封面
市场调查报告书
商品编码
1813437

2032 年植物育种和 CRISPR 植物市场预测:按性状、作物类型、育种方法、技术、最终用户和地区进行的全球分析

Plant Breeding and CRISPR Plants Market Forecasts to 2032 - Global Analysis By Trait, Crop Type, Breeding Method, Technology, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球植物育种和 CRISPR 植物市场预计在 2025 年达到 187.6 亿美元,预计到 2032 年将达到 580.1 亿美元,预测期内的复合年增长率为 17.5%。

植物育种和 CRISPR 技术致力于提高作物的产量、韧性和对环境条件的适应性。传统育种依赖选择性育种,而 CRISPR-Cas9 透过修改选定的 DNA 区域提供精准的基因编辑。结合这些方法可以加快作物生长,减少化学投入,并增强粮食安全。这项技术创新促进了永续农业的发展,有助于满足日益增长的营养需求,同时应对病虫害和气候变迁等挑战。

美国太空总署在《自然食品》杂誌上发表的一项研究发现,高温室气体排放可能导致玉米产量到 2030 年减少 24%。

全球对产量、营养作物的需求不断增长

由于人口增长,全球粮食系统面临巨大压力,对高产量且营养丰富的作物的需求激增。农业相关人员越来越多地转向能够抵御环境压力和病虫害的抗逆性作物品种。 CRISPR 等尖端育种工具正在加速此类性状的开发,从而实现更精准、更有效率的作物改良。这些技术缩短了育种时间,提高了遗传准确性,使其具有大规模推广的吸引力。消费者对更健康食品选择的兴趣也推动了对营养作物品种的需求。随着粮食安全成为重中之重,全球对下一代植物遗传学的投资正日益增长。

小农户的认知和采用程度有限

许多农民缺乏可靠的资讯、培训和推广服务,无法理解先进的基因技术。低数位素养、语言障碍以及对生物技术创新的怀疑加剧了这种知识差距。此外,基于CRISPR的解决方案被认为复杂且成本高昂,阻碍了其推广,尤其是在以传统农业为主的地区。如果没有针对性的推广、全面的政策框架和基于社区的示范计划,CRISPR在提高作物抗逆性和生产力方面的变革潜力仍未得到充分利用。

对生物强化作物的需求不断增加

生物强化作物作为应对微量营养素缺乏和改善公众健康的策略解决方案,正受到全球关注。 CRISPR技术能够精准强化主食的营养成分,例如提高铁、锌和维生素的含量。这些创新技术正被纳入粮食援助计画、学校午餐和以健康为重点的农业政策中。代谢工程的进步使得在不影响产量或口感的情况下,更轻鬆地实现作物增产。随着人们对「隐性饥饿」认识的不断提高,生物强化正成为永续营养策略的重要支柱。生物技术创新与健康成果的结合,正在为该产业创造新的成长机会。

全球法规严格,核准延迟

基因改造作物的监管格局仍然碎片化,为开发者带来了不确定性,并减缓了市场发展。核准流程通常冗长且不一致,尤其是在跨国领域。围绕基因技术的社会担忧和伦理争议持续影响政策决策。在许多地区,缺乏统一的标准使商业化和贸易变得复杂。这些监管瓶颈增加了成本,并减缓了创新,尤其对规模较小的生物技术公司而言。如果没有更清晰、更有效率的核准途径,全球采用的步伐可能会受到严重阻碍。

COVID-19的影响

疫情扰乱了农业研究和供应链,推迟了基于CRISPR技术的作物的测试和监管审查。旅行限制和有限的线下培训限制了农民接触新技术的机会,尤其是在发展中地区。同时,这场危机凸显了对能够在逆境中稳定粮食系统的抗逆作物的需求。远距协作工具和数位农学平台有助于维持研究和推广工作。随着粮食不安全状况的蔓延,对营养丰富、易储存作物的需求不断增加。

预计在预测期内,抗除草剂部分将实现最大程度的成长。

由于在商业性农业中广泛使用,抗除草剂品种预计将在预测期内占据最大的市场份额。这些品种简化了杂草控制,减少了劳动力需求,并提高了整体生产力。 CRISPR 提高了抗除草剂性状的精准度,最大限度地减少了意外影响和环境风险。农民越来越多地种植这些作物以简化操作并提高盈利。多重抗性状以及与智慧喷洒系统的整合等创新技术正在获得越来越多的关注。除草剂抗性的经济和营运效益使其成为现代作物开发的关键性状。

预计生物技术公司部门在预测期内将以最高的复合年增长率成长。

生物技术公司预计将在预测期内实现最高成长率,这得益于其快速创新和部署先进基因编辑解决方案的能力。这些公司在利用基因组图谱和合成生物学开发复杂性状方面处于领先地位。与学术机构和农产品领导者的合作正在加速产品和市场的发展。强劲的投资流和良好的智慧财产权环境正在支持它们的扩张。生技公司也主导与监管机构沟通,并向大众宣传CRISPR的安全性。它们的敏捷性和技术专长将使其在竞争激烈的环境中保持成长。

比最大的地区

由于粮食需求不断增长以及政府对农业生物技术的支持,预计亚太地区将在预测期内占据最大的市场份额。中国和印度等主要经济体正大力投资CRISPR研究和作物现代化。该地区多样化的农业需求推动了基因编辑品种在谷物、蔬菜和豆类中的应用。官民合作关係和政策改革正在加速应用。育种计画的在地化以及使用母语与农民沟通正在提高农业参与度。

复合年增长率最高的地区:

由于强大的科学研究生态系统和先进的监管政策,北美预计将在预测期内实现最高的复合年增长率。该地区拥有领先的生物技术公司和大学,正在推动农业创新。在数位化农业平台的支持下,CRISPR 在作物和特种作物中的应用正在不断增长。人工智慧赋能的性状选择和精准表型分析等趋势正在重塑作物发展。与食品公司和运动营养品牌的合作正在推动对改良品种的需求。

提供免费客製化:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 对最多三家其他市场公司进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球植物育种和 CRISPR 植物市场(按性状)

  • 除草剂抗性
  • 抗压能力
  • 抗病性
  • 耐旱性
  • 产量提高
  • 营养强化
  • 改善颗粒尺寸
  • 耐温性

6. 全球植物育种和 CRISPR 植物市场(按作物类型)

  • 粮食
    • 玉米
    • 小麦
  • 油籽和豆类
    • 大豆
    • 棉布
    • 菜籽
  • 水果和蔬菜
  • 草坪和观赏植物
  • 药用作物
  • 经济作物
  • 香草和微型菜苗

7. 全球植物育种和 CRISPR 植物市场(按育种方法)

  • 标记辅助选择(MAS)
  • 杂交育种
  • 基因组选择
  • 极速育种
  • 分子育种

8. 全球植物育种和 CRISPR 植物市场(按技术)

  • 常规育种
  • 生物技术方法
  • CRISPR-Cas系统
  • 基因工程
  • 其他技术

9. 全球植物育种和 CRISPR 植物市场(按最终用户划分)

  • 商业农业
  • 生技公司
  • 研究机构
  • 种子公司
  • 其他最终用户

10. 全球植物育种和 CRISPR 植物市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章 公司概况

  • Bayer CropScience
  • Tropic Biosciences
  • Corteva Agriscience
  • Pairwise
  • Syngenta Group
  • Inari Agriculture
  • BASF Agricultural Solutions
  • Benson Hill
  • KWS SAAT SE & Co. KGaA
  • Enko Chem
  • Limagrain
  • DLF Seeds
  • Rijk Zwaan
  • Takii & Co., Ltd.
  • Sakata Seed Corporation
Product Code: SMRC30886

According to Stratistics MRC, the Global Plant Breeding and CRISPR Plants Market is accounted for $18.76 billion in 2025 and is expected to reach $58.01 billion by 2032 growing at a CAGR of 17.5% during the forecast period. Plant breeding and CRISPR technology focus on enhancing crops with better yield, resilience, and adaptability to environmental conditions. Conventional breeding depends on selective crossing, whereas CRISPR-Cas9 offers accurate genetic editing by modifying chosen DNA regions. By combining these approaches, crop development becomes faster, reduces chemical inputs, and strengthens food security. This innovation fosters sustainable agriculture, helping meet growing nutritional needs while tackling challenges of pests, diseases, and climate change.

According to a NASA study published in Nature Food, maize production could decline by 24% as early as 2030 under high greenhouse gas emissions.

Market Dynamics:

Driver:

Rising global demand for high-yield and nutritious crops

Global food systems are under mounting pressure as populations grow, prompting a surge in demand for crops that deliver both high productivity and improved nutrition. Agricultural stakeholders are increasingly turning to resilient crop varieties that can withstand environmental stressors and pests. Advanced breeding tools like CRISPR are accelerating the development of such traits, enabling more precise and efficient crop improvement. These technologies shorten breeding timelines and enhance genetic accuracy, making them attractive for large-scale deployment. Consumer interest in healthier food options is also fueling momentum for nutrient-rich crop varieties. As food security becomes a top priority, investment in next-gen plant genetics is gaining traction worldwide.

Restraint:

Limited awareness and adoption among small-scale farmers

Many farmers lack access to reliable information, training, and extension services that could demystify advanced genetic technologies. This knowledge gap is compounded by low digital literacy, language barriers, and scepticism toward biotech innovations. Additionally, the perceived complexity and cost of CRISPR-based solutions deter uptake, especially in regions where traditional farming practices dominate. Without targeted outreach, inclusive policy frameworks, and localized demonstration projects, the transformative potential of CRISPR in enhancing crop resilience and productivity remains underutilized.

Opportunity:

Rising demand for biofortified crops

Biofortified crops are gaining global attention as a strategic solution to combat micronutrient deficiencies and improve public health. CRISPR enables precise enhancement of nutritional content in staple foods, such as boosting iron, zinc, and vitamin levels. These innovations are being integrated into food aid programs, school meals, and health-focused agricultural policies. Advances in metabolic engineering are making it easier to enrich crops without compromising yield or taste. As awareness of "hidden hunger" grows, biofortification is emerging as a key pillar of sustainable nutrition strategies. The alignment of biotech innovation with health outcomes is opening new growth opportunities in this space.

Threat:

Stringent global regulations and approval delays

The regulatory landscape for gene-edited crops remains fragmented, creating uncertainty for developers and slowing market entry. Approval processes are often lengthy and inconsistent, especially across international borders. Public concerns and ethical debates around genetic technologies continue to influence policy decisions. In many regions, the absence of harmonized standards complicates commercialization and trade. These regulatory bottlenecks increase costs and delay innovation, particularly for smaller biotech firms. Without clearer and more efficient approval pathways, the pace of global adoption may be significantly hindered.

Covid-19 Impact

The pandemic disrupted agricultural research and supply chains, delaying trials and regulatory reviews for CRISPR-based crops. Restrictions on movement and in-person training limited farmers' exposure to new technologies, especially in developing regions. At the same time, the crisis underscored the need for resilient crops that can stabilize food systems under stress. Remote collaboration tools and digital agronomy platforms helped sustain research and outreach efforts. Demand for nutrient-dense, shelf-stable crops rose as food insecurity became more widespread.

The herbicide tolerance segment is expected to be the largest during the forecast period

The herbicide tolerance segment is expected to account for the largest market share during the forecast period, due to their widespread use in commercial agriculture. These varieties simplify weed control, reduce labor demands, and enhance overall productivity. CRISPR is improving the precision of herbicide resistance traits, minimizing unintended effects and environmental risks. Farmers are increasingly adopting these crops to streamline operations and boost profitability. Innovations such as multi-resistance traits and integration with smart spraying systems are gaining traction. The economic and operational advantages of herbicide tolerance make it a leading trait in modern crop development.

The biotech firms segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the biotech firms segment is predicted to witness the highest growth rate, driven by their ability to rapidly innovate and deploy advanced gene-editing solutions. These firms are at the forefront of developing complex traits through genome mapping and synthetic biology. Collaborations with academic institutions and agribusiness leaders are accelerating product development and market access. Strong investment flows and favourable intellectual property environments are supporting expansion. Biotech players are also leading efforts to engage regulators and educate the public on CRISPR safety. Their agility and technical expertise position them for sustained growth in a competitive landscape.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share fuelled by rising food demand and government support for agricultural biotechnology. Major economies like China and India are investing heavily in CRISPR research and crop modernization. The region's diverse agricultural needs are driving adoption of gene-edited varieties across grains, vegetables, and pulses. Public-private partnerships and policy reforms are helping accelerate deployment. Localization of breeding programs and farmer outreach in native languages are improving engagement.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to its strong research ecosystem and progressive regulatory stance. The region is home to leading biotech firms and universities driving agricultural innovation. CRISPR adoption is expanding across both commodity and specialty crops, supported by digital farming platforms. Trends like AI-powered trait selection and precision phenotyping are reshaping crop development. Partnerships with food companies and sports nutrition brands are boosting demand for enhanced varieties.

Key players in the market

Some of the key players profiled in the Plant Breeding and CRISPR Plants Market include Bayer CropScience, Tropic Biosciences, Corteva Agriscience, Pairwise, Syngenta Group, Inari Agriculture, BASF Agricultural Solutions, Benson Hill, KWS SAAT SE & Co. KGaA, Enko Chem, Limagrain, DLF Seeds, Rijk Zwaan, Takii & Co., Ltd., and Sakata Seed Corporation.

Key Developments:

In February 2025, KWS SAAT SE & Co. KGaA (Germany) introduced new combination varieties that combined the CONVISO SMART system with high Cercospora protection (CR+), solidifying its market position in the sugarbeet seed industry. These varieties were introduced in several European

markets, with further expansion planned.

In January 2025, Syngenta Vegetable Seeds, part of Syngenta Group (Switzerland) signed a global licensing partnership deal with Apricus Seeds (US), that gives Syngenta exclusive access to Apricus' melon, squash, and watermelon germplasm. This partnership enhanced Syngenta's cucurbits portfolio.

Traits Covered:

  • Herbicide Tolerance
  • Stress Tolerance
  • Disease Resistance
  • Drought Resistance
  • Yield Improvement
  • Nutritional Enhancement
  • Grain Size Enhancement
  • Temperature Tolerance

Crop Types Covered:

  • Cereals & Grains
  • Oilseeds & Pulses
  • Fruits & Vegetables
  • Turf & Ornamentals
  • Medicinal Crops
  • Cash Crops
  • Herbs & Microgreens

Breeding Methods Covered:

  • Marker-Assisted Selection (MAS)
  • Hybrid Breeding
  • Genomic Selection
  • Speed Breeding
  • Molecular Breeding

Technologies Covered:

  • Conventional Breeding
  • Biotechnological Methods
  • CRISPR-Cas Systems
  • Genetic Engineering
  • Other Technologies

End Users Covered:

  • Commercial Agriculture
  • Biotech Firms
  • Research Institutions
  • Seed Companies
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Plant Breeding and CRISPR Plants Market, By Trait

  • 5.1 Introduction
  • 5.2 Herbicide Tolerance
  • 5.3 Stress Tolerance
  • 5.4 Disease Resistance
  • 5.5 Drought Resistance
  • 5.6 Yield Improvement
  • 5.7 Nutritional Enhancement
  • 5.8 Grain Size Enhancement
  • 5.9 Temperature Tolerance

6 Global Plant Breeding and CRISPR Plants Market, By Crop Type

  • 6.1 Introduction
  • 6.2 Cereals & Grains
    • 6.2.1 Corn
    • 6.2.2 Wheat
    • 6.2.3 Rice
  • 6.3 Oilseeds & Pulses
    • 6.3.1 Soybean
    • 6.3.2 Cotton
    • 6.3.3 Canola
  • 6.4 Fruits & Vegetables
  • 6.5 Turf & Ornamentals
  • 6.6 Medicinal Crops
  • 6.7 Cash Crops
  • 6.8 Herbs & Microgreens

7 Global Plant Breeding and CRISPR Plants Market, By Breeding Method

  • 7.1 Introduction
  • 7.2 Marker-Assisted Selection (MAS)
  • 7.3 Hybrid Breeding
  • 7.4 Genomic Selection
  • 7.5 Speed Breeding
  • 7.6 Molecular Breeding

8 Global Plant Breeding and CRISPR Plants Market, By Technology

  • 8.1 Introduction
  • 8.2 Conventional Breeding
  • 8.3 Biotechnological Methods
  • 8.4 CRISPR-Cas Systems
  • 8.5 Genetic Engineering
  • 8.6 Other Technologies

9 Global Plant Breeding and CRISPR Plants Market, By End User

  • 9.1 Introduction
  • 9.2 Commercial Agriculture
  • 9.3 Biotech Firms
  • 9.4 Research Institutions
  • 9.5 Seed Companies
  • 9.6 Other End Users

10 Global Plant Breeding and CRISPR Plants Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Bayer CropScience
  • 12.2 Tropic Biosciences
  • 12.3 Corteva Agriscience
  • 12.4 Pairwise
  • 12.5 Syngenta Group
  • 12.6 Inari Agriculture
  • 12.7 BASF Agricultural Solutions
  • 12.8 Benson Hill
  • 12.9 KWS SAAT SE & Co. KGaA
  • 12.10 Enko Chem
  • 12.11 Limagrain
  • 12.12 DLF Seeds
  • 12.13 Rijk Zwaan
  • 12.14 Takii & Co., Ltd.
  • 12.15 Sakata Seed Corporation

List of Tables

  • Table 1 Global Plant Breeding and CRISPR Plants Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Plant Breeding and CRISPR Plants Market Outlook, By Trait (2024-2032) ($MN)
  • Table 3 Global Plant Breeding and CRISPR Plants Market Outlook, By Herbicide Tolerance (2024-2032) ($MN)
  • Table 4 Global Plant Breeding and CRISPR Plants Market Outlook, By Stress Tolerance (2024-2032) ($MN)
  • Table 5 Global Plant Breeding and CRISPR Plants Market Outlook, By Disease Resistance (2024-2032) ($MN)
  • Table 6 Global Plant Breeding and CRISPR Plants Market Outlook, By Drought Resistance (2024-2032) ($MN)
  • Table 7 Global Plant Breeding and CRISPR Plants Market Outlook, By Yield Improvement (2024-2032) ($MN)
  • Table 8 Global Plant Breeding and CRISPR Plants Market Outlook, By Nutritional Enhancement (2024-2032) ($MN)
  • Table 9 Global Plant Breeding and CRISPR Plants Market Outlook, By Grain Size Enhancement (2024-2032) ($MN)
  • Table 10 Global Plant Breeding and CRISPR Plants Market Outlook, By Temperature Tolerance (2024-2032) ($MN)
  • Table 11 Global Plant Breeding and CRISPR Plants Market Outlook, By Crop Type (2024-2032) ($MN)
  • Table 12 Global Plant Breeding and CRISPR Plants Market Outlook, By Cereals & Grains (2024-2032) ($MN)
  • Table 13 Global Plant Breeding and CRISPR Plants Market Outlook, By Corn (2024-2032) ($MN)
  • Table 14 Global Plant Breeding and CRISPR Plants Market Outlook, By Wheat (2024-2032) ($MN)
  • Table 15 Global Plant Breeding and CRISPR Plants Market Outlook, By Rice (2024-2032) ($MN)
  • Table 16 Global Plant Breeding and CRISPR Plants Market Outlook, By Oilseeds & Pulses (2024-2032) ($MN)
  • Table 17 Global Plant Breeding and CRISPR Plants Market Outlook, By Soybean (2024-2032) ($MN)
  • Table 18 Global Plant Breeding and CRISPR Plants Market Outlook, By Cotton (2024-2032) ($MN)
  • Table 19 Global Plant Breeding and CRISPR Plants Market Outlook, By Canola (2024-2032) ($MN)
  • Table 20 Global Plant Breeding and CRISPR Plants Market Outlook, By Fruits & Vegetables (2024-2032) ($MN)
  • Table 21 Global Plant Breeding and CRISPR Plants Market Outlook, By Turf & Ornamentals (2024-2032) ($MN)
  • Table 22 Global Plant Breeding and CRISPR Plants Market Outlook, By Medicinal Crops (2024-2032) ($MN)
  • Table 23 Global Plant Breeding and CRISPR Plants Market Outlook, By Cash Crops (2024-2032) ($MN)
  • Table 24 Global Plant Breeding and CRISPR Plants Market Outlook, By Herbs & Microgreens (2024-2032) ($MN)
  • Table 25 Global Plant Breeding and CRISPR Plants Market Outlook, By Breeding Method (2024-2032) ($MN)
  • Table 26 Global Plant Breeding and CRISPR Plants Market Outlook, By Marker-Assisted Selection (MAS) (2024-2032) ($MN)
  • Table 27 Global Plant Breeding and CRISPR Plants Market Outlook, By Hybrid Breeding (2024-2032) ($MN)
  • Table 28 Global Plant Breeding and CRISPR Plants Market Outlook, By Genomic Selection (2024-2032) ($MN)
  • Table 29 Global Plant Breeding and CRISPR Plants Market Outlook, By Speed Breeding (2024-2032) ($MN)
  • Table 30 Global Plant Breeding and CRISPR Plants Market Outlook, By Molecular Breeding (2024-2032) ($MN)
  • Table 31 Global Plant Breeding and CRISPR Plants Market Outlook, By Technology (2024-2032) ($MN)
  • Table 32 Global Plant Breeding and CRISPR Plants Market Outlook, By Conventional Breeding (2024-2032) ($MN)
  • Table 33 Global Plant Breeding and CRISPR Plants Market Outlook, By Biotechnological Methods (2024-2032) ($MN)
  • Table 34 Global Plant Breeding and CRISPR Plants Market Outlook, By CRISPR-Cas Systems (2024-2032) ($MN)
  • Table 35 Global Plant Breeding and CRISPR Plants Market Outlook, By Genetic Engineering (2024-2032) ($MN)
  • Table 36 Global Plant Breeding and CRISPR Plants Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 37 Global Plant Breeding and CRISPR Plants Market Outlook, By End User (2024-2032) ($MN)
  • Table 38 Global Plant Breeding and CRISPR Plants Market Outlook, By Commercial Agriculture (2024-2032) ($MN)
  • Table 39 Global Plant Breeding and CRISPR Plants Market Outlook, By Biotech Firms (2024-2032) ($MN)
  • Table 40 Global Plant Breeding and CRISPR Plants Market Outlook, By Research Institutions (2024-2032) ($MN)
  • Table 41 Global Plant Breeding and CRISPR Plants Market Outlook, By Seed Companies (2024-2032) ($MN)
  • Table 42 Global Plant Breeding and CRISPR Plants Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.