers and a supply of fewer than 5,000 by 2025.

Market Dynamics:

Driver:

Rising Demand for High-Performance Computing

The surging demand for high-performance computing (HPC) is significantly propelling growth in the quantum computing market. HPC's limitations in handling complex simulations and massive data volumes are accelerating investment in quantum technologies. This shift is driving innovation in quantum processors, enhancing capabilities for industries like pharmaceuticals, cybersecurity, and climate modeling. Increased funding and collaborations between academia and industry are further catalyzing quantum advancement, positioning it as a strategic frontier for next-generation computational power.

Restraint:

High Cost of Development

The high cost of quantum computing development presents a significant barrier to market growth. Building and maintaining quantum systems requires substantial financial investment in specialized hardware, research, and skilled talent. This restricts entry to only a few well-funded players, slowing innovation and competition. Smaller enterprises struggle to participate, delaying diverse application development and market expansion. Consequently, commercialization becomes uneven, hindering widespread adoption and limiting the technology's transformative potential.

Opportunity:

Advancements in Quantum Hardware and Algorithms

Breakthroughs in quantum hardware and algorithms are unlocking new dimensions in computational speed, scalability, and accuracy-fueling rapid growth in the quantum computing market. Enhanced qubit stability, error correction, and quantum supremacy benchmarks are attracting significant investments across industries. Algorithmic advancements are broadening use cases in optimization, machine learning, and cryptography, while hardware innovations enable more reliable quantum systems. Together, they're accelerating commercialization, inspiring collaboration across academia, tech, and enterprise sectors.

Threat:

Technical Challenges and Fragility of Qubits

The quantum computing market faces substantial setbacks due to technical challenges and the fragile nature of qubits. Their susceptibility to environmental interference leads to frequent computational errors and limits scalability. Maintaining qubit coherence demands complex infrastructure, raising operational costs and slowing practical deployment. These limitations hinder the commercialization of quantum systems, delay innovation, and restrain investor confidence, ultimately impeding the widespread adoption and growth of quantum technologies across industries.

Covid-19 Impact

The COVID-19 pandemic had a dual impact on the quantum computing market. While hardware development faced delays due to global supply chain disruptions, the crisis accelerated demand for quantum solutions in drug discovery, molecular modeling, and logistics. Companies offered cloud-based quantum access for pandemic-related research, boosting awareness and adoption. This shift emphasized quantum computing's strategic value, prompting increased investments and positioning it as a resilient technology for future global challenges.

The trapped ions segment is expected to be the largest during the forecast period

The trapped ions segment is expected to account for the largest market share during the forecast period as their precise control enables scalable architectures and parallel processing, accelerating algorithm execution and reducing error rates. Innovations like the "enchilada trap" and microwave-driven gates enhance performance while lowering power dissipation. These advancements position trapped ions as a cornerstone for building fault-tolerant quantum systems, driving commercial viability and attracting investments across sectors like cryptography, simulation, and optimization.

The cryptography segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the cryptography segment is predicted to witness the highest growth rate, because quantum systems threaten classical encryption, industries are investing in post-quantum cryptography and Quantum Key Distribution (QKD) to safeguard data. This urgency accelerates innovation, funding, and collaboration across cybersecurity, finance, and defense sectors. The cryptography segment not only enhances quantum computing's relevance but also positions it as a critical enabler of next-generation security infrastructure, fostering long-term market expansion.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to strong government support, increasing research investments, and a growing tech-savvy population. Countries like China, Japan, and India are heavily investing in quantum technologies for applications in cybersecurity, healthcare, and finance. Collaborations between academic institutions and tech companies are fostering innovation, while the rising demand for high-performance computing solutions fuels market growth. This momentum is positioning Asia Pacific as a global hub for quantum computing development.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to robust investments from tech giants, government initiatives, and a thriving startup ecosystem. The region's advanced research infrastructure and collaboration between academia and industry are accelerating innovation. Applications across sectors like healthcare, finance, and cybersecurity are expanding, enabling faster data processing and enhanced problem-solving capabilities. This transformative technology is fostering competitive advantage and positioning North America as a leader in quantum innovation and commercialization.

Key players in the market

Some of the key players profiled in the Quantum Computing Market include IBM, Google (Alphabet Inc.), Microsoft, Intel Corporation, D-Wave Systems, Rigetti Computing, IonQ, Honeywell Quantum Solutions, Alibaba Group, Baidu Inc., Zapata Computing, Xanadu, QC Ware, PsiQuantum, Fujitsu, Toshiba, Quantinuum, Atos and Quantum Circuits Inc.

Key Developments:

In January 2025, Microsoft and OpenAI reaffirmed their strategic alliance-first forged in 2019-extending through 2030 and underpinned by mutual exclusivity and shared benefits. Microsoft retains exclusive access to OpenAI's intellectual property for integration into its flagship tools like Copilot, while OpenAI's API remains exclusively available via Azure and the Azure OpenAI Service.

In September 2024, Intel Corp. and Amazon Web Services (AWS) recently deepened their multi-year, multi-billion-dollar strategic collaboration. the collaboration brings together Intel's leading-edge chip fabrication strengths with AWS's cloud infrastructure leadership, aiming to drive innovation across AI applications, reduce costs, and support critical U.S. semiconductor manufacturing initiatives-all reinforcing each company's ecosystem and strategic long-term growth.

Components Covered:

  • Hardware
  • Software
  • Services

Deployment Modes Covered:

  • On-Premises
  • Cloud-Based

Technologies Covered:

  • Superconducting Qubits
  • Photonic Quantum Computing
  • Trapped Ions
  • Topological Qubits
  • Quantum Annealing

Applications Covered:

  • Simulation
  • Quantum Chemistry
  • Optimization
  • Cryptography
  • Machine Learning
  • Other Applications

End Users Covered:

  • Healthcare & Pharmaceuticals
  • Banking, Financial Services and Insurance (BFSI)
  • Transportation & Logistics
  • IT & Telecom
  • Aerospace & Defense
  • Chemicals
  • Energy & Power
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Quantum Computing Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Software
  • 5.4 Services

6 Global Quantum Computing Market, By Deployment Mode

  • 6.1 Introduction
  • 6.2 On-Premises
  • 6.3 Cloud-Based

7 Global Quantum Computing Market, By Technology

  • 7.1 Introduction
  • 7.2 Superconducting Qubits
  • 7.3 Photonic Quantum Computing
  • 7.4 Trapped Ions
  • 7.5 Topological Qubits
  • 7.6 Quantum Annealing

8 Global Quantum Computing Market, By Application

  • 8.1 Introduction
  • 8.2 Simulation
  • 8.3 Quantum Chemistry
  • 8.4 Optimization
  • 8.5 Cryptography
  • 8.6 Machine Learning
  • 8.7 Other Applications

9 Global Quantum Computing Market, By End User

  • 9.1 Introduction
  • 9.2 Healthcare & Pharmaceuticals
  • 9.3 Banking, Financial Services and Insurance (BFSI)
  • 9.4 Transportation & Logistics
  • 9.5 IT & Telecom
  • 9.6 Aerospace & Defense
  • 9.7 Chemicals
  • 9.8 Energy & Power
  • 9.9 Other End Users

10 Global Quantum Computing Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 IBM
  • 12.2 Google (Alphabet Inc.)
  • 12.3 Microsoft
  • 12.4 Intel Corporation
  • 12.5 D-Wave Systems
  • 12.6 Rigetti Computing
  • 12.7 IonQ
  • 12.8 Honeywell Quantum Solutions
  • 12.9 Alibaba Group
  • 12.10 Baidu Inc.
  • 12.11 Zapata Computing
  • 12.12 Xanadu
  • 12.13 QC Ware
  • 12.14 PsiQuantum
  • 12.15 Fujitsu
  • 12.16 Toshiba
  • 12.17 Quantinuum
  • 12.18 Atos
  • 12.19 Quantum Circuits Inc.

List of Tables

  • Table 1 Global Quantum Computing Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Quantum Computing Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Quantum Computing Market Outlook, By Hardware (2024-2032) ($MN)
  • Table 4 Global Quantum Computing Market Outlook, By Software (2024-2032) ($MN)
  • Table 5 Global Quantum Computing Market Outlook, By Services (2024-2032) ($MN)
  • Table 6 Global Quantum Computing Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 7 Global Quantum Computing Market Outlook, By On-Premises (2024-2032) ($MN)
  • Table 8 Global Quantum Computing Market Outlook, By Cloud-Based (2024-2032) ($MN)
  • Table 9 Global Quantum Computing Market Outlook, By Technology (2024-2032) ($MN)
  • Table 10 Global Quantum Computing Market Outlook, By Superconducting Qubits (2024-2032) ($MN)
  • Table 11 Global Quantum Computing Market Outlook, By Photonic Quantum Computing (2024-2032) ($MN)
  • Table 12 Global Quantum Computing Market Outlook, By Trapped Ions (2024-2032) ($MN)
  • Table 13 Global Quantum Computing Market Outlook, By Topological Qubits (2024-2032) ($MN)
  • Table 14 Global Quantum Computing Market Outlook, By Quantum Annealing (2024-2032) ($MN)
  • Table 15 Global Quantum Computing Market Outlook, By Application (2024-2032) ($MN)
  • Table 16 Global Quantum Computing Market Outlook, By Simulation (2024-2032) ($MN)
  • Table 17 Global Quantum Computing Market Outlook, By Quantum Chemistry (2024-2032) ($MN)
  • Table 18 Global Quantum Computing Market Outlook, By Optimization (2024-2032) ($MN)
  • Table 19 Global Quantum Computing Market Outlook, By Cryptography (2024-2032) ($MN)
  • Table 20 Global Quantum Computing Market Outlook, By Machine Learning (2024-2032) ($MN)
  • Table 21 Global Quantum Computing Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 22 Global Quantum Computing Market Outlook, By End User (2024-2032) ($MN)
  • Table 23 Global Quantum Computing Market Outlook, By Healthcare & Pharmaceuticals (2024-2032) ($MN)
  • Table 24 Global Quantum Computing Market Outlook, By Banking, Financial Services and Insurance (BFSI) (2024-2032) ($MN)
  • Table 25 Global Quantum Computing Market Outlook, By Transportation & Logistics (2024-2032) ($MN)
  • Table 26 Global Quantum Computing Market Outlook, By IT & Telecom (2024-2032) ($MN)
  • Table 27 Global Quantum Computing Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 28 Global Quantum Computing Market Outlook, By Chemicals (2024-2032) ($MN)
  • Table 29 Global Quantum Computing Market Outlook, By Energy & Power (2024-2032) ($MN)
  • Table 30 Global Quantum Computing Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.