封面
市场调查报告书
商品编码
1822415

2032 年潮汐能和波浪能市场预测:按组件、部署、技术、应用、最终用户和地区进行的全球分析

Tidal Stream and Wave Energy Market Forecasts to 2032 - Global Analysis By Component (Turbines, Generators, Control Systems, Substructures, and Mooring & Anchoring), Deployment, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球潮汐和波浪能市场预计在 2025 年达到 10 亿美元,到 2032 年将达到 22 亿美元,预测期内的复合年增长率为 12.3%。

潮汐能和波浪能是指利用海洋运动,从自然水流产生可用电能。潮汐能利用水下涡轮机产生的潮汐动能,而波浪能则将表面波浪的涨落转化为机械能或电能输出。这两种方法都依赖海洋可预测且可再生的能源,提供了一种持续永续的发电方式。这些方法尊重海洋环境的自然规律,并能提供长期的解决方案。

据海洋能源系统称,该市场利用洋流和波浪的可预测动能来产生可靠的可再生能源。

向可再生能源的转变仍在继续

全球能源产业正经历向永续能源的决定性转型,潮汐能和波浪能逐渐成为石化燃料的可靠替代品。由于对碳排放和气候变迁的担忧日益加剧,各国政府正积极支持将可再生能源纳入国家电网。这项转型提升了海洋发电工程的商业性可行性。此外,稳定的海洋资源供应确保了稳定的能源产出,进一步加速了工业应用。因此,向可再生能源的转变已成为市场扩张的核心驱动力。

安装和维护成本高

儘管潮汐能和波浪能市场前景光明,但由于安装和维护成本高昂,其面临巨大的财务障碍。海上建设需要专用设备、海底电缆和耐腐蚀基础设施,所有这些都会增加初始资本支出。此外,在恶劣的海洋条件下进行维护需要复杂的操作和大量的停机时间,这限制了盈利。规模较小的开发商难以获得资金筹措,推迟了大规模商业化。因此,高昂的成本是一个主要限制因素,限制了该领域的广泛部署,并减缓了竞争扩张。

海洋能技术的进步

技术创新为潮汐能和波浪能开发开闢了新途径。涡轮机效率的提升、先进材料的使用以及预测维修系统,正在提升可靠性并降低营运成本。此外,数位监控解决方案和人工智慧主导的效能优化能够即时调整,从而最大限度地提高能源产出。合作研发计划正在推动检验扩充性的先导计画。这些进步也增强了投资者信心,吸引了更多资本进入该领域。因此,持续的技术进步为推动商业性应用和全球市场成长提供了重大机会。

环境和生态系统破坏的风险

儘管海洋能源计划是可再生,但它会为脆弱的生态系统带来风险,引发环境担忧。涡轮机的安装会影响鱼类洄游、底栖生物栖息地和海洋生物多样性。此外,水下噪音和电磁场会干扰水生物种,因此需要更严格的监管。环保组织和当地社区的反对往往会拖延计划核准。这种生态不确定性会为开发商带来声誉和合规风险。因此,生态系统破坏仍然是一个重大威胁,可能会阻碍计划的扩充性,并使该行业的长期永续性和接受度变得复杂。

COVID-19的影响:

疫情暂时扰乱了潮汐能和波浪能产业,导致建设、供应链和研发倡议延迟。资本被重新用于眼前的经济復苏,限制了实验性海洋计划的资金投入。然而,这场危机也加剧了清洁能源转型的迫切性,各国政府纷纷加速了后疫情时代的绿色政策。对高韧性再生能源来源的重新重视,使潮汐能和波浪能成为一项战略资产。因此,儘管疫情带来了短期挫折,但最终增强了市场的长期成长前景。

涡轮机部分预计将成为预测期内最大的部分

涡轮机细分市场凭藉其久经考验的可靠性和高能量转换效率,预计在预测期内将占据最大的市场份额。涡轮机系统能够捕捉稳定的潮流,确保与波浪能转换器相比更稳定的电力输出。其模组化设计也支援跨地域的扩充性。由于材料和叶片设计的持续创新,涡轮机在长期内仍保持着成本竞争力。因此,预计该细分市场将占据最大的市场份额,推动产业商业化进程。

预计预测期内,土地部分的复合年增长率最高

预计陆上风电将在预测期内实现最高成长率,这得益于成本优势和易于安装的特性。与海上计划相比,陆上波浪能转换器和潮汐系统的优势在于其对基础设施的需求较低,资本密集度也较低。此外,它们靠近沿海电网,可以快速整合发电量。政府和私人开发商越来越重视近岸先导计画,以降低营运风险。预计这将推动陆上解决方案的快速普及,从而显着加速全球市场的发展。

占比最大的地区:

由于丰富的沿海资源和政府的大力支持,预计亚太地区将在预测期内占据最大的市场份额。中国、日本和韩国等国家在海洋能研究和示范计划投资方面处于主导。日益增长的电力需求和可再生能源整合政策进一步推动了该地区的海洋能应用。此外,透过公私合作,基础建设也在推进中。这些因素共同巩固了亚太地区作为海洋能主要枢纽的地位。

复合年增长率最高的地区:

在预测期内,由于有利的监管激励措施和不断加速的研发活动,北美预计将呈现最高的复合年增长率。美国和加拿大正在利用其强大的沿海区和融资框架来推进海洋先导计画。与科技新兴企业和大学的合作正在激发创新,并减少系统效率低下的问题。此外,注重永续性的投资者正在向新兴的海洋能源解决方案投入资金。因此,北美的成长势头预计将超过全球其他地区。

免费客製化服务:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 对最多三家其他市场公司进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球潮汐能和波浪能市场(按组成部分)

  • 涡轮
  • 发电机
  • 控制系统
  • 起落架
  • 锚碇及锚

6. 全球潮汐能和波浪能市场(按部署)

  • 陆上
  • 海上

7. 全球潮汐和波浪能市场(按技术)

  • 振盪水柱
  • 溢流装置
  • 点吸收器
  • 衰减器
  • 混合系统

8. 全球潮汐能和波浪能市场(按应用)

  • 发电
  • 海水淡化
  • 海上作战支援
  • 岛屿电气化
  • 海岸保护

9. 全球潮汐和波浪能市场(按最终用户)

  • 公用事业
  • 独立电力生产商
  • 政府计划
  • 偏远社区
  • 工业用户
  • 海军设施

第十章全球潮汐能和波浪能市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章 公司概况

  • Ocean Power Technologies
  • Carnegie Clean Energy
  • Seabased
  • CorPower Ocean
  • EHL Azura
  • AW-Energy
  • Wave Swell Energy
  • OceanEnergy
  • Eco Wave Power
  • Orbital Marine Power
  • Sinn Power
  • Verdant Power
  • Marine Power Systems
  • Minesto
  • Tocardo
  • Atlantis Resources
Product Code: SMRC31169

According to Stratistics MRC, the Global Tidal Stream and Wave Energy Market is accounted for $1.0 billion in 2025 and is expected to reach $2.2 billion by 2032 growing at a CAGR of 12.3% during the forecast period. Tidal stream and wave energy refers to the harnessing of ocean movements to generate usable power from natural water dynamics. Tidal stream energy captures the kinetic force of moving tides through underwater turbines, while wave energy converts the rise and fall of surface waves into mechanical or electrical output. Both approaches rely on predictable and renewable ocean forces, offering a consistent and sustainable way to create energy. These methods emphasize the natural rhythm of marine environments to provide long-term solutions.

According to Ocean Energy Systems, this market harnesses the predictable kinetic energy of ocean currents and waves to generate reliable renewable electricity.

Market Dynamics:

Driver:

Increasing shift to renewable sources

The global energy sector is undergoing a decisive transition toward sustainable power, with tidal stream and wave energy emerging as reliable alternatives to fossil fuels. Spurred by mounting concerns over carbon emissions and climate change, governments are actively supporting renewable integration into national grids. This transition enhances the commercial viability of ocean-based power projects. Moreover, the consistent availability of marine resources ensures stable energy generation, further accelerating industry adoption. Consequently, the renewable shift remains a central driver shaping market expansion.

Restraint:

High installation and maintenance costs

Despite promising growth, the tidal stream and wave energy market faces notable financial barriers due to expensive installation and upkeep. Offshore construction requires specialized equipment, subsea cabling, and corrosion-resistant infrastructure, all of which elevate initial capital expenditure. Furthermore, maintenance in harsh marine conditions entails complex operations and significant downtime, limiting profitability. Smaller developers struggle with funding access, delaying large-scale commercialization. As a result, the high cost burden remains a primary restraint, restricting widespread deployment and slowing competitive scalability within the sector.

Opportunity:

Advancements in marine energy technologies

Technological innovations are unlocking new pathways for tidal and wave energy development. Enhanced turbine efficiency, advanced materials, and predictive maintenance systems are improving reliability and reducing operational costs. Additionally, digital monitoring solutions and AI-driven performance optimization enable real-time adjustments, maximizing energy output. Collaborative R&D initiatives are fostering pilot projects that validate scalability. These advancements also enhance investor confidence, drawing more capital into the sector. Therefore, continuous technological progress presents a major opportunity to propel commercial adoption and global market growth.

Threat:

Environmental and ecosystem disruption risks

Marine energy projects, while renewable, pose risks to delicate ecosystems, sparking environmental concerns. Turbine installations may affect fish migration, benthic habitats, and marine biodiversity. Furthermore, underwater noise and electromagnetic fields can disturb aquatic species, leading to stricter regulatory scrutiny. Opposition from conservation groups and local communities often delays project approvals. Such ecological uncertainties create reputational and compliance risks for developers. Consequently, ecosystem disruption remains a critical threat, potentially hindering project scalability and challenging the sector's long-term sustainability and acceptance.

Covid-19 Impact:

The pandemic temporarily disrupted the tidal stream and wave energy sector, as lockdowns delayed construction, supply chains, and R&D initiatives. Funding was redirected toward immediate economic recovery, limiting capital for experimental marine projects. However, the crisis also reinforced the urgency of clean energy transition, with governments accelerating post-COVID green policies. This renewed emphasis on resilient renewable sources positioned tidal and wave energy as strategic assets. Therefore, while short-term setbacks emerged, the pandemic ultimately reinforced the long-term growth outlook for the market.

The turbines segment is expected to be the largest during the forecast period

The turbines segment is expected to account for the largest market share during the forecast period, owing to its proven reliability and high energy conversion efficiency. Turbine systems capture consistent tidal flows, ensuring steady power output compared to wave converters. Their modular designs also support scalability across diverse geographies. Supported by ongoing innovations in materials and blade designs, turbines demonstrate cost competitiveness over time. Consequently, this segment is expected to account for the largest market share, driving industry commercialization.

The onshore segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the onshore segment is predicted to witness the highest growth rate, propelled by cost advantages and ease of installation. Onshore wave energy converters and tidal systems benefit from lower infrastructure demands compared to offshore projects, reducing capital intensity. Additionally, proximity to coastal grids facilitates faster integration of generated power. Governments and private developers are increasingly focusing on near-shore pilot projects to de-risk operations. Consequently, onshore solutions are predicted to witness rapid adoption, driving significant market acceleration globally.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to abundant coastal resources and strong government support. Nations like China, Japan, and South Korea are leading investments in ocean energy research and demonstration projects. Expanding electricity demand and renewable integration policies further support regional adoption. Additionally, public-private collaborations are fostering infrastructure development. Collectively, these factors strengthen Asia Pacific's position as the dominant hub for marine energy.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with favorable regulatory incentives and accelerating R&D activities. The United States and Canada are leveraging robust coastal zones and supportive funding frameworks to advance marine pilot projects. Technological startups and collaborations with universities are fueling innovation, reducing system inefficiencies. Furthermore, sustainability-focused investors are channeling capital into emerging ocean energy solutions. Consequently, North America's growth momentum is expected to outpace global peers.

Key players in the market

Some of the key players in Tidal Stream and Wave Energy Market include Ocean Power Technologies, Carnegie Clean Energy, Seabased, CorPower Ocean, EHL Azura, AW-Energy, Wave Swell Energy, OceanEnergy, Eco Wave Power, Orbital Marine Power, Sinn Power, Verdant Power, Marine Power Systems, Minesto, Tocardo, and Atlantis Resources

Key Developments:

In July 2025, Orbital Marine Power announced the successful deployment and grid-connection of its new 4MW "O2-X" tidal turbine at the European Marine Energy Centre (EMEC) in Orkney, Scotland. This next-generation platform features a simplified mooring system and improved rotor blades, designed to significantly reduce the levelized cost of energy (LCOE) for tidal stream projects.

In July 2025, CorPower Ocean completed the first phase of its commercial-scale pilot farm in Portugal. The project, featuring four of its C4 wave energy converters, successfully withstood a major Atlantic storm, validating the company's storm-protection technology and proving the durability of its hull and hydraulic power take-off system in extreme conditions.

In June 2025, a partnership between Minesto and Atlantis Resources was formed to co-develop a hybrid tidal and ocean thermal energy conversion (OTEC) platform. The project aims to create a multi-technology marine energy hub, leveraging Minesto's "Deep Green" kite technology for tidal streams and Atlantis's expertise in large-scale project development to provide a more consistent and reliable power output.

Components Covered:

  • Turbines
  • Generators
  • Control Systems
  • Substructures
  • Mooring & Anchoring

Deployments Covered:

  • Onshore
  • Offshore

Technologies Covered:

  • Tidal Stream
  • Oscillating Water Column
  • Overtopping Devices
  • Point Absorbers
  • Attenuators
  • Hybrid Systems

Applications Covered:

  • Power Generation
  • Desalination
  • Marine Operations Support
  • Island Electrification
  • Coastal Protection

End Users Covered:

  • Utilities
  • Independent Power Producers
  • Government Projects
  • Remote Communities
  • Industrial Users
  • Naval Installations

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Tidal Stream and Wave Energy Market, By Component

  • 5.1 Introduction
  • 5.2 Turbines
  • 5.3 Generators
  • 5.4 Control Systems
  • 5.5 Substructures
  • 5.6 Mooring & Anchoring

6 Global Tidal Stream and Wave Energy Market, By Deployment

  • 6.1 Introduction
  • 6.2 Onshore
  • 6.3 Offshore

7 Global Tidal Stream and Wave Energy Market, By Technology

  • 7.1 Introduction
  • 7.2 Tidal Stream
  • 7.3 Oscillating Water Column
  • 7.4 Overtopping Devices
  • 7.5 Point Absorbers
  • 7.6 Attenuators
  • 7.7 Hybrid Systems

8 Global Tidal Stream and Wave Energy Market, By Application

  • 8.1 Introduction
  • 8.2 Power Generation
  • 8.3 Desalination
  • 8.4 Marine Operations Support
  • 8.5 Island Electrification
  • 8.6 Coastal Protection

9 Global Tidal Stream and Wave Energy Market, By End User

  • 9.1 Introduction
  • 9.2 Utilities
  • 9.3 Independent Power Producers
  • 9.4 Government Projects
  • 9.5 Remote Communities
  • 9.6 Industrial Users
  • 9.7 Naval Installations

10 Global Tidal Stream and Wave Energy Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Ocean Power Technologies
  • 12.2 Carnegie Clean Energy
  • 12.3 Seabased
  • 12.4 CorPower Ocean
  • 12.5 EHL Azura
  • 12.6 AW-Energy
  • 12.7 Wave Swell Energy
  • 12.8 OceanEnergy
  • 12.9 Eco Wave Power
  • 12.10 Orbital Marine Power
  • 12.11 Sinn Power
  • 12.12 Verdant Power
  • 12.13 Marine Power Systems
  • 12.14 Minesto
  • 12.15 Tocardo
  • 12.16 Atlantis Resources

List of Tables

  • Table 1 Global Tidal Stream and Wave Energy Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Tidal Stream and Wave Energy Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Tidal Stream and Wave Energy Market Outlook, By Turbines (2024-2032) ($MN)
  • Table 4 Global Tidal Stream and Wave Energy Market Outlook, By Generators (2024-2032) ($MN)
  • Table 5 Global Tidal Stream and Wave Energy Market Outlook, By Control Systems (2024-2032) ($MN)
  • Table 6 Global Tidal Stream and Wave Energy Market Outlook, By Substructures (2024-2032) ($MN)
  • Table 7 Global Tidal Stream and Wave Energy Market Outlook, By Mooring & Anchoring (2024-2032) ($MN)
  • Table 8 Global Tidal Stream and Wave Energy Market Outlook, By Deployment (2024-2032) ($MN)
  • Table 9 Global Tidal Stream and Wave Energy Market Outlook, By Onshore (2024-2032) ($MN)
  • Table 10 Global Tidal Stream and Wave Energy Market Outlook, By Offshore (2024-2032) ($MN)
  • Table 11 Global Tidal Stream and Wave Energy Market Outlook, By Technology (2024-2032) ($MN)
  • Table 12 Global Tidal Stream and Wave Energy Market Outlook, By Tidal Stream (2024-2032) ($MN)
  • Table 13 Global Tidal Stream and Wave Energy Market Outlook, By Oscillating Water Column (2024-2032) ($MN)
  • Table 14 Global Tidal Stream and Wave Energy Market Outlook, By Overtopping Devices (2024-2032) ($MN)
  • Table 15 Global Tidal Stream and Wave Energy Market Outlook, By Point Absorbers (2024-2032) ($MN)
  • Table 16 Global Tidal Stream and Wave Energy Market Outlook, By Attenuators (2024-2032) ($MN)
  • Table 17 Global Tidal Stream and Wave Energy Market Outlook, By Hybrid Systems (2024-2032) ($MN)
  • Table 18 Global Tidal Stream and Wave Energy Market Outlook, By Application (2024-2032) ($MN)
  • Table 19 Global Tidal Stream and Wave Energy Market Outlook, By Power Generation (2024-2032) ($MN)
  • Table 20 Global Tidal Stream and Wave Energy Market Outlook, By Desalination (2024-2032) ($MN)
  • Table 21 Global Tidal Stream and Wave Energy Market Outlook, By Marine Operations Support (2024-2032) ($MN)
  • Table 22 Global Tidal Stream and Wave Energy Market Outlook, By Island Electrification (2024-2032) ($MN)
  • Table 23 Global Tidal Stream and Wave Energy Market Outlook, By Coastal Protection (2024-2032) ($MN)
  • Table 24 Global Tidal Stream and Wave Energy Market Outlook, By End User (2024-2032) ($MN)
  • Table 25 Global Tidal Stream and Wave Energy Market Outlook, By Utilities (2024-2032) ($MN)
  • Table 26 Global Tidal Stream and Wave Energy Market Outlook, By Independent Power Producers (2024-2032) ($MN)
  • Table 27 Global Tidal Stream and Wave Energy Market Outlook, By Government Projects (2024-2032) ($MN)
  • Table 28 Global Tidal Stream and Wave Energy Market Outlook, By Remote Communities (2024-2032) ($MN)
  • Table 29 Global Tidal Stream and Wave Energy Market Outlook, By Industrial Users (2024-2032) ($MN)
  • Table 30 Global Tidal Stream and Wave Energy Market Outlook, By Naval Installations (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.