![]() |
市场调查报告书
商品编码
1817962
2032 年二维过渡晶粒二硫属化物 (TMD) 市场预测:按类型、形态、等级、合成、应用和地区进行的全球分析2D Transition Metal Dichalcogenides (TMDs) Market Forecasts to 2032 - Global Analysis By Type (Molybdenum Disulfide (MoS2), Tungsten Disulfide (WS2) and Other Types), Form, Grade, Synthesis, Application, and By Geography |
根据 Stratistics MRC 的数据,全球二维过渡晶粒二硫属化物 (TMD) 市场预计在 2025 年达到 18 亿美元,到 2032 年将达到 41 亿美元,预测期内的复合年增长率为 12%。
二维过渡晶粒二硫属化物 (TMD) 是一类层状材料,由过渡金属(例如 Mo、W)与硫属元素原子(S、Se、Te)以二维结构键结而成。当 TMD 被薄化为单层时,其表现出独特的电子、光学和机械特性,包括直接带隙和高载子迁移率。这些特性使其在半导体、光电子学、储能和柔性装置等领域具有广泛的应用前景。其可调特性使其成为未来奈米技术和电子技术的关键材料。
根据麻省理工学院 (MIT) 的研究,二硫化钼等 2DTMD 可以实现厚度仅为三个原子的电晶体的开发,为后硅电子技术铺平道路。
优异的电子和光学性能
二维过渡晶粒二硫属化物 (TMD) 市场主要由其卓越的电子和光学特性驱动,使其在半导体、检测器和光电子装置中实现高性能应用。二硫化钼 (MoS2) 和二硒化钨 (WSe2) 等材料具有可调带隙、高载子迁移率和强光物质相互作用,使其成为下一代电子元件的理想选择。这些固有特性使其能够实现微型化、柔性化并整合到先进设备中,从而在全球范围内广泛应用于电子、储能和软性显示器领域。
规模化生产方式有限
由于缺乏工业可行的方法,二维过渡金属二硫化物(TMD)的量产受到限制。製备高纯度、可重复且均匀的单层薄膜在技术上极具挑战性。批次间差异、缺陷和污染会影响装置效能,并限制其在商业电子和储能领域的应用。在开发出经济高效、可扩展的合成技术之前,市场成长可能会受到限制,其应用主要集中在研究实验室、高端半导体製造和专业的光电应用领域。
应用于下一代半导体
二维TMD为下一代半导体技术提供了巨大的潜力。其可调的电子特性和原子级薄结构使超低功耗电晶体、高速逻辑装置和量子运算元件成为可能。各公司正在探索将TMD与其他二维材料结合的异质结构,以实现卓越的性能。随着半导体产业面临硅材料规模化极限,TMD提供了一条替代途径,释放在未来五年内释放消费性电子、人工智慧硬体和高效能运算市场的成长潜力。
与石墨烯和二维材料的竞争
TMD 面临来自石墨烯、黑磷和其他具有独特性能的新兴二维材料的竞争压力。石墨烯的高导电性和机械强度使其非常适合某些电子和能源应用。除非材料性能、成本和整合策略得到改进,否则这种竞争可能会限制 TMD 在大众市场的采用。企业必须透过性能优化、混合材料开发和针对特定应用的解决方案来实现差异化,才能在越来越多的替代材料中保持竞争力并获得市场份额。
新冠疫情暂时扰乱了二维TMD供应链,影响了前驱体可得性、製造营运和研发活动。这导致电子和半导体产业的生产和商业化延迟,从而影响了TMD的采用。然而,疫情后的復苏加速了软性电子产品、光电子和储能领域对先进材料的需求,凸显了TMD的战略重要性。疫情不仅凸显了供应链的脆弱性,也凸显了TMD等高性能材料对弹性生产流程和在地采购策略的需求。
预测期内,二硫化钼(MoS2)市场规模预计最大
二硫化钼 (MoS2) 因其优异的电子特性、热稳定性以及易于整合到软性电子产品中,预计将在预测期内占据最大的市场份额。 MoS2 的层状结构和可调带隙使其成为电晶体、检测器和能源设备的理想选择。尤其是在北美和亚太地区,其在研发和商业应用领域的高需求将使其成为未来五年基于 TMD 的电子和光电子领域的主导材料领域。
预计粉末细分市场在预测期内的复合年增长率最高
预计粉末材料领域将在预测期内实现最高成长率,这得益于其多样化的加工选项以及与积层製造和复合材料的兼容性。粉末TMD有助于实现可扩展的涂层、油墨配方和溶液加工技术,从而支援软性电子产品、感测器和储能应用。市场对混合装置、奈米复合材料和功能性油墨的吸引力正吸引这些材料实现工业规模应用,从而推动研究、商业电子和先进材料市场的高复合年增长率。
由于电子製造业、半导体製造业的蓬勃发展以及政府大力推动先进材料研究,预计亚太地区将在预测期内占据最大的市场份额。中国、日本和韩国等国家在软性电子产品、光电子和奈米技术的应用方面处于领先地位,这些国家正在扩大TMD的使用。主要原料供应商的存在、不断成长的研发基础设施以及家用电子电器的强劲需求,进一步巩固了亚太地区在全球TMD市场扩张中的主导地位。
预计北美地区在预测期内将实现最高的复合年增长率,这得益于半导体研究、国防电子和高科技製造领域投资的不断增加。美国和加拿大正专注于下一代电子、量子装置和光电子领域的创新,从而推动TMD的普及。先进的研究机构、政府对关键材料的支持以及与全球材料製造商日益密切的合作,共同推动了TMD的快速成长,使北美在未来五年内成为二维TMD应用的高成长市场。
According to Stratistics MRC, the Global 2D Transition Metal Dichalcogenides (TMDs) Market is accounted for $1.8 billion in 2025 and is expected to reach $4.1 billion by 2032 growing at a CAGR of 12% during the forecast period. 2D transition metal dichalcogenides (TMDs) are a class of layered materials composed of transition metals (such as Mo, W) bonded with chalcogen atoms (S, Se, Te) in a two-dimensional structure. When thinned to a monolayer, TMDs exhibit unique electronic, optical, and mechanical properties, including direct bandgaps and high carrier mobility. These characteristics make them promising for applications in semiconductors, optoelectronics, energy storage, and flexible devices. Their tunable properties position TMDs as key materials for future nanotechnology and electronics.
According to research at MIT, 2D TMDs like molybdenum disulfide are enabling the development of transistors that are just three atoms thick, paving the way for post-silicon electronics.
High electronic and optical properties
The 2D Transition Metal Dichalcogenides (TMDs) market is primarily driven by their exceptional electronic and optical properties, which enable high-performance applications in semiconductors, photodetectors, and optoelectronic devices. Materials such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) exhibit tunable bandgaps, high carrier mobility, and strong light-matter interactions, making them ideal for next-generation electronic components. These intrinsic properties allow miniaturization, flexibility, and integration into advanced devices, thereby fueling adoption across electronics, energy storage, and flexible display sectors globally.
Limited large-scale production methods
Large-scale production of 2D TMDs is constrained by the lack of industrially viable methods. Achieving uniform monolayer films with high purity and reproducibility is technologically challenging. Batch-to-batch variations, defects, and contamination can impact device performance, restricting adoption in commercial electronics and energy storage. Until cost-effective, scalable synthesis techniques are developed, market growth may be restricted, with adoption primarily concentrated in research labs, high-end semiconductor fabrication, and specialized optoelectronic applications.
Applications in next-gen semiconductors
2D TMDs present significant opportunities in next-generation semiconductor technologies. Their tunable electronic properties and atomically thin structure enable ultra-low-power transistors, high-speed logic devices, and quantum computing components. Companies are exploring heterostructures combining TMDs with other 2D materials to achieve superior performance. As the semiconductor industry faces scaling limitations with silicon, TMDs offer an alternative path, unlocking growth potential across consumer electronics, AI hardware, and high-performance computing markets over the next five years.
Competition from graphene and 2D materials
TMDs face competitive pressures from graphene, black phosphorus, and other emerging 2D materials with unique properties. Graphene offers higher conductivity and mechanical strength, making it preferable for certain electronic and energy applications. This competition may limit TMD adoption in high-volume markets unless material performance, cost, and integration strategies improve. Companies must differentiate through property optimization, hybrid material development, and application-specific solutions to maintain relevance and capture market share amidst growing alternatives.
The Covid-19 pandemic temporarily disrupted the 2D TMDs supply chain, impacting precursor availability, manufacturing operations, and R&D activities. Electronics and semiconductor industries experienced delays in production and commercialization, which affected TMD adoption. However, post-pandemic recovery has accelerated demand for advanced materials in flexible electronics, optoelectronics, and energy storage, highlighting TMDs' strategic importance. The pandemic underscored supply chain vulnerabilities while simultaneously emphasizing the need for resilient production processes and local sourcing strategies for high-performance materials like TMDs.
The molybdenum disulfide (MoS2) segment is expected to be the largest during the forecast period
The molybdenum disulfide (MoS2) segment is expected to account for the largest market share during the forecast period due to its superior electronic properties, thermal stability, and ease of integration in flexible electronics. MoS2's layered structure and tunable bandgap make it ideal for transistors, photodetectors, and energy devices. Its high demand in R&D and commercial applications, particularly in North America and Asia Pacific, positions it as the dominant material segment in TMD-based electronics and optoelectronics over the next five years.
The powder segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the powder segment is predicted to witness the highest growth rate, propelled by its versatile processing options and compatibility with additive manufacturing and composite materials. Powdered TMDs facilitate scalable coating, ink formulations, and solution-processing techniques, supporting flexible electronics, sensors, and energy storage applications. Their adaptability for hybrid devices, nanocomposites, and functional inks makes them attractive for industrial-scale adoption, driving high CAGR in research, commercial electronics, and advanced materials markets.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to robust electronics manufacturing, semiconductor fabrication, and government initiatives promoting advanced materials research. Countries like China, Japan, and South Korea lead in flexible electronics, optoelectronics, and nanotechnology adoption, increasing TMD utilization. The presence of major raw material suppliers, growing R&D infrastructure, and strong consumer electronics demand further solidify Asia Pacific as the dominant region for TMD market expansion globally.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with increasing investments in semiconductor research, defense electronics, and high-tech manufacturing. The U.S. and Canada are focusing on next-generation electronics, quantum devices, and optoelectronic innovations, driving TMD adoption. Presence of advanced research institutions, government support for critical materials, and rising collaborations with global material manufacturers contribute to rapid growth, positioning North America as a high-growth market for 2D TMD applications over the next five years.
Key players in the market
Some of the key players in 2D Transition Metal Dichalcogenides (TMDs) Market include 2D Semiconductors Inc., HQ Graphene, Graphene Supermarket, SixCarbon Technology, ACS Material LLC, Nanografi Nano Technology, American Elements, NanoIntegris Technologies, Strem Chemicals Inc., 2D Materials Pte Ltd., Graphene Laboratories Inc., Nanochemazone, Goodfellow Corporation, Cheaptubes Inc., Sigma-Aldrich, Sixonia Tech GmbH, Smart-elements GmbH, and NanoXplore Inc.
In Sep 2025, HQ Graphene announced the commercial launch of its large-scale, roll-to-roll (R2R) production process for monolayer molybdenum disulfide (MoS2) films, significantly reducing costs for next-generation flexible electronics manufacturers.
In Aug 2025, ACS Material LLC introduced a new high-purity, single-crystal tungsten diselenide (WSe2) product line, specifically engineered for advanced optoelectronic research and the development of high-efficiency photodetectors.
In July 2025, 2D Semiconductors Inc. launched its proprietary 'TMD-Alloy' series, a new class of alloyed TMDs (e.g., MoS2(1-x)Se2x) that allows for precise bandgap tuning, enabling customized performance for specific semiconductor applications.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.