封面
市场调查报告书
商品编码
1859713

基因递送技术市场预测至2032年:按组件、工作流程、技术、部署类型、最终用户和地区分類的全球分析

Gene Delivery Technology Market Forecasts to 2032 - Global Analysis By Component, Workflow, Technology, Mode of Delivery, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球基因转殖技术市场预计到 2025 年将达到 41.6 亿美元,到 2032 年将达到 90.3 亿美元,预测期内复合年增长率为 11.7%。

基因递送技术是指将遗传物质(例如DNA、RNA或治疗性基因)递送到目标细胞以改变或控制其功能的各种方法和系统。基因递送是基因治疗的基石,它透过纠正缺陷基因或导入有益基因,能够治疗遗传性疾病、癌症和感染疾病。基因传递可采用病毒载体(例如腺病毒和慢病毒)或非病毒方法(例如奈米颗粒、脂质体)以及物理技术(例如电穿孔)来实现。高效的基因传递能够确保稳定性、标靶表达、最小化免疫反应和持续的治疗效果,因此对于推进个人化医疗和生物医学研究至关重要。

对个人化医疗的需求日益增长

精准医疗方法需要将遗传物质标靶递送至特定组织和细胞类型,以达到疾病修饰或调控的目的。该平台支援肿瘤学、罕见疾病和再生医学领域的体外和体内递送。与伴随诊断和生物标记分析的整合可提高治疗的特异性和患者疗效。临床试验和转化研究正在推动对可扩展、可客製化递送系统的需求。这些趋势正在推动该平台在个人化和基因治疗生态系统中的广泛应用。

高昂的研发和製造成本

基因递送系统需要复杂的製剂纯化和品管流程,以确保其安全性和有效性。细胞株工程和病毒载体生产的GMP合规性增加了营运成本和产品上市时间。小型公司和学术实验室在获得可扩展生产的资金和基础设施方面面临挑战。监管要求和批次差异进一步增加了成本优化和平台可靠性的难度。这些限制因素持续阻碍分散式、预算敏感型治疗计画采用基因传递系统。

基因编辑技术的进步

CRISPR碱基编辑和先导编辑需要将核酸酶引导RNA和修復模板精确且有效率地递送到目标细胞中。相关平台支援模组化有效载荷设计,而组织特异性启动子和诱导表达系统则增强了控制性和安全性。与脂质奈米颗粒电穿孔和病毒载体的整合拓展了整体治疗方法的递送选择。细胞治疗、再生医学和罕见疾病领域对高保真度、可程式设计递送基础设施的需求日益增长。这些趋势正在推动基因编辑递送平台和应用的整体发展。

伦理和社会意识问题

对基因编辑脱靶效应和长期安全性的担忧,使得相关人员的参与和临床试验招募变得复杂。公众的怀疑和错误讯息降低了人们对基因疗法和递送平台的信任。监管机构面临着如何在技术创新、伦理监管和社会影响之间取得平衡的挑战。缺乏标准化的沟通和教育框架阻碍了透明度和知情同意。这些限制持续限制敏感治疗领域中平台的应用和政策整合。

新冠疫情的影响:

疫情扰乱了基因转移计画的临床试验生产和供应链。封锁和资源重新分配延缓了病患招募、载体生产和监管批准。然而,疫情后的復苏重点在于基因组医学疫苗的创新和平台扩充性。用于mRNA递送的脂质奈米颗粒和病毒载体的投资激增,以应用于感染疾病和肿瘤治疗。消费者和医疗保健领域对基因技术和个人化医疗的认知度也随之提升。这些转变强化了对基因转移基础设施和转化研究的长期投资。

预计在预测期内,病毒递送系统(AAV、慢病毒)细分市场将成为最大的细分市场。

由于其高效的有效载荷能力和在基因治疗项目中的临床检验,病毒递送系统(AAV、慢病毒)预计将在预测期内占据最大的市场份额。该平台支援在多种适应症中实现稳定整合、瞬时表达和组织特异性靶向。 AAV载体具有低免疫抗原性和长期表达的优势,而慢病毒则支持整合到分裂细胞中以实现持续治疗。与可扩展的生产和监管框架的整合将有助于临床应用和商业化。在罕见疾病肿瘤和眼科领域,对检验的高性能病毒载体的需求正在增长。

预计在预测期内,向量设计和优化细分市场将以最高的复合年增长率成长。

预计在预测期内,载体设计和最佳化领域将实现最高成长率。载体设计和优化平台支援启动子工程、密码子优化和有效载荷模组化,从而可根据细胞类型和疾病背景自订递送方案。人工智慧主导的设计、高通量筛检以及合成生物学的整合加速了开发和性能优化。基因编辑细胞疗法和疫苗应用对可自订和可扩展的载体系统的需求日益增长。各公司正在将载体创新与监管合规性和临床递送策略相结合。这一趋势正在推动以设计为中心的基因递送平台和服务的发展。

占比最大的地区:

预计在预测期内,北美将占据最大的市场份额,这主要得益于其在基因转移技术领域先进的生物技术生态系统所具备的监管和临床基础设施。企业和学术机构正在部署用于肿瘤学、罕见疾病和再生医学计画的整合化生产和分析平台。对载体工程GMP设施和转化研究的投资,有助于扩充性和合规性。大型治疗研发公司、合约研究组织(CRO)和监管机构的存在,推动了创新和标准化。各公司正在调整其交付策略,以符合FDA的指导方针、NIH的资助以及患者权益倡导倡议。这些因素共同推动了北美在基因转殖商业化和临床应用方面的领先地位。

复合年增长率最高的地区:

在预测期内,亚太地区预计将呈现最高的复合年增长率,这主要得益于基因组医学和生物技术投资在区域经济中的融合,旨在推动医疗保健现代化。中国、印度、日本和韩国等国家正在学术研究、公共卫生和治疗药物新兴企业扩大基因转移平台的规模。政府支持的计画正在助力基因医学领域的基础设施建设、新创企业孵化和国际合作。本地企业正在提供经济高效且符合当地疾病特征和法律规范的解决方案。肿瘤学、罕见疾病和疫苗项目对可扩展且兼顾文化差异的交付基础设施的需求日益增长。这些趋势正在推动区域内基因转殖创新和应用的成长。

免费客製化服务:

订阅本报告的用户可从以下免费自订选项中选择一项:

  • 公司简介
    • 对其他市场参与者(最多 3 家公司)进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 原始研究资料
    • 二手研究资料
    • 先决条件

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球基因转殖技术市场(依组件划分)

  • 部署平台
  • 试剂和耗材
  • 设备和装置
  • 软体和分析工具
  • 服务

6. 全球基因转殖技术市场(依工作流程划分)

  • 向量设计与最佳化
  • 製造和规模化
  • 品管与检验
  • 临床前试验
  • 临床交付与管理
  • 其他工作流程

7. 全球基因转殖技术市场(依技术分类)

  • 病毒递送系统
    • 腺病毒
    • 慢病毒
    • 逆转录病毒
    • 腺结合病毒(AAV)
    • 单纯疱疹病毒(HSV)
  • 非病毒递送系统
    • 脂质奈米颗粒(LNPs)
    • 电穿孔
    • 显微注射
    • 化学转染法
  • 混合和新兴技术
    • 外泌体介导的递送
    • 细胞渗透性肽(CPP)
    • 奈米载体(金属、聚合物、脂质基)
    • 微流体和实验室晶片系统

8. 全球基因转殖技术市场依实施类型划分

  • 注射给药
  • 吸入式给药
  • 局部配送
  • 口语交流
  • 其他实作方法

9. 全球基因转殖技术市场(依最终用户划分)

  • 製药和生物技术公司
  • 学术研究机构
  • 合约研究组织(CRO)
  • 合约研发生产组织(CDMO)
  • 医院和诊所
  • 其他最终用户

第十章 全球基因转殖技术市场(依地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与併购
  • 新产品上市
  • 业务拓展
  • 其他关键策略

第十二章 企业概况

  • Pfizer Inc.
  • Novartis AG
  • F. Hoffmann-La Roche Ltd.
  • Bayer AG
  • Amgen Inc.
  • Takara Bio Inc.
  • Becton, Dickinson and Company
  • Thermo Fisher Scientific Inc.
  • Lonza Group AG
  • Catalent Inc.
  • SIRION Biotech GmbH
  • GenScript Biotech Corporation
  • Genezen LLC
  • Oxford Biomedica plc
  • uniQure NV
Product Code: SMRC31937

According to Stratistics MRC, the Global Gene Delivery Technology Market is accounted for $4.16 billion in 2025 and is expected to reach $9.03 billion by 2032 growing at a CAGR of 11.7% during the forecast period. Gene delivery technology refers to the methods and systems used to transport genetic material-such as DNA, RNA, or therapeutic genes-into target cells to modify or regulate their function. It is a cornerstone of gene therapy, enabling treatment of genetic disorders, cancers, and infectious diseases by correcting defective genes or introducing beneficial ones. Delivery can be achieved using viral vectors, like adenoviruses or lentiviruses, or non-viral methods, such as nanoparticles, liposomes, and physical techniques like electroporation. Efficient gene delivery ensures stability, targeted expression, minimal immune response, and sustained therapeutic effect, making it critical for advancing personalized medicine and biomedical research.

Market Dynamics:

Driver:

Increasing demand for personalized medicine

Precision medicine initiatives require targeted delivery of genetic material to specific tissues and cell types for disease correction and modulation. Platforms support ex vivo and in vivo delivery across oncology rare diseases and regenerative medicine. Integration with companion diagnostics and biomarker profiling enhances treatment specificity and patient outcomes. Demand for scalable and customizable delivery systems is rising across clinical trials and translational research. These dynamics are propelling platform deployment across personalized and gene-based therapeutic ecosystems.

Restraint:

High development and manufacturing costs

Gene delivery systems require complex formulation purification and quality control processes to ensure safety and efficacy. Viral vector production cell line engineering and GMP compliance add to operational overhead and time-to-market. Smaller firms and academic labs face challenges in securing funding and infrastructure for scalable manufacturing. Regulatory requirements and batch variability further complicate cost optimization and platform reliability. These constraints continue to hinder adoption across decentralized and budget-sensitive therapeutic programs.

Opportunity:

Advancements in gene editing technologies

CRISPR base editing and prime editing require precise and efficient delivery of nucleases guide RNAs and repair templates to target cells. Platforms support modular payload design tissue-specific promoters and inducible expression systems for enhanced control and safety. Integration with lipid nanoparticles electroporation and viral vectors expands delivery options across therapeutic modalities. Demand for high-fidelity and programmable delivery infrastructure is rising across cell therapy regenerative medicine and rare disease pipelines. These trends are fostering growth across gene editing-enabled delivery platforms and applications.

Threat:

Ethical and public perception issues

Concerns around germline editing off-target effects and long-term safety complicate stakeholder engagement and clinical trial recruitment. Public skepticism and misinformation degrade trust in genetic therapies and delivery platforms. Regulatory bodies face challenges in balancing innovation with ethical oversight and societal impact. Lack of standardized communication and education frameworks hampers transparency and informed consent. These limitations continue to constrain platform adoption and policy integration across sensitive therapeutic areas.

Covid-19 Impact:

The pandemic disrupted clinical trials manufacturing and supply chains across gene delivery programs. Lockdowns and resource reallocation delayed patient recruitment vector production and regulatory review. However post-pandemic recovery emphasized genomic medicine vaccine innovation and platform scalability. Investment in mRNA delivery lipid nanoparticles and viral vectors surged across infectious disease and oncology applications. Public awareness of genetic technologies and personalized medicine increased across consumer and healthcare segments. These shifts are reinforcing long-term investment in gene delivery infrastructure and translational research.

The viral delivery systems (AAV, Lentivirus) segment is expected to be the largest during the forecast period

The viral delivery systems (AAV, Lentivirus) segment is expected to account for the largest market share during the forecast period due to their efficiency payload capacity and clinical validation across gene therapy programs. Platforms support stable integration transient expression and tissue-specific targeting across diverse indications. AAV vectors offer low immunogenicity and long-term expression while Lentivirus supports integration into dividing cells for durable correction. Integration with scalable manufacturing and regulatory frameworks enhances clinical readiness and commercialization. Demand for validated and high-performance viral vectors is rising across rare disease oncology and ophthalmology pipelines.

The vector design & optimization segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the vector design & optimization segment is predicted to witness the highest growth rate as therapeutic developers seek enhanced specificity safety and expression control across delivery platforms. Platforms support promoter engineering codon optimization and payload modularity to tailor delivery across cell types and disease contexts. Integration with AI-driven design high-throughput screening and synthetic biology accelerates development and performance tuning. Demand for customizable and scalable vector systems is rising across gene editing cell therapy and vaccine applications. Firms are aligning vector innovation with regulatory compliance and clinical translation strategies. These dynamics are accelerating growth across design-centric gene delivery platforms and services.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share due to its advanced biotech ecosystem regulatory engagement and clinical infrastructure across gene delivery technologies. Enterprises and academic institutions deploy platforms across oncology rare disease and regenerative medicine programs with integrated manufacturing and analytics. Investment in vector engineering GMP facilities and translational research supports scalability and compliance. Presence of leading therapeutic developers CROs and regulatory bodies drives innovation and standardization. Firms align delivery strategies with FDA guidance NIH funding and patient advocacy initiatives. These factors are propelling North America's leadership in gene delivery commercialization and clinical adoption.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR as healthcare modernization genomic medicine and biotech investment converge across regional economies. Countries like China India Japan and South Korea scale gene delivery platforms across academic research public health and therapeutic development. Government-backed programs support infrastructure development startup incubation and international collaboration across genetic medicine. Local firms offer cost-effective and regionally adapted solutions tailored to disease profiles and regulatory frameworks. Demand for scalable and culturally aligned delivery infrastructure is rising across oncology rare disease and vaccine programs. These trends are accelerating regional growth across gene delivery innovation and deployment.

Key players in the market

Some of the key players in Gene Delivery Technology Market include Pfizer Inc., Novartis AG, F. Hoffmann-La Roche Ltd., Bayer AG, Amgen Inc., Takara Bio Inc., Becton, Dickinson and Company, Thermo Fisher Scientific Inc., Lonza Group AG, Catalent Inc., SIRION Biotech GmbH, GenScript Biotech Corporation, Genezen LLC, Oxford Biomedica plc and uniQure N.V.

Key Developments:

In October 2025, Novartis pledged over $17 billion in licensing and acquisition deals, including strategic investments in Monte Rosa, Arvinas, and Arrowhead Pharmaceuticals. These deals expand Novartis's gene delivery capabilities in protein degradation, RNA interference, and targeted payload delivery, reinforcing its leadership in next-gen therapeutic platforms.

In October 2025, Pfizer was highlighted in the Cell and Gene Therapy Drug Delivery Market Report as a key innovator alongside Novartis and Amgen. The company continues to collaborate with biotech firms and academic institutions to enhance blood-based biomarker integration and delivery vector optimization, supporting early-stage detection and precision targeting in gene therapy applications.

Components Covered:

  • Delivery Platforms
  • Reagents & Consumables
  • Instruments & Devices
  • Software & Analytical Tools
  • Services

Workflows Covered:

  • Vector Design & Optimization
  • Manufacturing & Scale-Up
  • Quality Control & Validation
  • Preclinical Testing
  • Clinical Delivery & Administration
  • Other Workflows

Technologies Covered:

  • Viral Delivery Systems
  • Non-Viral Delivery Systems
  • Hybrid & Emerging Technologies

Mode of Deliveries Covered:

  • Injectable Delivery
  • Inhalable Delivery
  • Topical Delivery
  • Oral Delivery
  • Other Mode of Deliveries

End Users Covered:

  • Pharmaceutical & Biotechnology Companies
  • Academic & Research Institutions
  • Contract Research Organizations (CROs)
  • Contract Development & Manufacturing Organizations (CDMOs)
  • Hospitals & Clinics
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Gene Delivery Technology Market, By Component

  • 5.1 Introduction
  • 5.2 Delivery Platforms
  • 5.3 Reagents & Consumables
  • 5.4 Instruments & Devices
  • 5.5 Software & Analytical Tools
  • 5.6 Services

6 Global Gene Delivery Technology Market, By Workflow

  • 6.1 Introduction
  • 6.2 Vector Design & Optimization
  • 6.3 Manufacturing & Scale-Up
  • 6.4 Quality Control & Validation
  • 6.5 Preclinical Testing
  • 6.6 Clinical Delivery & Administration
  • 6.7 Other Workflows

7 Global Gene Delivery Technology Market, By Technology

  • 7.1 Introduction
  • 7.2 Viral Delivery Systems
    • 7.2.1 Adenovirus
    • 7.2.2 Lentivirus
    • 7.2.3 Retrovirus
    • 7.2.4 Adeno-Associated Virus (AAV)
    • 7.2.5 Herpes Simplex Virus (HSV)
  • 7.3 Non-Viral Delivery Systems
    • 7.3.1 Lipid Nanoparticles (LNPs)
    • 7.3.2 Electroporation
    • 7.3.3 Microinjection
    • 7.3.4 Chemical Transfection Methods
  • 7.4 Hybrid & Emerging Technologies
    • 7.4.1 Exosome-Mediated Delivery
    • 7.4.2 Cell-Penetrating Peptides (CPPs)
    • 7.4.3 Nanocarriers (Metallic, Polymeric, Lipid-Based)
    • 7.4.4 Microfluidic & Lab-on-Chip Systems

8 Global Gene Delivery Technology Market, By Mode of Delivery

  • 8.1 Introduction
  • 8.2 Injectable Delivery
  • 8.3 Inhalable Delivery
  • 8.4 Topical Delivery
  • 8.5 Oral Delivery
  • 8.6 Other Mode of Deliveries

9 Global Gene Delivery Technology Market, By End User

  • 9.1 Introduction
  • 9.2 Pharmaceutical & Biotechnology Companies
  • 9.3 Academic & Research Institutions
  • 9.4 Contract Research Organizations (CROs)
  • 9.5 Contract Development & Manufacturing Organizations (CDMOs)
  • 9.6 Hospitals & Clinics
  • 9.7 Other End Users

10 Global Gene Delivery Technology Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Pfizer Inc.
  • 12.2 Novartis AG
  • 12.3 F. Hoffmann-La Roche Ltd.
  • 12.4 Bayer AG
  • 12.5 Amgen Inc.
  • 12.6 Takara Bio Inc.
  • 12.7 Becton, Dickinson and Company
  • 12.8 Thermo Fisher Scientific Inc.
  • 12.9 Lonza Group AG
  • 12.10 Catalent Inc.
  • 12.11 SIRION Biotech GmbH
  • 12.12 GenScript Biotech Corporation
  • 12.13 Genezen LLC
  • 12.14 Oxford Biomedica plc
  • 12.15 uniQure N.V.

List of Tables

  • Table 1 Global Gene Delivery Technology Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Gene Delivery Technology Market Outlook, Component (2024-2032) ($MN)
  • Table 3 Global Gene Delivery Technology Market Outlook, Delivery Platforms (2024-2032) ($MN)
  • Table 4 Global Gene Delivery Technology Market Outlook, Reagents & Consumables (2024-2032) ($MN)
  • Table 5 Global Gene Delivery Technology Market Outlook, Instruments & Devices (2024-2032) ($MN)
  • Table 6 Global Gene Delivery Technology Market Outlook, Software & Analytical Tools (2024-2032) ($MN)
  • Table 7 Global Gene Delivery Technology Market Outlook, Services (2024-2032) ($MN)
  • Table 8 Global Gene Delivery Technology Market Outlook, Workflow (2024-2032) ($MN)
  • Table 9 Global Gene Delivery Technology Market Outlook, Vector Design & Optimization (2024-2032) ($MN)
  • Table 10 Global Gene Delivery Technology Market Outlook, Manufacturing & Scale-Up (2024-2032) ($MN)
  • Table 11 Global Gene Delivery Technology Market Outlook, Quality Control & Validation (2024-2032) ($MN)
  • Table 12 Global Gene Delivery Technology Market Outlook, Preclinical Testing (2024-2032) ($MN)
  • Table 13 Global Gene Delivery Technology Market Outlook, Clinical Delivery & Administration (2024-2032) ($MN)
  • Table 14 Global Gene Delivery Technology Market Outlook, Other Workflows (2024-2032) ($MN)
  • Table 15 Global Gene Delivery Technology Market Outlook, Technology (2024-2032) ($MN)
  • Table 16 Global Gene Delivery Technology Market Outlook, Viral Delivery Systems (2024-2032) ($MN)
  • Table 17 Global Gene Delivery Technology Market Outlook, Adenovirus (2024-2032) ($MN)
  • Table 18 Global Gene Delivery Technology Market Outlook, Lentivirus (2024-2032) ($MN)
  • Table 19 Global Gene Delivery Technology Market Outlook, Retrovirus (2024-2032) ($MN)
  • Table 20 Global Gene Delivery Technology Market Outlook, Adeno-Associated Virus (AAV) (2024-2032) ($MN)
  • Table 21 Global Gene Delivery Technology Market Outlook, Herpes Simplex Virus (HSV) (2024-2032) ($MN)
  • Table 22 Global Gene Delivery Technology Market Outlook, Non-Viral Delivery Systems (2024-2032) ($MN)
  • Table 23 Global Gene Delivery Technology Market Outlook, Lipid Nanoparticles (LNPs) (2024-2032) ($MN)
  • Table 24 Global Gene Delivery Technology Market Outlook, Electroporation (2024-2032) ($MN)
  • Table 25 Global Gene Delivery Technology Market Outlook, Microinjection (2024-2032) ($MN)
  • Table 26 Global Gene Delivery Technology Market Outlook, Chemical Transfection Methods (2024-2032) ($MN)
  • Table 27 Global Gene Delivery Technology Market Outlook, Hybrid & Emerging Technologies (2024-2032) ($MN)
  • Table 28 Global Gene Delivery Technology Market Outlook, Exosome-Mediated Delivery (2024-2032) ($MN)
  • Table 29 Global Gene Delivery Technology Market Outlook, Cell-Penetrating Peptides (CPPs) (2024-2032) ($MN)
  • Table 30 Global Gene Delivery Technology Market Outlook, Nanocarriers (Metallic, Polymeric, Lipid-Based) (2024-2032) ($MN)
  • Table 31 Global Gene Delivery Technology Market Outlook, Microfluidic & Lab-on-Chip Systems (2024-2032) ($MN)
  • Table 32 Global Gene Delivery Technology Market Outlook, Mode of Delivery (2024-2032) ($MN)
  • Table 33 Global Gene Delivery Technology Market Outlook, Injectable Delivery (2024-2032) ($MN)
  • Table 34 Global Gene Delivery Technology Market Outlook, Inhalable Delivery (2024-2032) ($MN)
  • Table 35 Global Gene Delivery Technology Market Outlook, Topical Delivery (2024-2032) ($MN)
  • Table 36 Global Gene Delivery Technology Market Outlook, Oral Delivery (2024-2032) ($MN)
  • Table 37 Global Gene Delivery Technology Market Outlook, Other Mode of Deliveries (2024-2032) ($MN)
  • Table 38 Global Gene Delivery Technology Market Outlook, End User (2024-2032) ($MN)
  • Table 39 Global Gene Delivery Technology Market Outlook, Pharmaceutical & Biotechnology Companies (2024-2032) ($MN)
  • Table 40 Global Gene Delivery Technology Market Outlook, Academic & Research Institutions (2024-2032) ($MN)
  • Table 41 Global Gene Delivery Technology Market Outlook, Contract Research Organizations (CROs) (2024-2032) ($MN)
  • Table 42 Global Gene Delivery Technology Market Outlook, Contract Development & Manufacturing Organizations (CDMOs) (2024-2032) ($MN)
  • Table 43 Global Gene Delivery Technology Market Outlook, Hospitals & Clinics (2024-2032) ($MN)
  • Table 44 Global Gene Delivery Technology Market Outlook, Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.