封面
市场调查报告书
商品编码
1813449

2032 年污染感测织物市场预测:按产品类型、材料类型、分销管道、技术、应用、最终用户和地区进行的全球分析

Pollution-Sensing Fabrics Market Forecasts to 2032 - Global Analysis By Product Type, Material Type, Distribution Channel, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球污染感测织物市场预计在 2025 年达到 1,549 亿美元,到 2032 年将达到 4,072 亿美元,预测期内的复合年增长率为 14.8%。

污染感应布料是一种先进的纺织品,它整合了环境感测器,可以检测空气中的污染物,例如颗粒物(PM2.5、PM10)、挥发性有机化合物(VOC)和二氧化碳。这些智慧材料整合了微控制器和数据处理器,可以即时监测空气质量,并通常透过LED显示器和连接的应用程式显示结果。这些材料专为可穿戴应用而设计,兼具功能性和舒适性,使用户能够直观地了解自身所受污染程度并采取相应措施。这类布料越来越多地应用于注重健康的时尚产品和城市安全装备。

根据《材料化学期刊》报告,此多功能光纤感测器的应变检测应变係数为 62.2,湿度为 6.27%/%RH,温度为 -5.3%/°C,并在 5,000 多个循环中保持稳定性能。

提高公众对空气和环境污染的认识和健康关注

随着消费者和政府对空气污染物及其长期健康影响的认识不断提高,人们对可监测空气污染物暴露水平的可穿戴技术产生了浓厚的兴趣。这些纺织品整合了感测器和响应式材料,可提供即时空气品质数据,对城市居民、产业工人和呼吸系统疾病患者非常有价值。智慧纺织品在医疗保健和环境监测领域的应用日益广泛,进一步推动了市场扩张。

生产成本高且来自替代技术的竞争

儘管污染感测织物潜力巨大,但由于将感测器、导电纱线和反应性聚合物整合到纺织基材中非常复杂,其成本壁垒仍然很高。对精密工程和先进製造技术的需求增加了生产成本,并限制了扩充性。此外,来自携带式感测器和智慧型手机整合系统等替代空气监测设备的竞争,也对其市场渗透构成了挑战。

整合永续和环保材料

随着永续性成为各行各业的核心主题,污染感应织物製造商正在探索可生物降解纤维、再生纱线和无毒感测器涂层,以减少其对环境的影响。智慧纺织品与绿色材料的结合,为注重环保的消费者和监管机构提供了极具吸引力的价值提案。有机电子和生物基聚合物领域的创新,正在推动纤维的开发,这些纤维不仅能够检测污染物,还能在使用后安全分解。

复杂的到期日管理和监管阻力

污染感应织物通常含有嵌入式电子元件、奈米材料和合成化合物,这使得处理和回收过程变得复杂。不当处理这些物料输送会导致环境污染,引起监管机构和环境监督机构的担忧。随着人们对电子废弃物意识的增强,製造商可能面临更严格的产品生命週期管理准则,包括回收计画和材料回收通讯协定。

COVID-19的影响:

新冠疫情改变了消费者的优先事项,激发了人们对健康监测技术(包括污染感应织物)的兴趣。人们对空气传播和呼吸系统脆弱性的认识不断提高,促使人们寻求能够即时追踪空气品质的穿戴式解决方案。然而,供应链中断和生产能力下降暂时推迟了生产和部署。另一方面,疫情加速了数位健康和​​远端监测实践的采用,为智慧纺织品的整合创造了有利条件。

污染感应织物市场预计将成为预测期内最大的市场

主动污染感测织物领域预计将在预测期内占据最大的市场份额,这得益于其先进的环境感知和反应能力。这些纺织品整合了嵌入式感测器、导电纱线和反应涂层,能够即时监测PM2.5、氮氧化物和挥发性有机化合物等污染物。随着人们对空气污染意识的不断增强,消费者和机构对主动感测织物的需求预计将大幅增长。

整合和互连材料领域预计将在预测期内实现最高复合年增长率

受软性电子产品和纺织电路创新的推动,整合和互连材料领域预计将在预测期内实现最高成长率。这些材料是嵌入感测器并在污染感应纺织品中实现讯号传输的支柱。导电油墨、可拉伸基材和混合纺织复合材料的进步,使得设计出兼具高性能感测能力和舒适性的纺织品成为可能。

占比最大的地区:

在预测期内,北美预计将占据最大的市场份额,这得益于其强大的技术基础设施、较高的消费者意识以及积极的环保政策。该地区拥有多家专注于智慧纺织品和穿戴式感测器的先驱企业,推动技术创新和商业化。政府推动空气品质监测和职业安全的措施进一步推动了医疗保健、国防和工业领域的应用,使北美成为市场主导力量。

复合年增长率最高的地区:

在预测期内,由于快速的都市化、污染水平的上升以及中产阶级人口的不断壮大,亚太地区预计将出现最高的复合年增长率。中国、印度和韩国等国家对个人空气监测解决方案的需求正在成长,尤其是在人口密集、空气品质指数较低的城市。政府主导的防治污染和改善公共卫生的措施正在推动智慧纺织品的普及。此外,该地区强大的纺织製造业基础和对穿戴式技术不断增长的投资,为市场扩张创造了肥沃的土壤。

提供免费客製化:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 对最多三家其他市场公司进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球污染感测织物市场(依产品类型)

  • 被动污染感测织物
  • 主动污染感测织物
  • 超智能污染感应布料

6. 全球污染感测织物市场(依材料类型)

  • 底布
    • 天然纤维
    • 合成纤维
    • 混纺布料
  • 感测材料
    • 导电聚合物
    • 碳基材料
    • 金属奈米粒子
    • 金属氧化物
  • 整合和互连材料
    • 导电线
    • 导电油墨和导电浆料
    • 封装和保护涂层
  • 电源和处理组件
    • 柔性薄型电池
    • 能量收集材料
    • 微控制器和微处理器

7. 全球污染感测织物市场(按分销管道)

  • 网路商店
  • 大卖场/超级市场
  • 专卖店
  • 直销

8. 全球污染感测织物市场(按技术)

  • 化学感测器
  • 气体/空气质量感测器
  • 颗粒物感测器
  • 生物感测器
  • 湿度/液体感测器
  • 其他技术

9. 全球污染感测织物市场(按应用)

  • 空气品质监测
  • 辐射侦测
  • 水污染检测
  • 化学和毒性监测
  • 其他用途

第 10 章全球污染感测织物市场(按最终用户)

  • 医疗保健和医学
  • 军事/国防
  • 工业安全
  • 运动与健身
  • 汽车和运输
  • 时尚与娱乐
  • 建筑/施工
  • 其他最终用户

第 11 章全球污染感测织物市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十二章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十三章:企业概况

  • DuPont
  • Hexoskin
  • Schoeller Textil AG
  • Nextiles
  • Sensoria Inc.
  • OMsignal
  • Xenoma Inc.
  • Wearable X
  • Textronics Inc.
  • Graphene Flagship
  • Adidas
  • Google ATAP
  • MIT Media Lab
  • NanoScent
  • BeBop Sensors
  • SmartTex Innovations GmbH
  • E-Textiles Ltd.
Product Code: SMRC30898

According to Stratistics MRC, the Global Pollution-Sensing Fabrics Market is accounted for $154.9 billion in 2025 and is expected to reach $407.2 billion by 2032 growing at a CAGR of 14.8% during the forecast period. Pollution-sensing fabrics are advanced textiles embedded with environmental sensors that detect airborne pollutants such as particulate matter (PM2.5, PM10), volatile organic compounds (VOCs), and carbon dioxide. These smart materials integrate microcontrollers and data processors to monitor air quality in real time, often displaying results via LEDs or connected apps. Designed for wearable applications, they combine functionality with comfort, enabling users to visualize pollution exposure and respond accordingly. Such fabrics are increasingly used in health-focused fashion and urban safety gear

According to Journal of Materials Chemistry C, a multifunctional textile sensor demonstrated a gauge factor of 62.2 for strain detection, 6.27%/%RH for humidity, and -5.3%/°C for temperature, maintaining stable performance over 5,000+ cycles.

Market Dynamics:

Driver:

Growing public awareness and health concerns on air and environmental pollution

Consumers and governments alike are becoming more conscious of airborne pollutants and their long-term health effects, prompting interest in wearable technologies that can monitor exposure levels. These fabrics, embedded with sensors and responsive materials, offer real-time data on air quality, making them valuable for urban populations, industrial workers, and individuals with respiratory conditions. The growing adoption of smart textiles in healthcare and environmental monitoring is further accelerating market expansion.

Restraint:

High cost of production & competition from alternative technologies

Despite their potential, pollution-sensing fabrics face significant cost barriers due to the complexity of integrating sensors, conductive threads, and responsive polymers into textile substrates. The need for precision engineering and advanced manufacturing techniques elevates production expenses, limiting scalability. Moreover, competition from alternative air monitoring devices such as portable sensors and smartphone-integrated systems poses a challenge to market penetration.

Opportunity:

Integration with sustainable and eco-friendly materials

As sustainability becomes a central theme across industries, pollution-sensing fabric manufacturers are exploring biodegradable fibers, recycled yarns, and non-toxic sensor coatings to reduce environmental impact. The convergence of smart textiles with green materials presents a compelling value proposition for eco-conscious consumers and regulatory bodies. Innovations in organic electronics and bio-based polymers are enabling the development of fabrics that not only detect pollutants but also degrade safely after use.

Threat:

Complex end-of-life management & regulatory backlash

Pollution-sensing fabrics often contain embedded electronics, nanomaterials, and synthetic compounds that complicate disposal and recycling processes. Improper handling of these materials can lead to environmental contamination, raising concerns among regulators and environmental watchdogs. As awareness of e-waste grows, manufacturers may face stricter guidelines on product lifecycle management, including take-back schemes and material recovery protocols.

Covid-19 Impact:

The COVID-19 pandemic reshapes consumer priorities, amplifying interest in health-monitoring technologies, including pollution-sensing fabrics. With heightened awareness of airborne transmission and respiratory vulnerabilities, individuals sought wearable solutions that could track air quality in real-time. However, supply chain disruptions and reduced manufacturing capacity temporarily slowed production and deployment. On the flip side, the pandemic accelerated digital health adoption and remote monitoring practices, creating favorable conditions for smart textile integration.

The active pollution-sensing fabrics segment is expected to be the largest during the forecast period

The active pollution-sensing fabrics segment is expected to account for the largest market share during the forecast period due to their advanced capabilities in detecting and responding to environmental changes. These textiles incorporate embedded sensors, conductive threads, and responsive coatings that enable real-time monitoring of pollutants such as PM2.5, NOx, and volatile organic compounds. As awareness of air pollution intensifies, demand for active sensing fabrics is expected to surge across both consumer and institutional sectors.

The integration & interconnect materials segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the integration & interconnect materials segment is predicted to witness the highest growth rate driven by innovations in flexible electronics and textile circuitry. These materials serve as the backbone for embedding sensors and enabling signal transmission within pollution-sensing fabrics. Advances in conductive inks, stretchable substrates, and hybrid fiber composites are making it possible to design textiles that maintain comfort while delivering high-performance sensing capabilities.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share attributed to strong technological infrastructure, high consumer awareness, and proactive environmental policies. The region hosts several pioneering companies specializing in smart textiles and wearable sensors, fostering innovation and commercialization. Government initiatives promoting air quality monitoring and occupational safety are further driving adoption across healthcare, defense, and industrial sectors positions North America as a dominant force in the market.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rapid urbanization, rising pollution levels, and expanding middle-class populations. Countries such as China, India, and South Korea are witnessing increased demand for personal air monitoring solutions, especially in densely populated cities with poor air quality indices. Government-led initiatives to combat pollution and improve public health are encouraging the adoption of smart textiles. Moreover, the region's strong textile manufacturing base and growing investments in wearable technology are creating fertile ground for market expansion.

Key players in the market

Some of the key players in Pollution-Sensing Fabrics Market include DuPont, Hexoskin, Schoeller Textil AG, Nextiles, Sensoria Inc., OMsignal, Xenoma Inc., Wearable X, Textronics Inc., Graphene Flagship, Adidas, Google ATAP, MIT Media Lab, NanoScent, BeBop Sensors, SmartTex Innovations GmbH, and E-Textiles Ltd.

Key Developments:

In August 2025, DuPont announced an agreement to divest its aramids (Kevlar / Nomex) business to Arclin in a transaction designed to streamline DuPont's portfolio and unlock value.

In August 2025, Industry coverage reported that Textilcolor AG acquired the Pyroshell(TM) patents from Schoeller Textil AG. The article notes the transaction details and positions it as Schoeller refocusing core IP /product lines while transferring Pyroshell patents to Textilcolor.

Product Types Covered:

  • Passive Pollution-Sensing Fabrics
  • Active Pollution-Sensing Fabrics
  • Ultra-Smart Pollution-Sensing Fabrics

Material Types Covered:

  • Base Fabrics
  • Sensing Materials
  • Integration & Interconnect Materials
  • Power & Processing Components

Distribution Channels Covered:

  • Online Stores
  • Hypermarkets/Supermarkets
  • Specialty Stores
  • Direct Sales

Technologies Covered:

  • Chemical Sensors
  • Gas/Air Quality Sensors
  • Particulate Matter Sensors
  • Biological Sensors
  • Moisture/Liquid Sensors
  • Other Technologies

Applications Covered:

  • Air Quality Monitoring
  • Radiation Detection
  • Water Pollution Detection
  • Chemical & Toxic Substance Monitoring
  • Other Applications

End Users Covered:

  • Healthcare & Medical
  • Military & Defense
  • Industrial Safety
  • Sports & Fitness
  • Automotive & Transportation
  • Fashion & Entertainment
  • Building & Construction
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Pollution-Sensing Fabrics Market, By Product Type

  • 5.1 Introduction
  • 5.2 Passive Pollution-Sensing Fabrics
  • 5.3 Active Pollution-Sensing Fabrics
  • 5.4 Ultra-Smart Pollution-Sensing Fabrics

6 Global Pollution-Sensing Fabrics Market, By Material Type

  • 6.1 Introduction
  • 6.2 Base Fabrics
    • 6.2.1 Natural Fibers
    • 6.2.2 Synthetic Fibers
    • 6.2.3 Blended Fabrics
  • 6.3 Sensing Materials
    • 6.3.1 Conductive Polymers
    • 6.3.2 Carbon-based Materials
    • 6.3.3 Metallic Nanoparticles
    • 6.3.4 Metal Oxides
  • 6.4 Integration & Interconnect Materials
    • 6.4.1 Conductive Threads & Yarns
    • 6.4.2 Conductive Inks & Pastes
    • 6.4.3 Encapsulation & Protective Coatings
  • 6.5 Power & Processing Components
    • 6.5.1 Flexible & Thin Batteries
    • 6.5.2 Energy Harvesting Materials
    • 6.5.3 Microcontrollers and Microprocessors

7 Global Pollution-Sensing Fabrics Market, By Distribution Channel

  • 7.1 Introduction
  • 7.2 Online Stores
  • 7.3 Hypermarkets/Supermarkets
  • 7.4 Specialty Stores
  • 7.5 Direct Sales

8 Global Pollution-Sensing Fabrics Market, By Technology

  • 8.1 Introduction
  • 8.2 Chemical Sensors
  • 8.3 Gas/Air Quality Sensors
  • 8.4 Particulate Matter Sensors
  • 8.5 Biological Sensors
  • 8.6 Moisture/Liquid Sensors
  • 8.7 Other Technologies

9 Global Pollution-Sensing Fabrics Market, By Application

  • 9.1 Introduction
  • 9.2 Air Quality Monitoring
  • 9.3 Radiation Detection
  • 9.4 Water Pollution Detection
  • 9.5 Chemical & Toxic Substance Monitoring
  • 9.6 Other Applications

10 Global Pollution-Sensing Fabrics Market, By End User

  • 10.1 Introduction
  • 10.2 Healthcare & Medical
  • 10.3 Military & Defense
  • 10.4 Industrial Safety
  • 10.5 Sports & Fitness
  • 10.6 Automotive & Transportation
  • 10.7 Fashion & Entertainment
  • 10.8 Building & Construction
  • 10.9 Other End Users

11 Global Pollution-Sensing Fabrics Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 DuPont
  • 13.2 Hexoskin
  • 13.3 Schoeller Textil AG
  • 13.4 Nextiles
  • 13.5 Sensoria Inc.
  • 13.6 OMsignal
  • 13.7 Xenoma Inc.
  • 13.8 Wearable X
  • 13.9 Textronics Inc.
  • 13.10 Graphene Flagship
  • 13.11 Adidas
  • 13.12 Google ATAP
  • 13.13 MIT Media Lab
  • 13.14 NanoScent
  • 13.15 BeBop Sensors
  • 13.16 SmartTex Innovations GmbH
  • 13.17 E-Textiles Ltd.

List of Tables

  • Table 1 Global Pollution-Sensing Fabrics Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Pollution-Sensing Fabrics Market Outlook, By Product Type (2024-2032) ($MN)
  • Table 3 Global Pollution-Sensing Fabrics Market Outlook, By Passive Pollution-Sensing Fabrics (2024-2032) ($MN)
  • Table 4 Global Pollution-Sensing Fabrics Market Outlook, By Active Pollution-Sensing Fabrics (2024-2032) ($MN)
  • Table 5 Global Pollution-Sensing Fabrics Market Outlook, By Ultra-Smart Pollution-Sensing Fabrics (2024-2032) ($MN)
  • Table 6 Global Pollution-Sensing Fabrics Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 7 Global Pollution-Sensing Fabrics Market Outlook, By Base Fabrics (2024-2032) ($MN)
  • Table 8 Global Pollution-Sensing Fabrics Market Outlook, By Natural Fibers (2024-2032) ($MN)
  • Table 9 Global Pollution-Sensing Fabrics Market Outlook, By Synthetic Fibers (2024-2032) ($MN)
  • Table 10 Global Pollution-Sensing Fabrics Market Outlook, By Blended Fabrics (2024-2032) ($MN)
  • Table 11 Global Pollution-Sensing Fabrics Market Outlook, By Sensing Materials (2024-2032) ($MN)
  • Table 12 Global Pollution-Sensing Fabrics Market Outlook, By Conductive Polymers (2024-2032) ($MN)
  • Table 13 Global Pollution-Sensing Fabrics Market Outlook, By Carbon-based Materials (2024-2032) ($MN)
  • Table 14 Global Pollution-Sensing Fabrics Market Outlook, By Metallic Nanoparticles (2024-2032) ($MN)
  • Table 15 Global Pollution-Sensing Fabrics Market Outlook, By Metal Oxides (2024-2032) ($MN)
  • Table 16 Global Pollution-Sensing Fabrics Market Outlook, By Integration & Interconnect Materials (2024-2032) ($MN)
  • Table 17 Global Pollution-Sensing Fabrics Market Outlook, By Conductive Threads & Yarns (2024-2032) ($MN)
  • Table 18 Global Pollution-Sensing Fabrics Market Outlook, By Conductive Inks & Pastes (2024-2032) ($MN)
  • Table 19 Global Pollution-Sensing Fabrics Market Outlook, By Encapsulation & Protective Coatings (2024-2032) ($MN)
  • Table 20 Global Pollution-Sensing Fabrics Market Outlook, By Power & Processing Components (2024-2032) ($MN)
  • Table 21 Global Pollution-Sensing Fabrics Market Outlook, By Flexible & Thin Batteries (2024-2032) ($MN)
  • Table 22 Global Pollution-Sensing Fabrics Market Outlook, By Energy Harvesting Materials (2024-2032) ($MN)
  • Table 23 Global Pollution-Sensing Fabrics Market Outlook, By Microcontrollers and Microprocessors (2024-2032) ($MN)
  • Table 24 Global Pollution-Sensing Fabrics Market Outlook, By Distribution Channel (2024-2032) ($MN)
  • Table 25 Global Pollution-Sensing Fabrics Market Outlook, By Online Stores (2024-2032) ($MN)
  • Table 26 Global Pollution-Sensing Fabrics Market Outlook, By Hypermarkets/Supermarkets (2024-2032) ($MN)
  • Table 27 Global Pollution-Sensing Fabrics Market Outlook, By Specialty Stores (2024-2032) ($MN)
  • Table 28 Global Pollution-Sensing Fabrics Market Outlook, By Direct Sales (2024-2032) ($MN)
  • Table 29 Global Pollution-Sensing Fabrics Market Outlook, By Technology (2024-2032) ($MN)
  • Table 30 Global Pollution-Sensing Fabrics Market Outlook, By Chemical Sensors (2024-2032) ($MN)
  • Table 31 Global Pollution-Sensing Fabrics Market Outlook, By Gas/Air Quality Sensors (2024-2032) ($MN)
  • Table 32 Global Pollution-Sensing Fabrics Market Outlook, By Particulate Matter Sensors (2024-2032) ($MN)
  • Table 33 Global Pollution-Sensing Fabrics Market Outlook, By Biological Sensors (2024-2032) ($MN)
  • Table 34 Global Pollution-Sensing Fabrics Market Outlook, By Moisture/Liquid Sensors (2024-2032) ($MN)
  • Table 35 Global Pollution-Sensing Fabrics Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 36 Global Pollution-Sensing Fabrics Market Outlook, By Application (2024-2032) ($MN)
  • Table 37 Global Pollution-Sensing Fabrics Market Outlook, By Air Quality Monitoring (2024-2032) ($MN)
  • Table 38 Global Pollution-Sensing Fabrics Market Outlook, By Radiation Detection (2024-2032) ($MN)
  • Table 39 Global Pollution-Sensing Fabrics Market Outlook, By Water Pollution Detection (2024-2032) ($MN)
  • Table 40 Global Pollution-Sensing Fabrics Market Outlook, By Chemical & Toxic Substance Monitoring (2024-2032) ($MN)
  • Table 41 Global Pollution-Sensing Fabrics Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 42 Global Pollution-Sensing Fabrics Market Outlook, By End User (2024-2032) ($MN)
  • Table 43 Global Pollution-Sensing Fabrics Market Outlook, By Healthcare & Medical (2024-2032) ($MN)
  • Table 44 Global Pollution-Sensing Fabrics Market Outlook, By Military & Defense (2024-2032) ($MN)
  • Table 45 Global Pollution-Sensing Fabrics Market Outlook, By Industrial Safety (2024-2032) ($MN)
  • Table 46 Global Pollution-Sensing Fabrics Market Outlook, By Sports & Fitness (2024-2032) ($MN)
  • Table 47 Global Pollution-Sensing Fabrics Market Outlook, By Automotive & Transportation (2024-2032) ($MN)
  • Table 48 Global Pollution-Sensing Fabrics Market Outlook, By Fashion & Entertainment (2024-2032) ($MN)
  • Table 49 Global Pollution-Sensing Fabrics Market Outlook, By Building & Construction (2024-2032) ($MN)
  • Table 50 Global Pollution-Sensing Fabrics Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.