封面
市场调查报告书
商品编码
1859728

全球浮体式海上风电系统市场:预测至2032年-按组件、平台类型、风扇容量、水深、轴线、应用、最终用户及地区进行分析

Floating Offshore Wind Systems Market Forecasts to 2032 - Global Analysis By Component, Platform Type, Turbine Capacity, Water Depth, Axis Orientation, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,预计 2025 年全球浮体式海上风电系统市场规模将达到 4.8353 亿美元,到 2032 年将达到 32.8776 亿美元,预测期内复合年增长率为 31.5%。

浮体式海上风电系统是一种创新的解决方案,可用于在不适合传统固定式风力涡轮机的深海域中利用风力发电。浮体式海上风电系统利用船舶系缆,使涡轮机即使在离岸较远的地方也能捕获更强劲、更稳定的风力。其主要优点包括对景观破坏最小、能够利用高速风以及具备大规模发电的能力。由于平台设计、材料和维护方面的技术进步,浮动式风力发电正变得越来越经济可行。随着世界各地涌现出多个示范计划和运作中的风电场,浮体式海上风电显然将在加速全球可再生能源发展和支持向低碳未来转型方面发挥关键作用。

根据美国能源局2023 年离岸风电市场报告,美国计划建造超过 52 吉瓦的离岸风力发电计划,其中超过 17 吉瓦被归类为浮体式海上风电发电工程。

对可再生能源的需求不断增长

全球向低碳和永续能源来源转型的努力正在推动浮体式海上风电系统市场的成长。随着各国政府和各产业致力于减少温室气体排放,离岸风电已成为关键解决方案。浮体式平台使风力涡轮机运作,从而扩大了能源生产的范围。雄心勃勃的可再生能源目标和应对气候变迁的承诺正在加速浮体式海上风发电工程的推广应用。随着各国优先发展清洁能源,对浮体式海上风电基础设施的投资也不断增加。全球对永续能源日益增长的兴趣为市场扩张和技术发展提供了强大的动力。

高昂的资本和安装成本

限制浮体式海上风电系统市场发展的主要挑战之一是其所需的高额初始投资。在深水区安装浮体式风力涡轮机需要昂贵的平台、锚碇系统和专用安装船,导致计划成本高于固定式离岸风力发电。复杂的物流、技术纯熟劳工的需求以及漫长的工期进一步加重了经济负担。这些高昂的资本成本可能会限制市场参与,尤其是在资本有限的开发中国家和地区。较长的投资回收期可能会阻碍潜在投资者,并减缓市场整体扩张。儘管技术进步正在逐步降低成本,但高额的初始资本需求仍然是大规模浮动式风力发电普及的一大限制因素。

技术创新和成本降低

技术进步透过降低成本和提高效率,为浮体式海上风电系统市场创造了巨大的机会。浮体式平台设计、材料工程和部署方法的进步,使计划更具经济可行性。监测技术、预测性维护工具和储能解决方案的集成,提高了可靠性和运作性能。随着技术创新的不断推进,浮动式风力发电将与其他再生能源来源展开越来越大的竞争,从而实现大规模商业应用并吸引投资者。开发人员、技术提供者和政府之间的伙伴关係进一步加速了这一进程。这些进步降低了融资门槛并优化了性能,为浮体式海上风电系统在全球能源市场的广泛应用和扩张创造了有利条件。

与其他可再生能源的激烈竞争

浮体式海上风电系统面临其他可再生能源技术的竞争,包括陆上风电、太阳能光电发电和水力发电。这些成熟的替代技术通常具有成本低、基础设施完善和供应链成熟等优势,因此对能源投资者极具吸引力。在太阳能和陆上风能资源丰富的地区,浮体式海上风电在经济上可能难以与之竞争。储能、能源效率和併网技术的进步可能会进一步增强其他再生能源的竞争力。浮体式海上风电的相对新颖性和技术复杂性可能会限制投资者的信心和计划部署。这些竞争压力仍然是浮体式海上风电市场成长和普及的一大威胁。

新冠疫情的影响:

新冠疫情对浮体式海上风电系统市场造成了显着衝击,扰乱了供应链、生产流程和计划执行。封锁和旅行限制阻碍了海上作业,导致劳动力短缺和安装进度延误,许多计划进度。然而,这场危机凸显了可再生能源在保障能源安全和永续性的战略重要性。随着疫情相关限制的逐步解除,在各方重新聚焦于加速发展浮体式海上风电和推动全球可再生能源目标的推动下,市场开始復苏。

预计在预测期内,涡轮机细分市场将成为最大的细分市场。

由于涡轮机在发电和整体计划性能中发挥核心作用,预计在预测期内,涡轮机细分市场将占据最大的市场份额。先进的高容量涡轮机对于优化浮体式平台的能源生产至关重要,也是开发商和投资者关注的重点。涡轮机的创新(例如,更高的效率、更大的叶轮和更强的耐久性)正在提升涡轮机的重要性及其对计划成功的影响。涡轮机的选择和效率会影响浮体式海上装置的成本效益和扩充性。因此,涡轮机在市场中占据主导地位,推动了浮体式海上风电领域的大量投资、技术开发和战略重点。

预计在预测期内,半潜式平台细分市场将实现最高的复合年增长率。

由于其多功能性、稳定性以及对各种水深的适应性,预计半潜式平台在预测期内将实现最高的成长率。与立柱式浮式平台和张力腿平台(TLP)相比,半潜式平台可容纳大容量风力涡轮机,且更易于运输和安装。其结构优势使其能够在恶劣的海洋环境中可靠运行,同时优化营运成本。技术的不断进步和对深海风电发电工程日益增长的关注将进一步加速半潜式平台的应用。随着全球浮体式海上风电部署的不断扩大,半潜式解决方案正越来越多地应用于新计画中,从而推动市场快速扩张和产业投资的成长。

比最大的地区

在预测期内,欧洲预计将占据最大的市场份额,这主要得益于其扶持可再生能源的政策、成熟的离岸风电基础设施以及对减少碳排放的坚定承诺。英国、法国和挪威等主要国家率先发展了浮体式海上风电,并在深水区开发了先导计画和商业性设施。强有力的政府支持、监管激励措施以及大量的研发投入进一步推动了市场扩张。欧洲广阔的海岸线和丰富的风力发电资源为浮体式海上风电的部署创造了有利条件。因此,该地区在装置容量、技术进步和市场投资方面均处于世界领先地位,巩固了其作为浮体式海上风电增长最主要贡献者的地位。

复合年增长率最高的地区:

在预测期内,亚太地区预计将呈现最高的复合年增长率,这主要得益于能源需求的成长、政府的支持以及可再生能源投资的增加。中国、日本和韩国等国家正积极推动在不适合传统风力涡轮机的深水区域建设浮动式风力发电计划。加速的都市化、工业成长以及对低碳能源的需求是推动漂浮式离岸风电普及的主要因素。先导计画和国际技术合作进一步促进了全部区域的部署。因此,亚太地区正在崛起为浮体式海上风电的快速成长市场,吸引了大量投资,推动了技术创新,并迅速扩大了该地区的可再生能源产能和基础设施。

免费客製化服务

订阅本报告的用户可享有以下免费客製化服务之一:

  • 公司简介
    • 对至多三家其他市场公司进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 原始研究资料
    • 次级研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球浮体式海上风电系统市场(依组件划分)

  • 涡轮
  • 浮体结构
  • 锚碇系统
  • 动态电缆
  • 变电站

6. 全球浮体式海上风电系统市场(依平台类型划分)

  • 半潜式
  • 浮标
  • 张力脚平臺(TLP)

7. 全球浮体式海上风电系统市场(依风机容量划分)

  • 2兆瓦或以下
  • 2~5MW
  • 5~8MW
  • 8~10MW
  • 10~12MW
  • 12MW

第八章 全球浮体式海上风电系统市场(以水深划分)

  • 浅水区(≤30公尺)
  • 过渡深度(>30米至50米)
  • 深海(超过50公尺)

第九章 全球浮体式海上风电系统市场(依轴线划分)

  • 水平轴
  • 纵轴

第十章 全球浮体式海上风电系统市场(依应用领域划分)

  • 商业化前试飞
  • 商业公用事业规模
  • 混合风力发电

第十一章 全球浮体式海上风电系统市场(依最终用户划分)

  • 并联型
  • 离网

第十二章 全球浮体式海上风电系统市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十三章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与併购
  • 新产品上市
  • 业务拓展
  • 其他关键策略

第十四章 企业概况

  • Vestas
  • Orsted
  • Vattenfall
  • BW Ideol AS
  • Equinor ASA
  • RWE
  • Northland Power
  • EDF Renewables North America
  • Marubeni Offshore Wind Development(MOWD)
  • SBM Offshore
  • Technip Energies
  • SSE Renewables
  • Modec
  • X1 Wind
  • Atlantic Shores Offshore Wind LLC
Product Code: SMRC31952

According to Stratistics MRC, the Global Floating Offshore Wind Systems Market is accounted for $483.53 million in 2025 and is expected to reach $3287.76 million by 2032 growing at a CAGR of 31.5% during the forecast period. Floating Offshore Wind Systems are an innovative solution for tapping wind energy in deep-sea areas unsuitable for conventional fixed turbines. These systems rely on buoyant platforms secured to the ocean floor with mooring lines, allowing turbines to capture stronger and steadier winds far from the coast. Key benefits include minimized visual disruption, access to high-speed winds, and opportunities for large-scale electricity production. Technological improvements in platform design, materials, and upkeep have made floating wind increasingly economically viable. Around the world, multiple demonstration projects and operational farms are emerging, underscoring floating offshore wind's critical role in advancing global renewable energy and supporting the transition to a low-carbon future.

According to the U.S. Department of Energy's 2023 Offshore Wind Market Report, the U.S. had over 52 GW of offshore wind projects in the pipeline, with more than 17 GW classified as floating wind projects-highlighting a significant shift toward deep-water deployment.

Market Dynamics:

Driver:

Increasing demand for renewable energy

Global efforts to shift toward low-carbon and sustainable energy sources are fueling the growth of the Floating Offshore Wind Systems market. With governments and industries aiming to cut greenhouse gas emissions, offshore wind has become a critical solution. Floating platforms allow turbines to operate in deep waters inaccessible to traditional foundations, widening the scope for energy production. Ambitious renewable energy targets and climate pledges are encouraging faster adoption of floating wind projects. As nations prioritize clean electricity generation, investments in floating offshore wind infrastructure are rising. The escalating global focus on sustainable energy strongly drives the market's expansion and technological development.

Restraint:

High capital and installation costs

A major challenge restraining the Floating Offshore Wind Systems market is the substantial initial investment required. Deploying floating turbines in deep waters involves costly platforms, mooring systems, and specialized installation vessels, which elevate project expenses compared to fixed offshore wind. Complex logistics, skilled workforce requirements, and long construction timelines further add to the financial burden. These high capital costs can limit participation, particularly in developing countries or regions with limited funding. Extended return-on-investment periods may discourage potential investors, slowing overall market expansion. Although technology improvements are gradually reducing expenses, the significant upfront capital requirement continues to act as a key restraint for large-scale floating wind adoption.

Opportunity:

Technological innovation and cost reduction

Technological progress is unlocking significant opportunities in the Floating Offshore Wind Systems market by reducing costs and enhancing efficiency. Advances in floating platform design, material engineering, and deployment methods are making projects more economically viable. Integration of monitoring technologies, predictive maintenance tools, and energy storage solutions improves reliability and operational performance. As innovations continue, floating wind increasingly competes with other renewable energy sources, enabling large-scale commercial applications and attracting investors. Partnerships between developers, technology providers, and governments further accelerate advancements. These developments lower financial hurdles and optimize performance, creating favorable conditions for wider adoption and expansion of floating offshore wind systems across global energy markets.

Threat:

Intense competition from other renewable sources

Floating Offshore Wind Systems are challenged by competition from other renewable technologies such as onshore wind, solar power, and hydropower. These established alternatives often benefit from lower costs, proven infrastructure, and mature supply chains, making them attractive for energy investors. In regions rich in solar or onshore wind resources, floating offshore wind may struggle to compete economically. Improvements in energy storage, efficiency, and grid integration further strengthen the position of competing renewables. The relative novelty and technical intricacies of floating wind can limit investor confidence and project deployment. This competitive pressure remains a significant threat to the growth and widespread adoption of floating offshore wind markets.

Covid-19 Impact:

The COVID-19 outbreak had a notable impact on the Floating Offshore Wind Systems market, disrupting supply chains, manufacturing processes, and project execution. Lockdowns and travel restrictions hindered offshore operations, limited workforce availability, and delayed installation schedules, causing many projects to be postponed. Economic uncertainty during the pandemic also led to deferred investments or scaled-down initiatives. Port congestion, transportation difficulties, and logistical issues further slowed progress. However, the crisis underscored the strategic importance of renewable energy in ensuring energy security and sustainability. As pandemic-related restrictions eased, the market began to recover, with a renewed emphasis on accelerating floating offshore wind development and advancing global renewable energy targets.

The turbines segment is expected to be the largest during the forecast period

The turbines segment is expected to account for the largest market share during the forecast period due to its central role in electricity generation and overall project performance. Advanced, high-capacity turbines are vital for optimizing energy production on floating platforms, making them a key focus for developers and financiers. Innovations in turbine technology-such as improved efficiency, larger rotor blades, and enhanced durability-increase their importance and impact on project success. The choice and efficiency of turbines affect both the cost-effectiveness and scalability of floating offshore installations. As a result, turbines dominate the market, receiving substantial investment, technological development, and strategic emphasis across the floating offshore wind sector.

The semi-submersible segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the semi-submersible segment is predicted to witness the highest growth rate, owing to its versatility, stability, and compatibility with diverse water depths. These platforms can accommodate high-capacity turbines and offer easier transportation and installation compared to spar-buoy or TLP designs. Their structural advantages enable reliable performance in challenging offshore conditions while optimizing operational costs. Continuous technological improvements and the rising focus on deep-water wind energy projects further accelerate the adoption of semi-submersible platforms. As floating offshore wind deployment grows worldwide, semi-submersible solutions are increasingly favored for new projects, driving rapid market expansion and heightened industry investment.

Region with largest share:

During the forecast period, the Europe region is expected to hold the largest market share due to its supportive renewable energy policies, mature offshore wind infrastructure, and strong commitment to reducing carbon emissions. Key nations including the UK, France, and Norway have pioneered floating wind initiatives, developing pilot projects and commercial installations in deep-water areas. Robust government support, regulatory incentives, and significant research and development investments have further fueled market expansion. Europe's extensive coastal areas and high wind energy potential create favorable conditions for floating offshore wind deployment. Consequently, the region leads globally in terms of installed capacity, technological advancements, and market investments, solidifying its position as the largest contributor to floating offshore wind growth.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, fueled by rising energy requirements, government support, and increased renewable energy investments. Nations such as China, Japan, and South Korea are actively pursuing floating wind projects in deep-water zones unsuitable for conventional turbines. Accelerating urbanization, industrial growth, and the demand for low-carbon electricity are key drivers of adoption. Pilot projects and international technological partnerships are further promoting deployment across the region. Consequently, Asia-Pacific is emerging as the fastest-growing market for floating offshore wind, attracting substantial investment, fostering technological innovation, and rapidly expanding the region's renewable energy capacity and infrastructure.

Key players in the market

Some of the key players in Floating Offshore Wind Systems Market include Vestas, Orsted, Vattenfall, BW Ideol AS, Equinor ASA, RWE, Northland Power, EDF Renewables North America, Marubeni Offshore Wind Development (MOWD), SBM Offshore, Technip Energies, SSE Renewables, Modec, X1 Wind and Atlantic Shores Offshore Wind LLC.

Key Developments:

In January 2025, Vattenfall has signed a purchase power agreement (PPA) with the chemicals group LyondellBasell (LYB), providing fossil free electricity from the Nordlicht 1 offshore wind farm off the German coast. The agreement includes the supply of electricity from the Nordlicht 1 offshore wind farm over a period for 15 years, starting in 2028.

In September 2024, Orsted signs agreement with Equinor for carbon removal credits. Orsted will sell carbon dioxide removal (CDR) credits amounting to 330,000 tonnes of CO2 to Equinor over a ten-year period. This is part of Orsted's CO2 capture and storage project, 'Orsted Kalundborg CO2 Hub', which will capture 430,000 tonnes of biogenic CO2 annually from two of Orsted's biomass-fired CHP plants from 2026.

In September 2024, Vestas has signed a conditional order agreement with Inch Cape Offshore Limited, an equal joint venture between ESB and Red Rock Renewables, for the 1.1 GW Inch Cape project in Scotland. The agreement is for the supply, installation, and commissioning of 72 V236-15.0 MW wind turbines for the Inch Cape Offshore Wind project. The scope of the service contract includes a long-term comprehensive service agreement followed by a tailor-made operational support agreement.

Components Covered:

  • Turbines
  • Floating structure
  • Mooring system
  • Dynamic cables
  • Substation

Platform Types Covered:

  • Semi-submersible
  • Spar-buoy
  • Tension-leg platform (TLP)

Turbine Capacities Covered:

  • <= 2 MW
  • 2 to 5 MW
  • 5 to 8 MW
  • 8 to 10 MW
  • 10 to 12 MW
  • 12 MW

Water Depths Covered:

  • Shallow water (<= 30 m)
  • Transitional depth (>30 m to 50 m)
  • Deep water (> 50 m)

Axis Orientations Covered:

  • Horizontal Axis
  • Vertical Axis

Applications Covered:

  • Pre-commercial Pilot
  • Commercial Utility-scale
  • Hybrid Wind-to-X

End Users Covered:

  • Grid-connected
  • Off-grid

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Floating Offshore Wind Systems Market, By Component

  • 5.1 Introduction
  • 5.2 Turbines
  • 5.3 Floating structure
  • 5.4 Mooring system
  • 5.5 Dynamic cables
  • 5.6 Substation

6 Global Floating Offshore Wind Systems Market, By Platform Type

  • 6.1 Introduction
  • 6.2 Semi-submersible
  • 6.3 Spar-buoy
  • 6.4 Tension-leg platform (TLP)

7 Global Floating Offshore Wind Systems Market, By Turbine Capacity

  • 7.1 Introduction
  • 7.2 <= 2 MW
  • 7.3 2 to 5 MW
  • 7.4 5 to 8 MW
  • 7.5 8 to 10 MW
  • 7.6 10 to 12 MW
  • 7.7 12 MW

8 Global Floating Offshore Wind Systems Market, By Water Depth

  • 8.1 Introduction
  • 8.2 Shallow water (<= 30 m)
  • 8.3 Transitional depth (>30 m to 50 m)
  • 8.4 Deep water (> 50 m)

9 Global Floating Offshore Wind Systems Market, By Axis Orientation

  • 9.1 Introduction
  • 9.2 Horizontal Axis
  • 9.3 Vertical Axis

10 Global Floating Offshore Wind Systems Market, By Application

  • 10.1 Introduction
  • 10.2 Pre-commercial Pilot
  • 10.3 Commercial Utility-scale
  • 10.4 Hybrid Wind-to-X

11 Global Floating Offshore Wind Systems Market, By End User

  • 11.1 Introduction
  • 11.2 Grid-connected
  • 11.3 Off-grid

12 Global Floating Offshore Wind Systems Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 Vestas
  • 14.2 Orsted
  • 14.3 Vattenfall
  • 14.4 BW Ideol AS
  • 14.5 Equinor ASA
  • 14.6 RWE
  • 14.7 Northland Power
  • 14.8 EDF Renewables North America
  • 14.9 Marubeni Offshore Wind Development (MOWD)
  • 14.10 SBM Offshore
  • 14.11 Technip Energies
  • 14.12 SSE Renewables
  • 14.13 Modec
  • 14.14 X1 Wind
  • 14.15 Atlantic Shores Offshore Wind LLC

List of Tables

  • Table 1 Global Floating Offshore Wind Systems Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Floating Offshore Wind Systems Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Floating Offshore Wind Systems Market Outlook, By Turbines (2024-2032) ($MN)
  • Table 4 Global Floating Offshore Wind Systems Market Outlook, By Floating structure (2024-2032) ($MN)
  • Table 5 Global Floating Offshore Wind Systems Market Outlook, By Mooring system (2024-2032) ($MN)
  • Table 6 Global Floating Offshore Wind Systems Market Outlook, By Dynamic cables (2024-2032) ($MN)
  • Table 7 Global Floating Offshore Wind Systems Market Outlook, By Substation (2024-2032) ($MN)
  • Table 8 Global Floating Offshore Wind Systems Market Outlook, By Platform Type (2024-2032) ($MN)
  • Table 9 Global Floating Offshore Wind Systems Market Outlook, By Semi-submersible (2024-2032) ($MN)
  • Table 10 Global Floating Offshore Wind Systems Market Outlook, By Spar-buoy (2024-2032) ($MN)
  • Table 11 Global Floating Offshore Wind Systems Market Outlook, By Tension-leg platform (TLP) (2024-2032) ($MN)
  • Table 12 Global Floating Offshore Wind Systems Market Outlook, By Turbine Capacity (2024-2032) ($MN)
  • Table 13 Global Floating Offshore Wind Systems Market Outlook, By <= 2 MW (2024-2032) ($MN)
  • Table 14 Global Floating Offshore Wind Systems Market Outlook, By 2 to 5 MW (2024-2032) ($MN)
  • Table 15 Global Floating Offshore Wind Systems Market Outlook, By 5 to 8 MW (2024-2032) ($MN)
  • Table 16 Global Floating Offshore Wind Systems Market Outlook, By 8 to 10 MW (2024-2032) ($MN)
  • Table 17 Global Floating Offshore Wind Systems Market Outlook, By 10 to 12 MW (2024-2032) ($MN)
  • Table 18 Global Floating Offshore Wind Systems Market Outlook, By 12 MW (2024-2032) ($MN)
  • Table 19 Global Floating Offshore Wind Systems Market Outlook, By Water Depth (2024-2032) ($MN)
  • Table 20 Global Floating Offshore Wind Systems Market Outlook, By Shallow water (<= 30 m) (2024-2032) ($MN)
  • Table 21 Global Floating Offshore Wind Systems Market Outlook, By Transitional depth (>30 m to 50 m) (2024-2032) ($MN)
  • Table 22 Global Floating Offshore Wind Systems Market Outlook, By Deep water (> 50 m) (2024-2032) ($MN)
  • Table 23 Global Floating Offshore Wind Systems Market Outlook, By Axis Orientation (2024-2032) ($MN)
  • Table 24 Global Floating Offshore Wind Systems Market Outlook, By Horizontal Axis (2024-2032) ($MN)
  • Table 25 Global Floating Offshore Wind Systems Market Outlook, By Vertical Axis (2024-2032) ($MN)
  • Table 26 Global Floating Offshore Wind Systems Market Outlook, By Application (2024-2032) ($MN)
  • Table 27 Global Floating Offshore Wind Systems Market Outlook, By Pre-commercial Pilot (2024-2032) ($MN)
  • Table 28 Global Floating Offshore Wind Systems Market Outlook, By Commercial Utility-scale (2024-2032) ($MN)
  • Table 29 Global Floating Offshore Wind Systems Market Outlook, By Hybrid Wind-to-X (2024-2032) ($MN)
  • Table 30 Global Floating Offshore Wind Systems Market Outlook, By End User (2024-2032) ($MN)
  • Table 31 Global Floating Offshore Wind Systems Market Outlook, By Grid-connected (2024-2032) ($MN)
  • Table 32 Global Floating Offshore Wind Systems Market Outlook, By Off-grid (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.