封面
市场调查报告书
商品编码
1856964

全球先进回收技术市场:预测(至2032年)-按产品、材料、部署方法、技术、最终用户和地区进行分析

Advanced Recycling Technologies Market Forecasts to 2032 - Global Analysis By Product, Feedstock, Deployment Mode, Technology, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,预计 2025 年全球先进回收技术市场规模将达到 30.8 亿美元,到 2032 年将达到 231.6 亿美元,预测期内复合年增长率将达到 33.4%。

先进回收技术(ART)是指将废弃物,特别是塑胶和复杂工业产品,转化为可再利用资源、燃料和化学品的创新製程。与传统的机械回收不同,ART采用化学、酵素法或热法在分子层面分解材料,从而回收高品质的产品。这些技术透过减少掩埋的依赖、降低温室气体排放和支持循环经济,来应对环境挑战。 ART包括热解、解聚合和溶剂分解等技术,为寻求高效能废弃物回收和资源节约的产业提供永续的解决方案。

消费者对永续产品的需求

为了实现环保目标并满足消费者期望,各大品牌正转向循环材料和低碳投入。化学回收平台能够回收以往被认为不可回收的塑胶和复合材料。与供应链可追溯性工具的整合提高了透明度和合规性。食品、工业和特种应用领域对再生材料的需求日益增长。这一趋势正在推动整个回收基础设施的创新和投资。

监管不确定性和政策差异

「先进回收」和「化学回收」的定义因司法管辖区而异,这会影响授权和合规性。原料品质、排放和产品标籤缺乏统一标准,造成营运上的不确定性。围绕废弃物分类和生产者延伸责任的政策变化会影响经营模式和供应链。基础设施建设依赖长期的监管透明度和相关人员的合作。这些限制阻碍了扩充性和跨境整合。

企业永续性承诺

企业正致力于减少原生塑胶的使用,并提高包装和产品的回收率。对闭合迴路系统和材料回收平台的投资有助于企业进行环境、社会和治理(ESG)报告,并提升品牌定位。回收商、加工商和品牌所有者之间的伙伴关係,能够保障原料供应,并促进产品创新。与碳计量和生命週期分析工具的整合,则有助于更有效地衡量环境影响。这些趋势正在推动循环经济基础设施的长期发展。

与排放相关的环境问题

热解和气化等化学过程会产生温室气体、挥发性化合物和有害物质。生命週期排放和能源强度因原料类型和技术配置而异。社区反对和环保人士的宣传活动可能会延误授权和计划开发。提高製程效率和环境影响的透明度对于赢得相关人员的信任至关重要。这些风险持续限制全部区域的技术应用和政策支援。

新冠疫情的影响:

疫情扰乱了全球市场的废弃物收集、回收作业和供应链。封锁期间,一次性塑胶的需求激增,给回收基础设施带来了更大压力。然而,疫情后的回收策略优先考虑包装和材料的永续性和循环性。各国政府和企业加快了对先进回收技术的投资,以应对气候变迁和减少废弃物的目标。消费者对环境影响和资源效率的意识在各个消费群体中都有所提高。这些转变正在加速先进回收技术与工业和市政系统的长期整合。

预计单体和聚合物细分市场在预测期内将达到最大规模。

由于单体和聚合物在实现闭合迴路回收和材料再生方面发挥核心作用,预计在预测期内,该领域将占据最大的市场份额。诸如解聚合和溶剂分解等技术可将塑胶废弃物转化为可用于包装和纺织品的原生品质单体。与石化和聚合物生产线的整合使其具有扩充性和成本效益。食品、汽车和电子应用领域对再生聚合物的需求不断增长。这些优势正在巩固该领域在化学品和材料回收平台中的主导地位。

预计在预测期内,模组化和行动单元细分市场将以最高的复合年增长率成长。

随着分散式回收解决方案在都市区、工业和偏远地区的规模化应用,预计模组化和行动单元细分市场将在预测期内实现最高成长率。紧凑型系统能够将塑胶废弃物现场加工成燃料、单体和中间体。在港口、物流枢纽和製造基地部署这些系统可以降低运输成本和排放。供应商提供货柜式单元,支援即插即用整合和远端监控。市政当局、军事基地和灾害復原区对灵活且可扩展的解决方案的需求日益增长。这些趋势正在加速行动回收基础设施的整体发展。

比最大的地区

由于北美地区拥有先进的废弃物管理基础设施、监管承诺以及企业永续性指令,预计该地区将在预测期内占据最大的市场份额。美国和加拿大的企业正在包装、汽车和工业领域部署化学回收平台。对原料整合、授权和技术规模化的投资为这些平台的扩张提供了支持。大型回收商、聚合物製造商和品牌所有者的存在正在推动创新和市场协调。监管机构正透过试点计画和循环经济框架来支持先进的回收技术。这些因素共同推动了北美在部署回收技术方面的领先地位。

复合年增长率最高的地区:

由于塑胶废弃物堆积、都市化加快以及政策改革等因素的共同作用,预计亚太地区在预测期内将呈现最高的复合年增长率。中国、印度、日本和印尼等国正在市政和工业领域推广先进的回收技术。政府支持的项目正在推动基础设施建设、技术转移和新兴企业孵化。当地企业正在推出模组化平台,以满足区域原料和合规性需求。都市区、沿海地区和製造业带对可扩展、低成本解决方案的需求日益增长。这些趋势正在推动区域先进回收生态系统的发展。

免费客製化服务

订阅本报告的用户可从以下免费自订选项中选择一项:

  • 公司简介
    • 对最多三家其他公司进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域分类
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 引言

  • 概述
  • 相关利益者
  • 分析范围
  • 分析方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 分析方法
  • 分析材料
    • 原始研究资料
    • 二手研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 市场机会
  • 威胁
  • 产品分析
  • 技术分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代产品的威胁
  • 新参与企业的威胁
  • 公司间的竞争

5. 全球先进回收技术市场(依产品划分)

  • 石脑油
  • 重柴油
  • 蜡残留物
  • 单体和聚合物
  • 合成气
  • 再生炭黑
  • 其他产品

6. 全球先进回收技术市场(依材料类型划分)

  • 混合塑胶废弃物
  • 聚烯(PE、PP)
  • PET/聚酯
  • 聚氯乙烯/聚苯乙烯
  • 生物质和有机废弃物
  • 电子废弃物(电子废弃物)
  • 其他成分

7. 全球先进回收技术市场(依部署方式划分)

  • 集中式回收厂
  • 模组化指挥单元/移动单元
  • 现场工业集成

8. 全球先进回收技术市场(依技术划分)

  • 热解/热解
  • 气化
  • 解聚
  • 微波回收
  • 溶剂型回收
  • 酵素和生化回收
  • 其他技术

9. 全球先进回收技术市场(依最终用户划分)

  • 食品和饮料包装
  • 非食品消费品包装
  • 汽车与运输
  • 电子电器设备
  • 基础设施和建筑
  • 纺织服装
  • 其他最终用户

第十章 全球先进回收技术市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 合约、商业伙伴关係和合资企业
  • 企业合併(M&A)
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十二章:公司简介

  • BASF SE
  • Dow Inc.
  • Covestro AG
  • Eastman Chemical Company
  • LyondellBasell Industries NV
  • Loop Industries, Inc.
  • Brightmark LLC
  • Agilyx ASA
  • Carbios SA
  • Plastic Energy Ltd.
  • Pyrowave Inc.
  • GreenMantra Technologies Ltd.
  • Rement GmbH
  • Battrecycle Ltd.
  • Beyond Renewables Ltd.
Product Code: SMRC31828

According to Stratistics MRC, the Global Advanced Recycling Technologies Market is accounted for $3.08 billion in 2025 and is expected to reach $23.16 billion by 2032 growing at a CAGR of 33.4% during the forecast period. Advanced Recycling Technologies (ART) refers to innovative processes that transform waste materials, especially plastics and complex industrial by-products, into reusable resources, fuels, or chemicals. Unlike traditional mechanical recycling, ART employs chemical, enzymatic, or thermal methods to break down materials at the molecular level, enabling the recovery of high-quality outputs. These technologies address environmental challenges by reducing landfill dependency, lowering greenhouse gas emissions, and supporting a circular economy. ART encompasses techniques like pyrolysis, depolymerization, and solvolysis, offering sustainable solutions for industries seeking efficient waste valorization and resource conservation.

Market Dynamics:

Driver:

Consumer demand for sustainable products

Brands are shifting toward circular materials and low-carbon inputs to meet environmental targets and consumer expectations. Chemical recycling platforms enable recovery of plastics and composites previously considered non-recyclable. Integration with supply chain traceability tools improves transparency and compliance. Demand for recycled feedstock is rising across food-grade, industrial, and specialty applications. These dynamics are propelling innovation and investment across recycling infrastructure.

Restraint:

Regulatory uncertainty and policy variability

Definitions of "advanced recycling" and "chemical recycling" vary across jurisdictions, affecting permitting and compliance. Lack of harmonized standards for feedstock quality, emissions, and product labeling creates operational ambiguity. Policy shifts around waste classification and extended producer responsibility impact business models and supply chains. Infrastructure development depends on long-term regulatory clarity and stakeholder alignment. These constraints continue to hinder scalability and cross-border integration.

Opportunity:

Corporate sustainability commitments

Companies are pledging to reduce virgin plastic use and increase recycled content in packaging and products. Investment in closed-loop systems and material recovery platforms supports ESG reporting and brand positioning. Partnerships between recyclers, converters, and brand owners enable feedstock security and product innovation. Integration with carbon accounting and lifecycle analysis tools improves impact measurement. These trends are fostering long-term growth across circular economy infrastructure.

Threat:

Environmental concerns over emissions

Chemical processes such as pyrolysis and gasification may generate greenhouse gases, volatile compounds, or hazardous byproducts. Lifecycle emissions and energy intensity vary across feedstock types and technology configurations. Community opposition and activist campaigns can delay permitting and project development. Transparency around process efficiency and environmental impact is essential for stakeholder trust. These risks continue to constrain adoption and policy support across sensitive regions.

Covid-19 Impact:

The pandemic disrupted waste collection, recycling operations, and supply chains across global markets. Demand for single-use plastics surged during lockdowns, increasing pressure on recycling infrastructure. However, post-pandemic recovery strategies emphasized sustainability and circularity across packaging and materials. Governments and corporations accelerated investment in advanced recycling to meet climate and waste reduction goals. Public awareness of environmental impact and resource efficiency increased across consumer segments. These shifts are accelerating long-term integration of advanced recycling into industrial and municipal systems.

The monomers & polymers segment is expected to be the largest during the forecast period

The monomers & polymers segment is expected to account for the largest market share during the forecast period due to their central role in enabling closed-loop recycling and feedstock recovery. Technologies such as depolymerization and solvolysis convert plastic waste into virgin-quality monomers for reuse in packaging and textiles. Integration with petrochemical and polymer production lines supports scalability and cost efficiency. Demand for recycled polymers is rising across food-grade, automotive, and electronics applications. These capabilities are boosting segment dominance across chemical and material recovery platforms.

The modular & mobile units segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the modular & mobile units segment is predicted to witness the highest growth rate as decentralized recycling solutions scale across urban, industrial, and remote locations. Compact systems enable on-site processing of plastic waste into fuels, monomers, or intermediates. Deployment in ports, logistics hubs, and manufacturing sites reduces transportation costs and emissions. Vendors offer containerized units with plug-and-play integration and remote monitoring. Demand for flexible, scalable solutions is rising across municipalities, military bases, and disaster recovery zones. These dynamics are accelerating growth across mobile recycling infrastructure.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share due to its advanced waste management infrastructure, regulatory engagement, and corporate sustainability mandates. U.S. and Canadian firms deploy chemical recycling platforms across packaging, automotive, and industrial sectors. Investment in feedstock aggregation, permitting, and technology scale-up supports platform expansion. Presence of leading recyclers, polymer producers, and brand owners drives innovation and market alignment. Regulatory bodies support advanced recycling through pilot programs and circular economy frameworks. These factors are boosting North America's leadership in recycling technology deployment.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR as plastic waste accumulation, urbanization, and policy reform converge. Countries like China, India, Japan, and Indonesia scale advanced recycling across municipal and industrial sectors. Government-backed programs support infrastructure development, technology transfer, and startup incubation. Local firms launch modular platforms tailored to regional feedstock and compliance needs. Demand for scalable, low-cost solutions rises across urban centers, coastal regions, and manufacturing zones. These trends are accelerating regional growth across advanced recycling ecosystems.

Key players in the market

Some of the key players in Advanced Recycling Technologies Market include BASF SE, Dow Inc., Covestro AG, Eastman Chemical Company, LyondellBasell Industries N.V., Loop Industries, Inc., Brightmark LLC, Agilyx ASA, Carbios SA, Plastic Energy Ltd., Pyrowave Inc., GreenMantra Technologies Ltd., Rement GmbH, Battrecycle Ltd. and Beyond Renewables Ltd.

Key Developments:

In October 2025, BASF formalized collaborations with ZF Friedrichshafen and Poppelmann GmbH to validate its polyamide recycling technologies in real-world automotive use. These partnerships enable closed-loop recycling of technical plastics and support OEMs in meeting EU End-of-Life Vehicle Directive and Ecodesign requirements.

In March 2025, Dow announced a strategic investment in Xycle, a Rotterdam-based advanced recycling startup. The partnership supports the construction of Xycle's flagship pyrolysis facility, capable of processing 21 kilotons of plastic waste annually. Dow will serve as an off-taker of the resulting circular feedstock, integrating it into virgin-quality plastic production.

Products Covered:

  • Naphtha
  • Heavy Gas Oil
  • Wax Residue
  • Monomers & Polymers
  • Syngas
  • Recycled Carbon Black
  • Other Products

Feedstocks Covered:

  • Mixed Plastic Waste
  • Polyolefins (PE, PP)
  • PET & Polyester
  • PVC & Polystyrene
  • Biomass & Organic Waste
  • Electronic Waste (E-Waste)
  • Other Feedstocks

Deployment Modes Covered:

  • Centralized Recycling Plants
  • Modular & Mobile Units
  • On-Site Industrial Integration

Technologies Covered:

  • Pyrolysis / Thermal Cracking
  • Gasification
  • Depolymerization
  • Microwave-Assisted Recycling
  • Solvent-Based Recycling
  • Enzymatic & Biochemical Recycling
  • Other Technologies

End Users Covered:

  • Food & Beverage Packaging
  • Non-Food Consumer Packaging
  • Automotive & Transportation
  • Electronics & Electricals
  • Infrastructure & Construction
  • Textiles & Apparel
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Advanced Recycling Technologies Market, By Product

  • 5.1 Introduction
  • 5.2 Naphtha
  • 5.3 Heavy Gas Oil
  • 5.4 Wax Residue
  • 5.5 Monomers & Polymers
  • 5.6 Syngas
  • 5.7 Recycled Carbon Black
  • 5.8 Other Products

6 Global Advanced Recycling Technologies Market, By Feedstock

  • 6.1 Introduction
  • 6.2 Mixed Plastic Waste
  • 6.3 Polyolefins (PE, PP)
  • 6.4 PET & Polyester
  • 6.5 PVC & Polystyrene
  • 6.6 Biomass & Organic Waste
  • 6.7 Electronic Waste (E-Waste)
  • 6.8 Other Feedstocks

7 Global Advanced Recycling Technologies Market, By Deployment Mode

  • 7.1 Introduction
  • 7.2 Centralized Recycling Plants
  • 7.3 Modular & Mobile Units
  • 7.4 On-Site Industrial Integration

8 Global Advanced Recycling Technologies Market, By Technology

  • 8.1 Introduction
  • 8.2 Pyrolysis / Thermal Cracking
  • 8.3 Gasification
  • 8.4 Depolymerization
  • 8.5 Microwave-Assisted Recycling
  • 8.6 Solvent-Based Recycling
  • 8.7 Enzymatic & Biochemical Recycling
  • 8.8 Other Technologies

9 Global Advanced Recycling Technologies Market, By End User

  • 9.1 Introduction
  • 9.2 Food & Beverage Packaging
  • 9.3 Non-Food Consumer Packaging
  • 9.4 Automotive & Transportation
  • 9.5 Electronics & Electricals
  • 9.6 Infrastructure & Construction
  • 9.7 Textiles & Apparel
  • 9.9 Other End Users

10 Global Advanced Recycling Technologies Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 BASF SE
  • 12.2 Dow Inc.
  • 12.3 Covestro AG
  • 12.4 Eastman Chemical Company
  • 12.5 LyondellBasell Industries N.V.
  • 12.6 Loop Industries, Inc.
  • 12.7 Brightmark LLC
  • 12.8 Agilyx ASA
  • 12.9 Carbios SA
  • 12.10 Plastic Energy Ltd.
  • 12.11 Pyrowave Inc.
  • 12.12 GreenMantra Technologies Ltd.
  • 12.13 Rement GmbH
  • 12.14 Battrecycle Ltd.
  • 12.15 Beyond Renewables Ltd.

List of Tables

  • Table 1 Global Advanced Recycling Technologies Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Advanced Recycling Technologies Market Outlook, By Product (2024-2032) ($MN)
  • Table 3 Global Advanced Recycling Technologies Market Outlook, By Naphtha (2024-2032) ($MN)
  • Table 4 Global Advanced Recycling Technologies Market Outlook, By Heavy Gas Oil (2024-2032) ($MN)
  • Table 5 Global Advanced Recycling Technologies Market Outlook, By Wax Residue (2024-2032) ($MN)
  • Table 6 Global Advanced Recycling Technologies Market Outlook, By Monomers & Polymers (2024-2032) ($MN)
  • Table 7 Global Advanced Recycling Technologies Market Outlook, By Syngas (2024-2032) ($MN)
  • Table 8 Global Advanced Recycling Technologies Market Outlook, By Recycled Carbon Black (2024-2032) ($MN)
  • Table 9 Global Advanced Recycling Technologies Market Outlook, By Other Products (2024-2032) ($MN)
  • Table 10 Global Advanced Recycling Technologies Market Outlook, By Feedstock (2024-2032) ($MN)
  • Table 11 Global Advanced Recycling Technologies Market Outlook, By Mixed Plastic Waste (2024-2032) ($MN)
  • Table 12 Global Advanced Recycling Technologies Market Outlook, By Polyolefins (PE, PP) (2024-2032) ($MN)
  • Table 13 Global Advanced Recycling Technologies Market Outlook, By PET & Polyester (2024-2032) ($MN)
  • Table 14 Global Advanced Recycling Technologies Market Outlook, By PVC & Polystyrene (2024-2032) ($MN)
  • Table 15 Global Advanced Recycling Technologies Market Outlook, By Biomass & Organic Waste (2024-2032) ($MN)
  • Table 16 Global Advanced Recycling Technologies Market Outlook, By Electronic Waste (E-Waste) (2024-2032) ($MN)
  • Table 17 Global Advanced Recycling Technologies Market Outlook, By Other Feedstocks (2024-2032) ($MN)
  • Table 18 Global Advanced Recycling Technologies Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 19 Global Advanced Recycling Technologies Market Outlook, By Centralized Recycling Plants (2024-2032) ($MN)
  • Table 20 Global Advanced Recycling Technologies Market Outlook, By Modular & Mobile Units (2024-2032) ($MN)
  • Table 21 Global Advanced Recycling Technologies Market Outlook, By On-Site Industrial Integration (2024-2032) ($MN)
  • Table 22 Global Advanced Recycling Technologies Market Outlook, By Technology (2024-2032) ($MN)
  • Table 23 Global Advanced Recycling Technologies Market Outlook, By Pyrolysis / Thermal Cracking (2024-2032) ($MN)
  • Table 24 Global Advanced Recycling Technologies Market Outlook, By Gasification (2024-2032) ($MN)
  • Table 25 Global Advanced Recycling Technologies Market Outlook, By Depolymerization (2024-2032) ($MN)
  • Table 26 Global Advanced Recycling Technologies Market Outlook, By Microwave-Assisted Recycling (2024-2032) ($MN)
  • Table 27 Global Advanced Recycling Technologies Market Outlook, By Solvent-Based Recycling (2024-2032) ($MN)
  • Table 28 Global Advanced Recycling Technologies Market Outlook, By Enzymatic & Biochemical Recycling (2024-2032) ($MN)
  • Table 29 Global Advanced Recycling Technologies Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 30 Global Advanced Recycling Technologies Market Outlook, By End User (2024-2032) ($MN)
  • Table 31 Global Advanced Recycling Technologies Market Outlook, By Food & Beverage Packaging (2024-2032) ($MN)
  • Table 32 Global Advanced Recycling Technologies Market Outlook, By Non-Food Consumer Packaging (2024-2032) ($MN)
  • Table 33 Global Advanced Recycling Technologies Market Outlook, By Automotive & Transportation (2024-2032) ($MN)
  • Table 34 Global Advanced Recycling Technologies Market Outlook, By Electronics & Electricals (2024-2032) ($MN)
  • Table 35 Global Advanced Recycling Technologies Market Outlook, By Infrastructure & Construction (2024-2032) ($MN)
  • Table 36 Global Advanced Recycling Technologies Market Outlook, By Textiles & Apparel (2024-2032) ($MN)
  • Table 37 Global Advanced Recycling Technologies Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.