封面
市场调查报告书
商品编码
1803069

2032 年风力发电机叶片市场预测:按材料、叶片类型、安装、製造流程、应用、最终用户和地区进行的全球分析

Wind Turbine Blade Market Forecasts to 2032 - Global Analysis By Material (Glass Fiber, Carbon Fiber, Hybrid Composites, and Other Materials), Blade Type, Installation, Manufacturing Process, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球风力发电机叶片市场预计在 2025 年达到 458.9 亿美元,到 2032 年将达到 2,738.7 亿美元,预测期内的复合年增长率为 29.07%。

风力发电机叶片是符合空气动力学设计的零件,用于利用风力发电并将其转化为机械动态进行发电。这些叶片采用碳纤维、玻璃纤维和先进复合材料等坚固而轻质的材料製成,并针对效率和性能进行了最佳化。叶片的尺寸、结构和材料选择对于决定陆上和离岸风力发电机的发电量、使用寿命和可靠性起着关键作用。

据全球风力发电理事会(GWEC)称,中国连续六年在年度离岸风电开发方面处于领先地位,预计2023年将有630万千瓦的离岸风电上线。

全球对可再生能源的需求不断增长

随着人们对气候变迁的担忧日益加剧,世界各国正加速向可再生能源转型。风电凭藉其扩充性和低环境影响,已成为此转型的重要支柱。扶持政策、全球气候变迁承诺以及财政奖励正在推动风力发电投资。随着风力发电场的扩张,对能源产出至关重要的风力发电机叶片的需求也不断增长。叶片设计和材料的创新正在提升其性能和可靠性。全球清洁能源的势头是市场成长的主要催化剂。

复杂的回收和处置挑战

虽然风力发电具有永续,但涡轮叶片在使用后的处理却面临着巨大的挑战。其复合材料结构通常含有玻璃纤维和树脂,使得回收既困难又昂贵。传统的处理方法,例如掩埋和焚烧,也构成了环境挑战。缺乏标准化的回收系统和高昂的处理成本限制了回收的进展。关于叶片废弃物管理的模糊规定进一步加剧了问题的复杂性。这些因素阻碍了市场的长期永续性和扩张。

将智慧感测器与数位双胞胎相集成

智慧感测器和数数位双胞胎技术正在改变叶片的维护和性能优化。嵌入式感测器即时监测应力、振动和环境条件。数位双胞胎可以模拟叶片行为,并预测磨损和潜在故障的发生。这些工具有助于减少停机时间并延长叶片寿命。它们还能帮助製造商和营运商进行数据驱动的决策。随着数位解决方案的普及,它们将成为推动市场发展的强大槓桿。

来自可再生能源替代品的竞争

儘管风电发展迅猛,但它正面临来自太阳能和水力等其他可再生能源日益激烈的竞争。尤其是太阳能,它具有成本低廉、易于在不同地区部署的优势。能源储存的进步也提高了间歇性电源的可行性。这种多元化发展可能会将投资从风电基础设施转移。区域偏好和资源可用性进一步影响能源选择。这些竞争压力可能会威胁到风力发电机叶片市场的主导地位。

COVID-19的影响:

疫情扰乱了供应链,延误了涡轮叶片的生产和安装。劳动力短缺和停工导致市场活动暂时停滞。然而,这场危机凸显了建立具有韧性和永续的能源系统的重要性。各国政府采取了绿色復苏倡议,优先投资可再生能源。随着疫情恢復正常,风发电工程也以新的紧迫感重启。新冠疫情最终强化了风电的战略重要性,并支持了市场的长期成长。

预计玻璃纤维市场在预测期内将占据最大份额

预计玻璃纤维领域将在预测期内占据最大的市场占有率,这得益于其较高的强度重量比、耐腐蚀性和成本效益。新兴趋势包括混合复合材料设计和自动化製造技术,这些技术可提高扩充性和效能。树脂灌注和模组化叶片製造技术的进步提高了叶片的耐用性并缩短了製造时间。可回收热塑性复合材料和人工智慧品管系统等关键技术发展正日益普及。这些技术创新正在加强玻璃纤维在高效大规模风电部署中的作用。

预计公共产业规模部分在预测期内将以最高复合年增长率成长

公用事业规模风电领域预计将在预测期内实现最高成长率,这得益于其能够提供大容量、併网的可再生能源。模组化设计、碳纤维增强和气动优化等先进叶片技术,使更长、更有效率的叶片能够适用于更大的风力涡轮机。新兴趋势包括人工智慧驱动的预测性维护以及用于效能监控的数位双胞胎整合。浮体式海上平台和超长叶轮等关键发展正在拓展部署可能性。政府奖励和脱碳目标正在进一步加速公共产业规模风电的采用,以巩固其作为风电产业成长引擎的地位。

占比最大的地区:

预计亚太地区将在预测期内占据最大的市场占有率,这得益于多种因素,包括雄心勃勃的国家可再生能源目标,尤其是中国和印度。技术进步是关键,主要趋势是使用碳纤维等先进复合复合材料製造更长、更轻的叶片,以提高效率和电力输出,尤其是在低风力范围内。另一个新兴趋势是向大型离岸风力发电计划转变,这需要更大、更耐用的叶片。此外,关键发展涉及政府激励措施,如有价上网电价和补贴,透过刺激投资和国内生产来加强整个供应链,从而推动市场成长。

复合年增长率最高的地区:

预计北美在预测期内的复合年增长率最高。这得归功于强而有力的政府政策,例如《美国通膨削减法案》,该法案为国内製造业和风电部署提供扣除额。这导致投资激增,并促进了供应链本地化。新兴趋势包括离岸风力发电计划的快速扩张(尤其是在东海岸),以及老化陆上风电场的改造。技术开发的一大重点是使用碳纤维和混合复合复合材料製造更长、更先进的叶片,从而提高效率并降低能源成本,使风电比以往更具竞争力。

免费客製化服务:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 全面分析其他市场参与者(最多 3 家公司)
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 二手研究资料
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球风力发电机叶片市场(依材料)

  • 玻璃纤维
  • 碳纤维
  • 混合复合材料
  • 其他成分

6. 全球风力发电机叶片市场(依叶片类型)

  • 模组化刀片
  • 混合刀片
  • 分割刀片

7. 全球风力发电机叶片市场(依安装量)

  • 陆上
  • 海上

8. 全球风力发电机叶片市场(依製造流程)

  • 预浸料
  • 真空辅助树脂转注成形(VARTM)
  • 手工积层

9. 全球风力发电机叶片市场(按应用)

  • 公用事业规模
  • 产业
  • 商业的
  • 其他用途

第 10 章全球风力发电机叶片市场(按最终用户)

  • 能源和电力公司
  • 独立电力生产商
  • 实用工具
  • 其他最终用户

第 11 章全球风力发电机叶片市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十二章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十三章:企业概况

  • Vestas Wind Systems A/S
  • Gurit
  • Siemens Gamesa Renewable Energy
  • Sany Renewable Energy
  • TPI Composites Inc.
  • Acciona Energia
  • Nordex SE
  • Shanghai Electric
  • Enercon GmbH
  • Sinoma Wind Power Blade Co. Ltd.
  • Goldwind Science & Technology Co., Ltd.
  • Inox Wind Limited
  • Envision Energy
  • Suzlon Energy Limited
  • Mingyang Smart Energy Group Ltd.
Product Code: SMRC30594

According to Stratistics MRC, the Global Wind Turbine Blade Market is accounted for $45.89 billion in 2025 and is expected to reach $273.87 billion by 2032 growing at a CAGR of 29.07% during the forecast period. A wind turbine blade is an aerodynamically crafted component that harnesses wind energy and transforms it into mechanical power for electricity generation. Constructed from strong yet lightweight materials like carbon fiber, fiberglass, or advanced composites, these blades are optimized to enhance efficiency and performance. The choice of size, structure, and materials plays a crucial role in determining the energy production, lifespan, and reliability of wind turbines across onshore and offshore environments.

According to the Global Wind Energy Council (GWEC), China leads in annual offshore wind development for the sixth consecutive year, with 6.3 GW commissioned in 2023.

Market Dynamics:

Driver:

Rising global demand for renewable energy

As climate concerns intensify, countries worldwide are accelerating their shift to renewable energy. Wind power has become a key pillar of this transition due to its scalability and minimal environmental impact. Supportive policies, global climate commitments, and financial incentives are boosting wind energy investments. Wind turbine blades, essential for energy generation, are seeing increased demand as wind farms expand. Innovations in blade design and materials are improving performance and reliability. This global momentum toward clean energy is a major catalyst for market growth.

Restraint:

Complex recycling and disposal challenges

While wind energy is sustainable, turbine blades present significant end-of-life disposal issues. Their composite construction often involving fiberglass and resins makes recycling difficult and costly. Traditional disposal methods like land filling and incineration raise environmental concerns. The absence of standardized recycling systems and high processing costs limit progress. Regulatory ambiguity around blade waste management adds further complexity. These factors collectively hinder the market's long-term sustainability and expansion.

Opportunity:

Integration of smart sensors and digital twins

Smart sensors and digital twin technologies are transforming blade maintenance and performance optimization. Embedded sensors monitor real-time stress, vibration, and environmental conditions. Digital twins simulate blade behavior, predicting wear and potential failures before they occur. These tools help reduce operational downtime and extend blade service life. They also enable data-driven decisions for manufacturers and operators. As digital solutions gain traction, they offer a powerful avenue for market advancement.

Threat:

Competition from alternative renewable energy sources

Despite its growth, wind energy faces increasing competition from other renewables like solar and hydro. Solar power, in particular, benefits from falling costs and easier deployment across diverse geographies. Advances in energy storage are also enhancing the viability of intermittent sources. This diversification may redirect investments away from wind infrastructure. Regional preferences and resource availability further influence energy choices. Such competitive pressures could challenge the wind turbine blade market's dominance.

Covid-19 Impact:

The pandemic disrupted supply chains and delayed turbine blade production and installations. Workforce shortages and lockdowns temporarily slowed market activity. However, the crisis emphasized the need for resilient, sustainable energy systems. Governments responded with green recovery initiatives, prioritizing renewable investments. As conditions normalized, wind energy projects resumed with renewed urgency. COVID-19 ultimately reinforced the strategic importance of wind power, supporting long-term market growth.

The glass fiber segment is expected to be the largest during the forecast period

The glass fiber segment is expected to account for the largest market share during the forecast period, due to its high strength-to-weight ratio, corrosion resistance, and cost efficiency. Emerging trends include hybrid composite designs and automated manufacturing techniques that enhance scalability and performance. Technological advancements in resin infusion and modular blade construction are improving durability and reducing production time. Key developments such as recyclable thermoplastic composites and AI-driven quality control systems are gaining traction. These innovations collectively reinforce glass fiber's role in enabling efficient, large-scale wind energy deployment.

The utility-scale segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the utility-scale segment is predicted to witness the highest growth rate, due to their ability to deliver high-capacity, grid-integrated renewable energy. Advanced blade technologies such as modular designs, carbon fiber reinforcements, and aerodynamic optimization enable longer, more efficient blades suited for large turbines. Emerging trends include AI-powered predictive maintenance and digital twin integration for performance monitoring. Key developments like floating offshore platforms and ultra-long rotor blades are expanding deployment possibilities. Government incentives and decarbonization targets further accelerate utility-scale adoption, solidifying its role as a growth engine in the wind sector.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by a confluence of factors, including ambitious national renewable energy targets, particularly in China and India. Technological advancements are key, with a major trend towards manufacturing longer, lighter blades using advanced composites like carbon fiber to enhance efficiency and power output, especially in low-wind areas. Emerging trends also include a significant shift towards large-scale offshore wind projects, which demand bigger and more durable blades. Furthermore, key developments involve government incentives, such as feed-in tariffs and subsidies, which are stimulating investment and domestic production, thereby bolstering the entire supply chain and driving market growth.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, fuelled by robust government policies, such as the U.S. Inflation Reduction Act, which provides tax credits for domestic manufacturing and wind deployment. This has created a surge in investment and a push for localized supply chains. Emerging trends include the rapid expansion of offshore wind projects, particularly on the East Coast, and the repowering of aging onshore wind farms. Key technological developments focus on the production of longer, more advanced blades using carbon fiber and hybrid composites to increase efficiency and lower the cost of energy, making wind power more competitive with traditional sources.

Key players in the market

Some of the key players in Wind Turbine Blade Market include Vestas Wind Systems A/S, Gurit, Siemens Gamesa Renewable Energy, Sany Renewable Energy, TPI Composites Inc., Acciona Energia, Nordex SE, Shanghai Electric, Enercon GmbH, Sinoma Wind Power Blade Co. Ltd., Goldwind Science & Technology Co., Ltd., Inox Wind Limited, Envision Energy, Suzlon Energy Limited, and Mingyang Smart Energy Group Ltd.

Key Developments:

In June 2025, Gurit and medmix are pleased to announce a new collaboration focused on driving sustainability and innovation across dispensing and bonding solutions. Together, medmix and Gurit are uniting their capabilities to provide environmentally responsible, high-performance solutions for customers across industries. This collaboration reflects both companies' deep commitment to innovation, quality, and reducing environmental impact.

In May 2025, Vestas and LM Wind Power are pleased to announce a deal that will see LM Wind Power's blade factory in Goleniow near Szczecin, Poland, become part of Vestas' growing European manufacturing setup for an undisclosed amount paid by Vestas to LM Wind Power. The factory produces blades for Vestas' onshore wind solutions and will continue to play a key role in meeting Poland's and the rest of Europe's growing energy needs.

In May 2023, Siemens Gamesa and Repsol have strengthened their commercial ties with the signing of two new contracts for the supply of 40 SG 5.0-145 onshore turbines for six wind farms in Spain, totaling 200 MW. Following this agreement, Repsol will have eight wind farms employing Siemens Gamesa technology, reaching a total of 324 MW.

Materials Covered:

  • Glass Fiber
  • Carbon Fiber
  • Hybrid Composites
  • Other Materials

Blade Types Covered:

  • Modular Blades
  • Hybrid Blades
  • Split Blades

Installations Covered:

  • Onshore
  • Offshore

Manufacturing Processes Covered:

  • Prepreg
  • Vacuum Assisted Resin Transfer Molding (VARTM)
  • Hand Lay-up

Applications Covered:

  • Utility-Scale
  • Industrial
  • Commercial
  • Other Applications

End Users Covered:

  • Energy & Power Companies
  • Independent Power Producers
  • Utilities
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Wind Turbine Blade Market, By Material

  • 5.1 Introduction
  • 5.2 Glass Fiber
  • 5.3 Carbon Fiber
  • 5.4 Hybrid Composites
  • 5.5 Other Materials

6 Global Wind Turbine Blade Market, By Blade Type

  • 6.1 Introduction
  • 6.2 Modular Blades
  • 6.3 Hybrid Blades
  • 6.4 Split Blades

7 Global Wind Turbine Blade Market, By Installation

  • 7.1 Introduction
  • 7.2 Onshore
  • 7.3 Offshore

8 Global Wind Turbine Blade Market, By Manufacturing Process

  • 8.1 Introduction
  • 8.2 Prepreg
  • 8.3 Vacuum Assisted Resin Transfer Molding (VARTM)
  • 8.4 Hand Lay-up

9 Global Wind Turbine Blade Market, By Application

  • 9.1 Introduction
  • 9.2 Utility-Scale
  • 9.3 Industrial
  • 9.4 Commercial
  • 9.5 Other Applications

10 Global Wind Turbine Blade Market, By End User

  • 10.1 Introduction
  • 10.2 Energy & Power Companies
  • 10.3 Independent Power Producers
  • 10.4 Utilities
  • 10.5 Other End Users

11 Global Wind Turbine Blade Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Vestas Wind Systems A/S
  • 13.2 Gurit
  • 13.3 Siemens Gamesa Renewable Energy
  • 13.4 Sany Renewable Energy
  • 13.5 TPI Composites Inc.
  • 13.6 Acciona Energia
  • 13.7 Nordex SE
  • 13.8 Shanghai Electric
  • 13.9 Enercon GmbH
  • 13.10 Sinoma Wind Power Blade Co. Ltd.
  • 13.11 Goldwind Science & Technology Co., Ltd.
  • 13.12 Inox Wind Limited
  • 13.13 Envision Energy
  • 13.14 Suzlon Energy Limited
  • 13.15 Mingyang Smart Energy Group Ltd.

List of Tables

  • Table 1 Global Wind Turbine Blade Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Wind Turbine Blade Market Outlook, By Material (2024-2032) ($MN)
  • Table 3 Global Wind Turbine Blade Market Outlook, By Glass Fiber (2024-2032) ($MN)
  • Table 4 Global Wind Turbine Blade Market Outlook, By Carbon Fiber (2024-2032) ($MN)
  • Table 5 Global Wind Turbine Blade Market Outlook, By Hybrid Composites (2024-2032) ($MN)
  • Table 6 Global Wind Turbine Blade Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 7 Global Wind Turbine Blade Market Outlook, By Blade Type (2024-2032) ($MN)
  • Table 8 Global Wind Turbine Blade Market Outlook, By Modular Blades (2024-2032) ($MN)
  • Table 9 Global Wind Turbine Blade Market Outlook, By Hybrid Blades (2024-2032) ($MN)
  • Table 10 Global Wind Turbine Blade Market Outlook, By Split Blades (2024-2032) ($MN)
  • Table 11 Global Wind Turbine Blade Market Outlook, By Installation (2024-2032) ($MN)
  • Table 12 Global Wind Turbine Blade Market Outlook, By Onshore (2024-2032) ($MN)
  • Table 13 Global Wind Turbine Blade Market Outlook, By Offshore (2024-2032) ($MN)
  • Table 14 Global Wind Turbine Blade Market Outlook, By Manufacturing Process (2024-2032) ($MN)
  • Table 15 Global Wind Turbine Blade Market Outlook, By Prepreg (2024-2032) ($MN)
  • Table 16 Global Wind Turbine Blade Market Outlook, By Vacuum Assisted Resin Transfer Molding (VARTM) (2024-2032) ($MN)
  • Table 17 Global Wind Turbine Blade Market Outlook, By Hand Lay-up (2024-2032) ($MN)
  • Table 18 Global Wind Turbine Blade Market Outlook, By Application (2024-2032) ($MN)
  • Table 19 Global Wind Turbine Blade Market Outlook, By Utility-Scale (2024-2032) ($MN)
  • Table 20 Global Wind Turbine Blade Market Outlook, By Industrial (2024-2032) ($MN)
  • Table 21 Global Wind Turbine Blade Market Outlook, By Commercial (2024-2032) ($MN)
  • Table 22 Global Wind Turbine Blade Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 23 Global Wind Turbine Blade Market Outlook, By End User (2024-2032) ($MN)
  • Table 24 Global Wind Turbine Blade Market Outlook, By Energy & Power Companies (2024-2032) ($MN)
  • Table 25 Global Wind Turbine Blade Market Outlook, By Independent Power Producers (2024-2032) ($MN)
  • Table 26 Global Wind Turbine Blade Market Outlook, By Utilities (2024-2032) ($MN)
  • Table 27 Global Wind Turbine Blade Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.