封面
市场调查报告书
商品编码
1856912

积层製造(3D列印)材料市场预测至2032年:按材料类型、形态、技术、应用、最终用户和地区分類的全球分析

Additive Manufacturing (3D Printing) Materials Market Forecasts to 2032 - Global Analysis By Material Type (Polymers, Metals, Ceramics, Composites and Other Materials), Form, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球增材製造(3D 列印)材料市场预计到 2025 年将达到 54 亿美元,到 2032 年将达到 197 亿美元,预测期内复合年增长率为 20.3%。

积层製造(3D列印)材料是用于根据数位设计逐层建造3D物件的专用材料。这些材料包括聚合物、金属、陶瓷和复合材料,每种材料都针对特定的应用和列印技术(包括FDM、SLA、SLS和DMLS)进行了客製化。这些材料经过工程设计,具备强度、柔韧性、耐热性和生物相容性等特性,使其可应用于航太、汽车、医疗保健和消费品等产业。材料的选择直接影响列印零件的性能、耐久性和功能。材料科学的持续创新正在拓展3D列印在先进製造业的应用范围和能力。

材料科学进展

材料科学的进步正在推动积层製造材料市场的成长。聚合物、金属、陶瓷和复合材料领域的创新,不断拓展可列印材料的范围,提升其强度、柔韧性和生物相容性。这些发展使得航太、汽车和医疗保健等产业能够製造出更复杂、更强大的零件。耐热性、耐久性和表面光洁度的提升,使3D列印材料更适用于终端应用,加速了其普及应用,并拓展了数位化製造能力的边界。

高昂的材料成本

高昂的材料成本仍是积层製造材料市场的主要限制因素。专用3D列印材料,尤其是高性能金属和生物相容性聚合物,製造和加工成本高昂,限制了其在中小企业和成本敏感型产业的应用。此外,精确的配方和品管要求也增加了生产成本。儘管需求不断增长,但材料价格带来的经济障碍仍然阻碍着积层製造技术的广泛应用,尤其是在发展中地区和小批量生产场景下。

减少废弃物和生产时间

积层製造材料透过减少废弃物和加快生产週期,提供了巨大的发展机会。与传统的减材製造方法不同,3D列印逐层建造物体,最大限度地减少了材料的浪费。这种高效性转化为更低的环境影响和成本节约。快速原型製作和随选生产还能缩短开发週期,并加快产品上市速度。这些优势在医疗保健和航太等以客製化和速度为关键的行业中尤其重要。随着永续性重要,这项机会也变得越来越有吸引力。

标准化和认证有限

标准化和认证的不足对积层製造材料市场构成威胁。缺乏统一的全球材料性能标准、测试通讯协定和监管合规性标准阻碍了积层製造材料在工业领域的广泛应用。在医疗保健和航太等对安全性和可靠性要求极高的行业,这项挑战尤其严峻。缺乏统一的基准,製造商难以检验材料性能并核准认证,阻碍了市场扩张。

新冠疫情的影响:

新冠疫情对积层製造材料市场产生了多方面的影响。虽然供应链中断和工业活动减少最初减缓了市场成长,但这场危机也凸显了敏捷、分散式生产的价值。 3D列印已用于製造关键医疗用品,例如防护面罩和人工呼吸器零件,展现了其灵活性。疫情过后,各行各业正越来越多地采用积层製造技术来实现弹性、按需生产。预计这一转变将提振对先进材料的长期需求,并加速技术创新。

预计在预测期内,医疗保健产业将是最大的产业。

由于对客製化医疗设备、植入和义肢的需求不断增长,预计医疗保健领域将在预测期内占据最大的市场份额。生物相容性聚合物和金属能够实现功能性和舒适性更佳的患者客製化解决方案。 3D列印也支援手术器械和解剖模型的快速原型製作,用于术前规划。随着医疗机构寻求更具成本效益的治疗方案,积层製造材料正成为现代医疗实践不可或缺的一部分,推动了该领域市场的显着成长。

预计在预测期内,光固化成形法(SLA)细分市场将以最高的复合年增长率成长。

由于其高精度和表面光洁度优势,光固化成形法(SLA)技术预计将在预测期内保持最高的成长率。 SLA 使用紫外光固化的光敏树脂来製造高度精细且光滑的零件,使其成为牙科、医疗和消费品应用的理想选择。其能够以高解析度创建复杂形状的能力正在推动其在原型製作和最终产品生产中的应用。随着材料创新不断提升 SLA 树脂的性能,这项技术正在各个行业中迅速发展。

占比最大的地区:

由于快速的工业化进程、不断扩大的製造能力以及强有力的政府倡议,亚太地区预计将在预测期内占据最大的市场份额。中国、日本和韩国等国家正大力投资3D列印技术,用于汽车、电子和医疗保健等领域。该地区成本效益高的生产环境以及对客製化产品日益增长的需求正在推动材料消耗。亚太地区充满活力的市场环境使其成为重要的成长中心。

复合年增长率最高的地区:

由于强大的研发实力、先进的製造基础设施以及航太和医疗保健行业的强劲需求,预计北美地区在预测期内将实现最高的复合年增长率。该地区汇聚了众多领先的3D列印公司和材料创新者,推动技术突破。有利的法律规范和日益普及的数位化製造正在促进市场扩张。随着永续性和客製化成为优先事项,北美在材料创新和应用方面将继续保持领先地位。

免费客製化服务:

订阅本报告的用户可享有以下免费客製化服务之一:

  • 公司简介
    • 对其他市场参与者(最多 3 家公司)进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 原始研究资料
    • 次级研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球积层製造(3D列印)材料市场(依材料类型划分)

  • 聚合物
    • 热塑性塑料
    • 光聚合物
    • 热固性树脂
  • 金属
    • 不銹钢
  • 陶瓷
    • 氧化物陶瓷
    • 非氧化物陶瓷
  • 复合材料
    • 碳纤维增强聚合物(CFRP)
    • 玻璃纤维增强聚合物(GFRP)
  • 其他成分
    • 生物基材料
    • 具体的

6. 全球积层製造(3D列印)材料市场(按类型划分)

  • 灯丝
  • 粉末
  • 液体/树脂

7. 全球积层製造(3D列印)材料市场(依技术划分)

  • 熔融沈积成型(FDM)
  • 选择性雷射烧结(SLS)
  • 立体光固成型(SLA)
  • 数位光处理(DLP)
  • 多核融合(MJF)
  • 电子束熔化(EBM)
  • 直接金属雷射烧结(DMLS)
  • 黏着剂喷涂成型
  • 材料喷涂

8. 全球积层製造(3D列印)材料市场(依应用领域划分)

  • 原型製作
  • 巡迴
  • 生产零件
  • 研究与开发

9. 全球积层製造(3D列印)材料市场(依最终用户划分)

  • 航太与国防
  • 卫生保健
  • 消费品
  • 电子学
  • 建造
  • 教育与研究
  • 活力
  • 其他最终用户

第十章 全球积层製造(3D列印)材料市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与併购
  • 新产品上市
  • 业务拓展
  • 其他关键策略

第十二章 企业概况

  • Stratasys Ltd.
  • 3D Systems Corporation
  • EOS GmbH
  • General Electric(GE Additive)
  • BASF 3D Printing Solutions GmbH
  • Arkema SA
  • Evonik Industries AG
  • Hoganas AB
  • Sandvik AB
  • HP Inc.
  • Markforged Inc.
  • Desktop Metal Inc.
  • Materialise NV
  • Evonik Industries AG
  • Covestro AG
Product Code: SMRC31784

According to Stratistics MRC, the Global Additive Manufacturing (3D Printing) Materials Market is accounted for $5.4 billion in 2025 and is expected to reach $19.7 billion by 2032 growing at a CAGR of 20.3% during the forecast period. Additive manufacturing (3D Printing) Materials are specialized substances used to create three-dimensional objects layer by layer through digital design. These materials include polymers, metals, ceramics, and composites, each tailored for specific applications and printing technologies such as FDM, SLA, SLS, and DMLS. They are engineered for properties like strength, flexibility, heat resistance, and biocompatibility, enabling use across industries including aerospace, automotive, healthcare, and consumer goods. The choice of material directly influences the performance, durability, and functionality of the printed part. Continuous innovation in material science is expanding the capabilities and adoption of 3D printing in advanced manufacturing.

Market Dynamics:

Driver:

Advancements in Material Science

Advancements in material science are driving the growth of the additive manufacturing materials market. Innovations in polymers, metals, ceramics, and composites are expanding the range of printable materials with enhanced strength, flexibility, and biocompatibility. These developments enable more complex and functional parts across industries such as aerospace, automotive, and healthcare. Improved thermal resistance, durability, and surface finish are making 3D printing materials suitable for end-use applications, accelerating adoption and pushing the boundaries of digital manufacturing capabilities.

Restraint:

High Material Costs

High material costs remain a significant restraint in the additive manufacturing materials market. Specialized 3D printing materials, especially high-performance metals and biocompatible polymers, are expensive to produce and process. This limits their accessibility for small and medium enterprises and cost-sensitive sectors. Additionally, the need for precise formulations and quality control adds to production expenses. Despite growing demand, the economic barrier posed by material pricing continues to challenge widespread adoption, particularly in developing regions and low-volume manufacturing scenarios.

Opportunity:

Reduction in Waste and Production Time

Additive manufacturing materials offer a major opportunity by enabling reduced waste and faster production cycles. Unlike traditional subtractive methods, 3D printing builds objects layer by layer, minimizing excess material usage. This efficiency translates to lower environmental impact and cost savings. Rapid prototyping and on-demand manufacturing also shorten development timelines, allowing quicker market entry. These benefits are especially valuable in industries like healthcare and aerospace, where customization and speed are critical. As sustainability gains importance, this opportunity becomes increasingly attractive.

Threat:

Limited Standardization and Certification

Limited standardization and certification pose a threat to the additive manufacturing materials market. The absence of unified global standards for material properties, testing protocols, and regulatory compliance hinders broader industrial adoption. This challenge is particularly acute in sectors like healthcare and aerospace, where safety and reliability are paramount. Without consistent benchmarks, manufacturers face difficulties in validating material performance and securing approvals. Thus it hinders the market expansion.

Covid-19 Impact:

The COVID-19 pandemic had a mixed impact on the additive manufacturing materials market. While supply chain disruptions and reduced industrial activity slowed growth initially, the crisis also highlighted the value of agile, decentralized production. 3D printing was used to produce critical medical supplies like face shields and ventilator parts, showcasing its flexibility. Post-pandemic, industries are increasingly adopting additive manufacturing for resilient, on-demand manufacturing. This shift is expected to boost long-term demand for advanced materials and accelerate innovation.

The healthcare segment is expected to be the largest during the forecast period

The healthcare segment is expected to account for the largest market share during the forecast period, due to growing demand for customized medical devices, implants, and prosthetics. Biocompatible polymers and metals enable patient-specific solutions with improved functionality and comfort. 3D printing also supports rapid prototyping of surgical tools and anatomical models for preoperative planning. As healthcare providers seek cost-effective treatments, additive manufacturing materials are becoming integral to modern medical practices, driving significant market growth in this segment.

The stereolithography (SLA) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the stereolithography (SLA) segment is predicted to witness the highest growth rate, due to its precision and surface finish capabilities. SLA uses photopolymer resins cured by UV light to produce highly detailed and smooth parts, making it ideal for dental, medical, and consumer applications. Its ability to create complex geometries with fine resolution is fueling adoption in prototyping and end-use production. As material innovations enhance SLA resin properties, this technology is gaining momentum across industries.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to rapid industrialization, expanding manufacturing capabilities, and strong government initiatives. Countries like China, Japan, and South Korea are investing heavily in 3D printing technologies for automotive, electronics, and healthcare applications. The region's cost-effective production environment and growing demand for customized products are driving material consumption. Asia Pacific's dynamic market landscape positions it as a key growth hub.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to robust R&D, advanced manufacturing infrastructure, and strong demand from aerospace and healthcare sectors. The region is home to leading 3D printing companies and material innovators driving technological breakthroughs. Supportive regulatory frameworks and increasing adoption of digital manufacturing are accelerating market expansion. As sustainability and customization become priorities, North America continues to lead in material innovation and application.

Key players in the market

Some of the key players in Additive Manufacturing (3D Printing) Materials Market include Stratasys Ltd., 3D Systems Corporation, EOS GmbH, General Electric (GE Additive), BASF 3D Printing Solutions GmbH, Arkema S.A., Evonik Industries AG, Hoganas AB, Sandvik AB, HP Inc., Markforged Inc., Desktop Metal Inc., Materialise NV, and Covestro AG.

Key Developments:

In September 2024, Perenti and Sandvik have partnered to develop advanced diesel-electric equipment for underground mining. This collaboration aims to enhance sustainability, efficiency, and productivity in mining operations. Through Perenti's subsidiary Barminco, the companies will optimize loaders and trucks, providing valuable insights to refine Sandvik's technology.

In September 2024, Sandvik and Boliden have partnered to trial a battery-electric surface drill rig at Boliden's Kevitsa mine in Finland. This collaboration aims to assess the rig's performance in real-world conditions, focusing on energy efficiency and operational effectiveness.

Material Types Covered:

  • Polymers
  • Metals
  • Ceramics
  • Composites
  • Other Materials

Forms Covered:

  • Filament
  • Powder
  • Liquid/Resin

Technologies Covered:

  • Fused Deposition Modeling (FDM)
  • Selective Laser Sintering (SLS)
  • Stereolithography (SLA)
  • Digital Light Processing (DLP)
  • Multi Jet Fusion (MJF)
  • Electron Beam Melting (EBM)
  • Direct Metal Laser Sintering (DMLS)
  • Binder Jetting
  • Material Jetting

Applications Covered:

  • Prototyping
  • Tooling
  • Production Parts
  • Research and Development

End Users Covered:

  • Aerospace & Defense
  • Automotive
  • Healthcare
  • Consumer Goods
  • Electronics
  • Construction
  • Education & Research
  • Energy
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Additive Manufacturing (3D Printing) Materials Market, By Material Type

  • 5.1 Introduction
  • 5.2 Polymers
    • 5.2.1 Thermoplastics
    • 5.2.2 Photopolymers
    • 5.2.3 Thermosets
  • 5.3 Metals
    • 5.3.1 Stainless Steel
    • 5.3.2 Titanium
    • 5.3.3 Aluminum
  • 5.4 Ceramics
    • 5.4.1 Oxide Ceramics
    • 5.4.2 Non-Oxide Ceramics
  • 5.5 Composites
    • 5.5.1 Carbon Fiber Reinforced Polymers (CFRP)
    • 5.5.2 Glass Fiber Reinforced Polymers (GFRP)
  • 5.6 Other Materials
    • 5.6.1 Bio-based Materials
    • 5.6.2 Concrete

6 Global Additive Manufacturing (3D Printing) Materials Market, By Form

  • 6.1 Introduction
  • 6.2 Filament
  • 6.3 Powder
  • 6.4 Liquid/Resin

7 Global Additive Manufacturing (3D Printing) Materials Market, By Technology

  • 7.1 Introduction
  • 7.2 Fused Deposition Modeling (FDM)
  • 7.3 Selective Laser Sintering (SLS)
  • 7.4 Stereolithography (SLA)
  • 7.5 Digital Light Processing (DLP)
  • 7.6 Multi Jet Fusion (MJF)
  • 7.7 Electron Beam Melting (EBM)
  • 7.8 Direct Metal Laser Sintering (DMLS)
  • 7.9 Binder Jetting
  • 7.10 Material Jetting

8 Global Additive Manufacturing (3D Printing) Materials Market, By Application

  • 8.1 Introduction
  • 8.2 Prototyping
  • 8.3 Tooling
  • 8.4 Production Parts
  • 8.5 Research and Development

9 Global Additive Manufacturing (3D Printing) Materials Market, By End User

  • 9.1 Introduction
  • 9.2 Aerospace & Defense
  • 9.3 Automotive
  • 9.4 Healthcare
  • 9.5 Consumer Goods
  • 9.6 Electronics
  • 9.7 Construction
  • 9.8 Education & Research
  • 9.9 Energy
  • 9.10 Other End Users

10 Global Additive Manufacturing (3D Printing) Materials Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Stratasys Ltd.
  • 12.2 3D Systems Corporation
  • 12.3 EOS GmbH
  • 12.4 General Electric (GE Additive)
  • 12.5 BASF 3D Printing Solutions GmbH
  • 12.6 Arkema S.A.
  • 12.7 Evonik Industries AG
  • 12.8 Hoganas AB
  • 12.9 Sandvik AB
  • 12.10 HP Inc.
  • 12.11 Markforged Inc.
  • 12.12 Desktop Metal Inc.
  • 12.13 Materialise NV
  • 12.14 Evonik Industries AG
  • 12.15 Covestro AG

List of Tables

  • Table 1 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 3 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Polymers (2024-2032) ($MN)
  • Table 4 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Thermoplastics (2024-2032) ($MN)
  • Table 5 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Photopolymers (2024-2032) ($MN)
  • Table 6 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Thermosets (2024-2032) ($MN)
  • Table 7 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Metals (2024-2032) ($MN)
  • Table 8 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Stainless Steel (2024-2032) ($MN)
  • Table 9 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Titanium (2024-2032) ($MN)
  • Table 10 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Aluminum (2024-2032) ($MN)
  • Table 11 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Ceramics (2024-2032) ($MN)
  • Table 12 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Oxide Ceramics (2024-2032) ($MN)
  • Table 13 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Non-Oxide Ceramics (2024-2032) ($MN)
  • Table 14 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Composites (2024-2032) ($MN)
  • Table 15 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Carbon Fiber Reinforced Polymers (CFRP) (2024-2032) ($MN)
  • Table 16 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Glass Fiber Reinforced Polymers (GFRP) (2024-2032) ($MN)
  • Table 17 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 18 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Bio-based Materials (2024-2032) ($MN)
  • Table 19 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Concrete (2024-2032) ($MN)
  • Table 20 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Form (2024-2032) ($MN)
  • Table 21 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Filament (2024-2032) ($MN)
  • Table 22 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Powder (2024-2032) ($MN)
  • Table 23 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Liquid/Resin (2024-2032) ($MN)
  • Table 24 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Technology (2024-2032) ($MN)
  • Table 25 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Fused Deposition Modeling (FDM) (2024-2032) ($MN)
  • Table 26 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Selective Laser Sintering (SLS) (2024-2032) ($MN)
  • Table 27 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Stereolithography (SLA) (2024-2032) ($MN)
  • Table 28 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Digital Light Processing (DLP) (2024-2032) ($MN)
  • Table 29 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Multi Jet Fusion (MJF) (2024-2032) ($MN)
  • Table 30 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Electron Beam Melting (EBM) (2024-2032) ($MN)
  • Table 31 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Direct Metal Laser Sintering (DMLS) (2024-2032) ($MN)
  • Table 32 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Binder Jetting (2024-2032) ($MN)
  • Table 33 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Material Jetting (2024-2032) ($MN)
  • Table 34 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Application (2024-2032) ($MN)
  • Table 35 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Prototyping (2024-2032) ($MN)
  • Table 36 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Tooling (2024-2032) ($MN)
  • Table 37 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Production Parts (2024-2032) ($MN)
  • Table 38 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Research and Development (2024-2032) ($MN)
  • Table 39 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By End User (2024-2032) ($MN)
  • Table 40 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 41 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 42 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Healthcare (2024-2032) ($MN)
  • Table 43 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Consumer Goods (2024-2032) ($MN)
  • Table 44 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Electronics (2024-2032) ($MN)
  • Table 45 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Construction (2024-2032) ($MN)
  • Table 46 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Education & Research (2024-2032) ($MN)
  • Table 47 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Energy (2024-2032) ($MN)
  • Table 48 Global Additive Manufacturing (3D Printing) Materials Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.