封面
市场调查报告书
商品编码
1787866

2032 年热电材料市场预测:按材料类型、温度范围、模组类型、形式、应用、最终用户和地区进行的全球分析

Thermoelectric Materials Market Forecasts to 2032 - Global Analysis By Material Type, Temperature Range, Module Type, Form, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球热电材料市场预计在 2025 年达到 8.6 亿美元,到 2032 年将达到 20.7 亿美元,预测期内的复合年增长率为 13.4%。

热电材料是一种先进的材料,它透过席贝克效应和珀尔帖效应将热能直接转换为电能,反之亦然。这些材料无需移动部件即可实现固体能量转换,为发电和冷却应用带来高可靠性和高效率。由于其独特的导热和导电性能,这些材料常用于汽车、航太和电子等能源采集。

废热回收系统需求不断成长

汽车、製造业和发电等行业会产生大量废热,这推动了人们对将这些损失的能量转化为可用电能的技术的兴趣。热电材料为能源回收提供了可靠、免维护的解决方案,非常适合整合到紧凑的固体系统中。随着全球能源效率标准日益严格,永续性目标也愈发宏伟,各公司纷纷采用废热回收技术来降低营运成本和排放,这进一步推动了对能够优化能源利用的先进热电材料的需求。

高性能材料难以取得

高效率的热电转换需要高ZT(热导率)的材料,而这些材料要么稀有、价格昂贵,要么难以大规模合成。高性能热电化合物中常用的元素,例如碲、铋和锗,要么稀有,要么容易受到供应链中断的影响。此外,加工这些材料并将其整合到可靠耐用的设备中也十分复杂,这给製造带来了挑战。这些限制阻碍了各行业的大规模应用,限制了成本效益,减缓了研发进度,最终限制了热电材料市场的成长潜力。

对行动和穿戴式装置的需求不断增长

健身追踪器和医疗感测器等穿戴式装置越来越依赖紧凑、节能的电源,而热电发电机凭藉其能够利用体热并将其转化为可用电能的能力,正逐渐成为一种智慧解决方案。柔性和微型热电材料的创新使其更容易融入服装和配件中。同时,日益增强的环保意识也推动了人们对永续技术的兴趣。物联网 (IoT) 和互联医疗设备的兴起加速了对持续、无需电池发电的需求,使热电材料成为穿戴式技术进步的前沿。

与其他能源回收技术的竞争

替代技术,例如有机朗肯迴圈、热交换器和相变材料,通常能够提供更高的效率、更低的成本或针对特定应用的更强的扩充性。这些成熟且广泛采用的系统优于热电解决方案,尤其是在性能和投资收益至关重要的大型工业装置中。此外,竞争技术的进步不断扩大性能差距。因此,儘管热电系统便携性、固态操作和低维护要求等优势,但业界仍不愿投资,这可能会限制其部署。

COVID-19的影响:

新冠疫情严重扰乱了热电材料市场。供应链中断、工厂关闭以及关键製造地区的劳动力短缺,阻碍了生产和材料供应。汽车和家电行业的需求疲软进一步减缓了成长。然而,资料中心和远距办公的普及刺激了IT和电讯对热电冷却器的需求,部分缓解了整体负面影响。由于工业活动的復苏和全球对能源效率的关注,市场目前正在復苏。

预测期内,碲化铋(Bi2Te3)市场预计将占据最大份额

预计碲化铋 (Bi2Te3) 将在预测期内占据最大的市场占有率,因为其在接近室温的温度下具有高效率,使其成为製冷、电子设备冷却和可携式发电等应用的理想选择。其卓越的热电性能,例如高席贝克係数和低热导率,正在推动其广泛应用。对紧凑、安静、可靠的固体冷却系统的需求日益增长,将继续推动碲化铋在热电材料市场的成长。

预计预测期内汽车产业将以最高的复合年增长率成长。

受能源效率和排放日益受到重视的推动,汽车产业预计将在预测期内实现最高成长率。热电发电机正越来越多地被整合到车辆中,将排气系统的废热转化为电能,从而提高整体燃油效率。此外,电动车和混合动力汽车受惠于热电模组的温度控管和电池冷却。永续出行的推动和日益严格的环境法规进一步加速了热电技术在汽车应用中的普及。

占比最大的地区:

由于工业化进程加快、汽车产量上升以及对节能技术的需求不断增长,预计亚太地区将在预测期内占据最大的市场占有率。中国、日本和韩国等国家正大力投资电子、汽车创新和可再生能源,以推动热电应用的发展。此外,政府对清洁能源的激励措施以及对先进材料的大量研发投入,也进一步促进了全部区域市场的扩张。

复合年增长率最高的地区:

预计北美地区将在预测期内实现最高的复合年增长率,这得益于汽车、航太和国防领域强劲的需求,而这些领域对能源效率和先进的温度控管至关重要。该地区受益于雄厚的科研资金、技术创新以及早期对能源采集解决方案的采用。对永续能源的日益关注,加上政府支持干净科技和废热回收系统的倡议,进一步推动了电子、医疗保健和工业製造等行业的市场成长。

免费客製化服务:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 对最多三家其他市场公司进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 二手研究资料
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

第五章全球热电材料市场(依材料类型)

  • 碲化铋(Bi2Te3)
  • 碲化铅(PbTe)
  • 硅锗(SiGe)
  • 方钴矿
  • 硅化镁
  • 其他材料类型

6. 全球热电材料市场(依温度范围)

  • 低温(300℃以下)
  • 中温(300℃~600℃)
  • 高温(超过600°C)

7. 全球热电材料市场(依模组类型)

  • 单级
  • 多级

第八章全球热电材料市场(按类型)

  • 体热电
  • 薄膜
  • 奈米结构热电材料

第九章全球热电材料市场(按应用)

  • 废热回收
  • 发电
  • 能源采集
  • 冷却和冷藏
  • 其他用途

第 10 章全球热电材料市场(依最终用户)

  • 通讯
  • 产业
  • 航太和国防
  • 家电
  • 卫生保健
  • 其他最终用户

第 11 章全球热电材料市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十二章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十三章:企业概况

  • Ferrotec Holdings Corporation
  • Custom Thermoelectric LLC
  • Laird Thermal Systems
  • Phononic, Inc.
  • Gentherm Inc.
  • Thermonamic Electronics Corp. Ltd.
  • Coherent Corp.
  • TE Technology, Inc.
  • Kyocera Corporation
  • Evident Thermoelectrics
  • Komatsu Ltd.
  • TEC Microsystems GmbH
  • Global Power Technologies Inc.
  • European Thermodynamics Limited
  • CUI Devices
Product Code: SMRC30131

According to Stratistics MRC, the Global Thermoelectric Materials Market is accounted for $0.86 billion in 2025 and is expected to reach $2.07 billion by 2032 growing at a CAGR of 13.4% during the forecast period. Thermoelectric materials are advanced substances that convert heat energy directly into electrical energy and vice versa through the Seebeck and Peltier effects. These materials enable solid-state energy conversion without moving parts, making them highly reliable and efficient for power generation and cooling applications. They are commonly used in waste heat recovery, refrigeration, and energy harvesting across industries such as automotive, aerospace, and electronics due to their unique thermal and electrical conductivity properties.

Market Dynamics:

Driver:

Rising demand for waste heat recovery systems

Industries such as automotive, manufacturing, and power generation produce vast amounts of waste heat, leading to increased interest in technologies that can convert this lost energy into usable electricity. Thermoelectric materials offer a reliable and maintenance-free solution for energy recovery, making them ideal for integration into compact, solid-state systems. As global energy efficiency standards tighten and sustainability goals become more aggressive, companies are adopting waste heat recovery to reduce operational costs and emissions, further boosting demand for advanced thermoelectric materials that can optimize energy use.

Restraint:

Limited availability of high-performance materials

Efficient thermoelectric conversion requires materials with a high figure of merit (ZT), which are often rare, expensive, or difficult to synthesize at scale. Elements like tellurium, bismuth, and germanium commonly used in high-performance thermoelectric compounds are either scarce or subject to supply chain disruptions. Additionally, the complexity of processing and integrating these materials into reliable, durable devices poses manufacturing challenges. These limitations hinder mass adoption across industries, restrict cost-effectiveness, and slow down research and development efforts, ultimately constraining the growth potential of the thermoelectric materials market.

Opportunity:

Growing demand for portable and wearable devices

Wearable devices such as fitness trackers and medical sensors increasingly rely on compact, energy-efficient power sources, with thermoelectric generators emerging as a smart solution thanks to their ability to harness body heat and convert it into usable electricity. Innovations in flexible, miniaturized thermoelectric materials have made it easier to embed them into garments and accessories. At the same time, growing environmental awareness is driving interest in sustainable technologies. As the Internet of Things (IoT) and connected healthcare devices become more widespread, the need for constant, battery-free power harvesting is accelerating, placing thermoelectric materials at the forefront of wearable tech advancements.

Threat:

Competition from other energy recovery technologies

Alternative technologies such as organic Rankine cycles, heat exchangers, and phase change materials often offer higher efficiency, lower costs, or better scalability for specific applications. These mature and widely adopted systems overshadow thermoelectric solutions, especially in large-scale industrial setups where performance and return on investment are critical. Moreover, advancements in competing technologies continue to widen the performance gap. As a result, industries may hesitate to invest in thermoelectric systems, limiting their deployment despite their advantages in portability, solid-state operation, and low maintenance requirements.

Covid-19 Impact:

The COVID-19 pandemic significantly disrupted the thermoelectric materials market. Supply chain disruptions, factory closures, and labor shortages in key manufacturing regions hindered production and material availability. Reduced demand from the automotive and consumer electronics sectors further slowed growth. However, increased adoption of data centers and remote work spurred demand for thermoelectric coolers in IT and telecom, partially mitigating the overall negative impact. The market is now recovering, driven by renewed industrial activity and a global focus on energy efficiency.

The bismuth telluride (Bi2Te3) segment is expected to be the largest during the forecast period

The bismuth telluride (Bi2Te3) segment is expected to account for the largest market share during the forecast period, due to its high efficiency at near-room temperatures, making it ideal for applications in refrigeration, cooling of electronic devices, and portable power generation. Its excellent thermoelectric properties, including high Seebeck coefficient and low thermal conductivity, drive its widespread use. The increasing demand for compact, silent, and reliable solid-state cooling systems continues to boost the growth of bismuth telluride in the thermoelectric materials market.

The automotive segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive segment is predicted to witness the highest growth rate, due to the growing emphasis on energy efficiency and emission reduction. Thermoelectric generators are increasingly integrated into vehicles to convert waste heat from exhaust systems into electricity, improving overall fuel efficiency. Additionally, electric and hybrid vehicles benefit from thermoelectric modules for thermal management and battery cooling. The push for sustainable mobility and stricter environmental regulations further accelerates thermoelectric adoption in automotive applications.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to rapid industrialization, increasing automotive production, and rising demand for energy-efficient technologies. Countries like China, Japan, and South Korea are investing heavily in electronics, automotive innovation, and renewable energy, driving thermoelectric applications. Additionally, government incentives for clean energy and significant R&D investments in advanced materials further contribute to the market's expansion across the region.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to strong demand in automotive, aerospace, and defense sectors, where energy efficiency and advanced thermal management are critical. The region benefits from robust research funding, technological innovation, and early adoption of energy-harvesting solutions. Growing interest in sustainable energy, coupled with government initiatives supporting clean technologies and waste heat recovery systems, further fuels market growth across industries such as electronics, healthcare, and industrial manufacturing.

Key players in the market

Some of the key players in Thermoelectric Materials Market include Ferrotec Holdings Corporation, Custom Thermoelectric LLC, Laird Thermal Systems, Phononic, Inc., Gentherm Inc., Thermonamic Electronics Corp. Ltd., Coherent Corp., TE Technology, Inc., Kyocera Corporation, Evident Thermoelectrics, Komatsu Ltd., TEC Microsystems GmbH, Global Power Technologies Inc., European Thermodynamics Limited, and CUI Devices.

Key Developments:

In March 2024, Hach introduced the new BioTector B7000 Online ATP Monitoring System for real-time detection of microbial contamination in water treatment processes. It provides rapid results in 5-10 minutes.

In March 2024, Thermo Fisher launched the new Dionex Inuvion Ion Chromatography system designed for simplified and versatile ion analysis for environmental, industrial and municipal water testing labs.

In February 2024, Thermo Fisher announced the launch of its 'Make in India' Class 1 analyser-based Continuous Ambient Air Quality Monitoring System (CAAQMS) to support India's environmental monitoring efforts.

Material Types Covered:

  • Bismuth Telluride (Bi2Te3)
  • Lead Telluride (PbTe)
  • Silicon-Germanium (SiGe)
  • Skutterudites
  • Magnesium Silicide
  • Other Material Types

Temperature Ranges Covered:

  • Low Temperature (Below 300°C)
  • Medium Temperature (300°C to 600°C)
  • High Temperature (Above 600°C)

Module Types Covered:

  • Single-Stage
  • Multi-Stage

Forms Covered:

  • Bulk Thermoelectric
  • Thin Films
  • Nanostructured Thermoelectric

Applications Covered:

  • Waste Heat Recovery
  • Power Generation
  • Energy Harvesting
  • Cooling & Refrigeration
  • Other Applications

End Users Covered:

  • Automotive
  • Telecommunications
  • Industrial
  • Aerospace & Defense
  • Consumer Electronics
  • Healthcare
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Thermoelectric Materials Market, By Material Type

  • 5.1 Introduction
  • 5.2 Bismuth Telluride (Bi2Te3)
  • 5.3 Lead Telluride (PbTe)
  • 5.4 Silicon-Germanium (SiGe)
  • 5.5 Skutterudites
  • 5.6 Magnesium Silicide
  • 5.7 Other Material Types

6 Global Thermoelectric Materials Market, By Temperature Range

  • 6.1 Introduction
  • 6.2 Low Temperature (Below 300°C)
  • 6.3 Medium Temperature (300°C to 600°C)
  • 6.4 High Temperature (Above 600°C)

7 Global Thermoelectric Materials Market, By Module Type

  • 7.1 Introduction
  • 7.2 Single-Stage
  • 7.3 Multi-Stage

8 Global Thermoelectric Materials Market, By Form

  • 8.1 Introduction
  • 8.2 Bulk Thermoelectric
  • 8.3 Thin Films
  • 8.4 Nanostructured Thermoelectric

9 Global Thermoelectric Materials Market, By Application

  • 9.1 Introduction
  • 9.2 Waste Heat Recovery
  • 9.3 Power Generation
  • 9.4 Energy Harvesting
  • 9.5 Cooling & Refrigeration
  • 9.6 Other Applications

10 Global Thermoelectric Materials Market, By End User

  • 10.1 Introduction
  • 10.2 Automotive
  • 10.3 Telecommunications
  • 10.4 Industrial
  • 10.5 Aerospace & Defense
  • 10.6 Consumer Electronics
  • 10.7 Healthcare
  • 10.8 Other End Users

11 Global Thermoelectric Materials Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Ferrotec Holdings Corporation
  • 13.2 Custom Thermoelectric LLC
  • 13.3 Laird Thermal Systems
  • 13.4 Phononic, Inc.
  • 13.5 Gentherm Inc.
  • 13.6 Thermonamic Electronics Corp. Ltd.
  • 13.7 Coherent Corp.
  • 13.8 TE Technology, Inc.
  • 13.9 Kyocera Corporation
  • 13.10 Evident Thermoelectrics
  • 13.11 Komatsu Ltd.
  • 13.12 TEC Microsystems GmbH
  • 13.13 Global Power Technologies Inc.
  • 13.14 European Thermodynamics Limited
  • 13.15 CUI Devices

List of Tables

  • Table 1 Global Thermoelectric Materials Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Thermoelectric Materials Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 3 Global Thermoelectric Materials Market Outlook, By Bismuth Telluride (Bi2Te3) (2024-2032) ($MN)
  • Table 4 Global Thermoelectric Materials Market Outlook, By Lead Telluride (PbTe) (2024-2032) ($MN)
  • Table 5 Global Thermoelectric Materials Market Outlook, By Silicon-Germanium (SiGe) (2024-2032) ($MN)
  • Table 6 Global Thermoelectric Materials Market Outlook, By Skutterudites (2024-2032) ($MN)
  • Table 7 Global Thermoelectric Materials Market Outlook, By Magnesium Silicide (2024-2032) ($MN)
  • Table 8 Global Thermoelectric Materials Market Outlook, By Other Material Types (2024-2032) ($MN)
  • Table 9 Global Thermoelectric Materials Market Outlook, By Temperature Range (2024-2032) ($MN)
  • Table 10 Global Thermoelectric Materials Market Outlook, By Low Temperature (Below 300°C) (2024-2032) ($MN)
  • Table 11 Global Thermoelectric Materials Market Outlook, By Medium Temperature (300°C to 600°C) (2024-2032) ($MN)
  • Table 12 Global Thermoelectric Materials Market Outlook, By High Temperature (Above 600°C) (2024-2032) ($MN)
  • Table 13 Global Thermoelectric Materials Market Outlook, By Module Type (2024-2032) ($MN)
  • Table 14 Global Thermoelectric Materials Market Outlook, By Single-Stage (2024-2032) ($MN)
  • Table 15 Global Thermoelectric Materials Market Outlook, By Multi-Stage (2024-2032) ($MN)
  • Table 16 Global Thermoelectric Materials Market Outlook, By Form (2024-2032) ($MN)
  • Table 17 Global Thermoelectric Materials Market Outlook, By Bulk Thermoelectric (2024-2032) ($MN)
  • Table 18 Global Thermoelectric Materials Market Outlook, By Thin Films (2024-2032) ($MN)
  • Table 19 Global Thermoelectric Materials Market Outlook, By Nanostructured Thermoelectric (2024-2032) ($MN)
  • Table 20 Global Thermoelectric Materials Market Outlook, By Application (2024-2032) ($MN)
  • Table 21 Global Thermoelectric Materials Market Outlook, By Waste Heat Recovery (2024-2032) ($MN)
  • Table 22 Global Thermoelectric Materials Market Outlook, By Power Generation (2024-2032) ($MN)
  • Table 23 Global Thermoelectric Materials Market Outlook, By Energy Harvesting (2024-2032) ($MN)
  • Table 24 Global Thermoelectric Materials Market Outlook, By Cooling & Refrigeration (2024-2032) ($MN)
  • Table 25 Global Thermoelectric Materials Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 26 Global Thermoelectric Materials Market Outlook, By End User (2024-2032) ($MN)
  • Table 27 Global Thermoelectric Materials Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 28 Global Thermoelectric Materials Market Outlook, By Telecommunications (2024-2032) ($MN)
  • Table 29 Global Thermoelectric Materials Market Outlook, By Industrial (2024-2032) ($MN)
  • Table 30 Global Thermoelectric Materials Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 31 Global Thermoelectric Materials Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 32 Global Thermoelectric Materials Market Outlook, By Healthcare (2024-2032) ($MN)
  • Table 33 Global Thermoelectric Materials Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.