封面
市场调查报告书
商品编码
1865388

全球通讯基础设施被动冷却系统市场预测(至2032年)-按类型、材料、组件、安装方法、应用、最终用户和地区分類的分析

Passive Cooling Systems for Telecom Infrastructure Market Forecasts to 2032 - Global Analysis By Type, Material, Component, Installation, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球通讯基础设施被动冷却系统市场规模将达到 3.212 亿美元,到 2032 年将达到 7.055 亿美元。

预计在预测期内,被动式冷却系统将以11.9%的复合年增长率成长。用于通讯基础设施的被动式冷却系统不依赖风扇或压缩机等机械部件,而是依靠传导、对流和辐射等自然散热方式。这些系统旨在维持通讯设备的最佳动作温度,尤其是在偏远和能源受限的环境中。透过利用环境气流和热设计,被动式冷却可以提高可靠性、降低能耗并最大限度地减少维护。常见的实现方式包括散热器、通风机壳以及专为室外机柜和基地台设计的导热材料。

根据印度通讯部的数据,截至 2023 年 12 月,印度通讯业的电话普及率已达到 85.69%,其中农村电话普及率达到 58.56%,这反映出通讯服务在不同地区的显着普及。

5G和边缘运算节点的高密度部署

随着通讯业者不断融合网路以满足低延迟和高频宽的需求,对高效能、免维护冷却解决方案的需求日益增长。被动式冷却系统无需外部电源或机械零件,因其在分散式环境中的可靠性和能源效率而越来越受欢迎。这些系统尤其适用于远端和空间受限的安装环境,在这些环境中,主动冷却并不现实。

将被动系统整合到现有基础设施中

许多现有的基地台和机房最初设计时就考虑到了主动冷却系统,这引发了人们对结构相容性的担忧。通讯站点缺乏标准化设计也使整合工作变得复杂,通常需要进行客製化改造,从而增加了部署成本。此外,在空气流通受限的高密度城市环境中,被动式系统的效率可能较低。这些因素使得通讯业者不愿放弃传统的冷却方式,尤其是在基础设施完善的成熟市场。

在模组化部署中结合被动冷却和液冷

利用热管和相变材料的热导率,并结合液冷迴路的混合系统,在高负载环境下可提供卓越的性能。这种协同作用能够实现紧凑、扩充性且节能的冷却架构,使其成为货柜式边缘资料中心和微型基地台的理想选择。随着通讯业者寻求降低营运成本和碳排放,此类整合解决方案正日益受到青睐。此外,这些系统的模组化设计有助于在服务不足和偏远地区快速部署,符合全球互联互通的倡议。

环境温度上升和不可预测的天气模式

气候变迁对被动式冷却系统的可靠性构成日益严重的威胁,尤其是在极端热浪和极端天气频繁的地区。被动式系统依靠自然对流和环境条件散热,这会导致其在高温环境下性能下降。长时间暴露于高温环境会对通讯设备造成热应力,并增加服务中断的风险。此外,诸如湿度骤增和沙尘暴等不可预测的天气模式也会降低热交换器和机壳的效率。

新冠疫情的影响:

新冠疫情对通讯基础设施被动冷却系统市场产生了双重影响。一方面,供应链中断和劳动力短缺延缓了冷却组件的生产和部署,尤其是依赖跨境製造的地区。另一方面,远距办公、线上教育和数位服务的激增加速了对强大通讯网路的需求,并促使企业加大对边缘基础设施的投资。这种转变凸显了低维护、高能源效率冷却解决方案的重要性,尤其是在无人值守或难以进入的场所。

预计在预测期内,基于热管的冷却系统细分市场将占据最大的市场份额。

由于热管冷却系统无需外部电源即可高效散热,预计在预测期内将占据最大的市场份额。这些系统利用相变原理将热量从敏感元件中散发出去,使其成为通讯机房和户外机柜的理想选择。其紧凑的外形、静音的运作和低维护需求,使其成为都市区和乡村安装的首选。

预计在预测期内,相变材料(PCM)细分市场将呈现最高的复合年增长率。

由于相变材料(PCM)能够在相变过程中吸收和释放大量热能,预计在预测期内,相变材料市场将呈现最高的成长率。这些材料正越来越多地应用于通讯机柜和电池机壳中,以在无需主动冷却的情况下应对尖峰时段热负荷。它们对温度波动的适应性和紧凑的整合性使其成为下一代通讯基地台的理想选择。生物基和可回收相变材料的创新也符合永续性目标,进一步提升了其市场吸引力。

占比最大的地区:

由于北美拥有成熟的通讯基础设施和对5G技术的早期应用,预计该地区将在预测期内占据最大的市场份额。该地区资料中心和基地台高度集中,因此需要高效的温度控管解决方案。政府为促进能源效率和碳中和而采取的倡议,正鼓励通讯业者转向被动式冷却系统。此外,美国和加拿大拥有众多主要製造商和技术创新者,这有利于产品开发和大规模部署。

复合年增长率最高的地区:

在预测期内,由于边缘运算和物联网的快速普及,北美预计将实现最高的复合年增长率。智慧城市、自动驾驶汽车和工业自动化对高速连接的需求日益增长,推动了对具备高效冷却能力的分散式通讯节点的需求。被动式冷却系统因其能够在偏远和离网环境中运作且维护量极低而备受关注。此外,对绿色基础设施的监管支持和不断上涨的能源成本正在加速向被动式温度控管解决方案的转变,使北美成为该领域的高成长地区。

免费客製化服务

订阅本报告的用户可从以下免费自订选项中选择一项:

  • 公司简介
    • 对最多三家其他公司进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域分类
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 引言

  • 概述
  • 相关利益者
  • 分析范围
  • 分析方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 分析方法
  • 分析材料
    • 原始研究资料
    • 二手研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 市场机会
  • 威胁
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代产品的威胁
  • 新参与企业的威胁
  • 公司间的竞争

5. 全球通讯基础设施被动式冷却系统市场(按类型划分)

  • 介绍
  • 自然对流冷却系统
  • 基于相变材料(PCM)的冷却系统
  • 基于热管的冷却系统
  • 辐射冷却系统
  • 蒸发冷却系统
  • 混合式被动冷却系统
  • 其他类型

6. 全球通讯基础设施被动式冷却系统材料市场

  • 介绍
  • 石墨和碳基材料
  • 相变材料(PCM)
  • 陶瓷和复合材料
  • 其他成分

7. 全球通讯基础设施被动式冷却系统市场(按组件划分)

  • 介绍
  • 散热器
  • 外壳/柜体
  • 冷却面板
  • 导热材料
  • 通风口和过滤器
  • 其他部件

8. 全球通讯基础设施被动式冷却系统市场(以安装方式划分)

  • 介绍
  • 新安装
  • 维修和安装
  • 可携式安装

9. 全球通讯基础设施被动式冷却系统市场(依冷却机制划分)

  • 介绍
  • 传导冷却
  • 对流冷却
  • 辐射冷却
  • 蒸发冷却
  • 混合机制
  • 其他冷却机制

10. 全球通讯基础设施被动式冷却系统市场(依应用领域划分)

  • 介绍
  • 通讯塔
  • 基地台(BTS)
  • 资料中心和边缘设施
  • 远程无线电单元(RRU)
  • 小型基地台微站点
  • 光纤、网路设备
  • 其他用途

第十一章:全球通讯基础设施被动式冷却系统市场(依最终用户划分)

  • 介绍
  • 通讯业者
  • 网际服务供应商(ISP)
  • 资料中心营运商
  • 网路设备製造商
  • 政府和国防通讯部门
  • 其他最终用户

12. 全球通讯基础设施被动式冷却系统市场(按地区划分)

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十三章 重大进展

  • 合约、商业伙伴关係和合资企业
  • 企业合併(M&A)
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十四章:公司简介

  • Delta Electronics, Inc.
  • Vertiv Holdings Co.
  • Aavid Thermalloy
  • STULZ GmbH
  • Schneider Electric SE
  • Nokia Networks
  • Huawei Technologies Co., Ltd.
  • CommScope Holding Company, Inc.
  • nVent Electric plc
  • Eaton Corporation plc
  • Rittal GmbH & Co. KG
  • Pfannenberg Group
  • C&D Technologies, Inc.
  • Iceotope Technologies Limited
  • Modine Manufacturing Company
  • Alfa Laval AB
  • Transtherm Cooling Industries
  • Asetek, Inc
Product Code: SMRC32097

According to Stratistics MRC, the Global Passive Cooling Systems for Telecom Infrastructure Market is accounted for $321.2 million in 2025 and is expected to reach $705.5 million by 2032 growing at a CAGR of 11.9% during the forecast period. Passive cooling systems for telecom infrastructure utilize natural heat dissipation methods such as conduction, convection, and radiation without relying on mechanical components like fans or compressors. These systems are engineered to maintain optimal operating temperatures for telecom equipment, especially in remote or energy-constrained environments. By leveraging ambient airflow and thermal design, passive cooling enhances reliability, reduces energy consumption, and minimizes maintenance. Common implementations include heat sinks, ventilated enclosures, and thermally conductive materials tailored for outdoor cabinets and base stations.

According to department of telecommunications, government of India India's telecom sector has achieved a teledensity of 85.69% as of December 2023, with rural teledensity reaching 58.56%, reflecting significant penetration of telecom services across diverse geographies.

Market Dynamics:

Driver:

Dense deployments of 5G and edge computing nodes

As operators densify their networks to meet low-latency and high-bandwidth demands, the need for efficient, maintenance-free cooling solutions has intensified. Passive cooling systems, which operate without external power or mechanical components, are gaining traction for their reliability and energy efficiency in such distributed environments. These systems are particularly suited for remote or space-constrained installations where active cooling is impractical.

Restraint:

Integrating passive systems into existing infrastructure

Many existing base stations and shelters were originally designed for active cooling systems, making structural compatibility a concern. The lack of standardized designs across telecom sites further complicates integration efforts, often requiring custom modifications that increase deployment costs. Additionally, passive systems may have limitations in high-density urban environments where airflow is restricted, reducing their effectiveness. These factors can deter operators from transitioning away from conventional cooling methods, especially in mature markets with entrenched infrastructure.

Opportunity:

Combining passive and liquid cooling for modular deployments

Hybrid systems that leverage the thermal conductivity of heat pipes or phase change materials alongside liquid cooling loops can offer superior performance in high-load environments. This synergy enables compact, scalable, and energy-efficient cooling architectures ideal for containerized edge data centers and micro base stations. As telecom operators seek to reduce operational costs and carbon footprints, such integrated solutions are gaining attention. Moreover, the modular nature of these systems supports rapid deployment in underserved or remote regions, aligning with global connectivity initiatives.

Threat:

Rising ambient temperatures and unpredictable weather patterns

Climate change poses a growing threat to the reliability of passive cooling systems, particularly in regions experiencing extreme heatwaves or erratic weather. Since passive systems rely on natural convection and ambient conditions to dissipate heat, their performance can degrade in high-temperature environments. Prolonged exposure to elevated temperatures may lead to thermal stress on telecom equipment, increasing the risk of service disruptions. Additionally, unpredictable weather patterns such as sudden humidity spikes or dust storms can impair the efficiency of heat exchangers and enclosures.

Covid-19 Impact:

The COVID-19 pandemic had a dual impact on the passive cooling systems market for telecom infrastructure. On one hand, supply chain disruptions and labor shortages delayed the production and deployment of cooling components, particularly in regions dependent on cross-border manufacturing. On the other hand, the surge in remote work, online education, and digital services accelerated the demand for robust telecom networks, prompting investments in edge infrastructure. This shift underscored the importance of low-maintenance, energy-efficient cooling solutions, especially in unmanned or hard-to-reach sites.

The heat pipe-based cooling systems segment is expected to be the largest during the forecast period

The heat pipe-based cooling systems segment is expected to account for the largest market share during the forecast period due to their proven efficiency in dissipating heat without requiring external power. These systems utilize phase change principles to transfer heat away from sensitive components, making them ideal for telecom shelters and outdoor enclosures. Their compact form factor, silent operation, and low maintenance requirements make them a preferred choice for both urban and rural deployments.

The phase change materials (PCMs) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the phase change materials (PCMs) segment is predicted to witness the highest growth rate, influenced by, their ability to absorb and release large amounts of thermal energy during phase transitions. These materials are increasingly being integrated into telecom cabinets and battery enclosures to manage peak thermal loads without active cooling. Their adaptability to fluctuating temperatures and compact integration potential make them suitable for next-generation telecom sites. Innovations in bio-based and recyclable PCMs are also aligning with sustainability goals, further enhancing their market appeal.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, fuelled by, its mature telecom infrastructure and early adoption of 5G technologies. The region hosts a dense network of data centers and base stations, necessitating efficient thermal management solutions. Government initiatives promoting energy efficiency and carbon neutrality are encouraging telecom operators to transition toward passive cooling systems. Additionally, the presence of leading manufacturers and technology innovators in the U.S. and Canada is fostering product development and deployment at scale.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by, rapid advancements in edge computing and IoT deployments. The increasing demand for high-speed connectivity in smart cities, autonomous vehicles, and industrial automation is driving the need for distributed telecom nodes with efficient cooling. Passive systems are gaining traction due to their ability to operate in remote or off-grid locations with minimal maintenance. Furthermore, regulatory support for green infrastructure and rising energy costs are accelerating the shift toward passive thermal management solutions, positioning North America as a high-growth region in this domain.

Key players in the market

Some of the key players in Passive Cooling Systems for Telecom Infrastructure Market include Key players in the passive cooling systems market for telecom infrastructure include Delta Electronics, Inc., Vertiv Holdings Co., Aavid Thermalloy, STULZ GmbH, Schneider Electric SE, Nokia Networks, Huawei Technologies Co., Ltd., CommScope Holding Company, Inc., nVent Electric plc, Eaton Corporation plc, Rittal GmbH & Co. KG, Pfannenberg Group, C&D Technologies, Inc., Iceotope Technologies Limited, Modine Manufacturing Company, Alfa Laval AB, Transtherm Cooling Industries, and Asetek, Inc.

Key Developments:

In October 2025, Vertiv partnered with NVIDIA to develop 800 VDC platform designs for next-gen AI factories. This initiative supports high-density compute environments with advanced power and cooling architectures. It marks a major leap in AI infrastructure readiness.

In September 2025, Delta unveiled next-gen digital twins, cobots, and smart manufacturing solutions at SEMICON India 2025. The portfolio includes DIATwin Virtual Machine, Smart Screwdriving Systems, and Smart Green Facility Monitoring.

In September 2025, STULZ introduced the CyberRack SideCooler for efficient cooling of high-density data center racks. The closed-loop variant supports higher water temperatures and enclosure-free operation. It's tailored for AI and edge computing deployments.

Types Covered:

  • Natural Convection Cooling Systems
  • Phase Change Material (PCM) Based Cooling Systems
  • Heat Pipe-Based Cooling Systems
  • Radiative Cooling Systems
  • Evaporative Cooling Systems
  • Hybrid Passive Cooling Systems
  • Other Types

Materials Covered:

  • Aluminum
  • Copper
  • Graphite and Carbon-Based Materials
  • Phase Change Materials (PCMs)
  • Ceramic and Composite Materials
  • Other Materials

Components Covered:

  • Heat Sinks
  • Enclosures and Cabinets
  • Cooling Panels
  • Thermal Interface Materials
  • Vents and Filters
  • Other Components

Installations Covered:

  • New Installation
  • Retrofit Installation
  • Portable Installations

Cooling Mechanisms Covered:

  • Conduction Cooling
  • Convection Cooling
  • Radiation Cooling
  • Evaporative Cooling
  • Hybrid Mechanisms
  • Other Cooling Mechanisms

Applications Covered:

  • Telecom Towers
  • Base Transceiver Stations (BTS)
  • Data Centers and Edge Facilities
  • Remote Radio Units (RRUs)
  • Small Cells and Micro Sites
  • Fiber Optic and Network Equipment
  • Other Applications

End Users Covered:

  • Telecom Operators
  • Internet Service Providers (ISPs)
  • Data Center Operators
  • Network Equipment Manufacturers
  • Government & Defense Communication Units
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Passive Cooling Systems for Telecom Infrastructure Market, By Type

  • 5.1 Introduction
  • 5.2 Natural Convection Cooling Systems
  • 5.3 Phase Change Material (PCM) Based Cooling Systems
  • 5.4 Heat Pipe-Based Cooling Systems
  • 5.5 Radiative Cooling Systems
  • 5.6 Evaporative Cooling Systems
  • 5.7 Hybrid Passive Cooling Systems
  • 5.8 Other Types

6 Global Passive Cooling Systems for Telecom Infrastructure Market, By Material

  • 6.1 Introduction
  • 6.2 Aluminum
  • 6.3 Copper
  • 6.4 Graphite and Carbon-Based Materials
  • 6.5 Phase Change Materials (PCMs)
  • 6.6 Ceramic and Composite Materials
  • 6.7 Other Materials

7 Global Passive Cooling Systems for Telecom Infrastructure Market, By Component

  • 7.1 Introduction
  • 7.2 Heat Sinks
  • 7.3 Enclosures and Cabinets
  • 7.4 Cooling Panels
  • 7.5 Thermal Interface Materials
  • 7.6 Vents and Filters
  • 7.7 Other Components

8 Global Passive Cooling Systems for Telecom Infrastructure Market, By Installation

  • 8.1 Introduction
  • 8.2 New Installation
  • 8.3 Retrofit Installation
  • 8.4 Portable Installations

9 Global Passive Cooling Systems for Telecom Infrastructure Market, By Cooling Mechanism

  • 9.1 Introduction
  • 9.2 Conduction Cooling
  • 9.3 Convection Cooling
  • 9.4 Radiation Cooling
  • 9.5 Evaporative Cooling
  • 9.6 Hybrid Mechanisms
  • 9.7 Other Cooling Mechanisms

10 Global Passive Cooling Systems for Telecom Infrastructure Market, By Application

  • 10.1 Introduction
  • 10.2 Telecom Towers
  • 10.3 Base Transceiver Stations (BTS)
  • 10.4 Data Centers and Edge Facilities
  • 10.5 Remote Radio Units (RRUs)
  • 10.6 Small Cells and Micro Sites
  • 10.7 Fiber Optic and Network Equipment
  • 10.8 Other Applications

11 Global Passive Cooling Systems for Telecom Infrastructure Market, By End User

  • 11.1 Introduction
  • 11.2 Telecom Operators
  • 11.3 Internet Service Providers (ISPs)
  • 11.4 Data Center Operators
  • 11.5 Network Equipment Manufacturers
  • 11.6 Government & Defense Communication Units
  • 11.7 Other End Users

12 Global Passive Cooling Systems for Telecom Infrastructure Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 Delta Electronics, Inc.
  • 14.2 Vertiv Holdings Co.
  • 14.3 Aavid Thermalloy
  • 14.4 STULZ GmbH
  • 14.5 Schneider Electric SE
  • 14.6 Nokia Networks
  • 14.7 Huawei Technologies Co., Ltd.
  • 14.8 CommScope Holding Company, Inc.
  • 14.9 nVent Electric plc
  • 14.10 Eaton Corporation plc
  • 14.11 Rittal GmbH & Co. KG
  • 14.12 Pfannenberg Group
  • 14.13 C&D Technologies, Inc.
  • 14.14 Iceotope Technologies Limited
  • 14.15 Modine Manufacturing Company
  • 14.16 Alfa Laval AB
  • 14.17 Transtherm Cooling Industries
  • 14.18 Asetek, Inc

List of Tables

  • Table 1 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Natural Convection Cooling Systems (2024-2032) ($MN)
  • Table 4 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Phase Change Material (PCM) Based Cooling Systems (2024-2032) ($MN)
  • Table 5 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Heat Pipe-Based Cooling Systems (2024-2032) ($MN)
  • Table 6 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Radiative Cooling Systems (2024-2032) ($MN)
  • Table 7 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Evaporative Cooling Systems (2024-2032) ($MN)
  • Table 8 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Hybrid Passive Cooling Systems (2024-2032) ($MN)
  • Table 9 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 10 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Material (2024-2032) ($MN)
  • Table 11 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Aluminum (2024-2032) ($MN)
  • Table 12 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Copper (2024-2032) ($MN)
  • Table 13 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Graphite and Carbon-Based Materials (2024-2032) ($MN)
  • Table 14 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Phase Change Materials (PCMs) (2024-2032) ($MN)
  • Table 15 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Ceramic and Composite Materials (2024-2032) ($MN)
  • Table 16 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 17 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Component (2024-2032) ($MN)
  • Table 18 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Heat Sinks (2024-2032) ($MN)
  • Table 19 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Enclosures and Cabinets (2024-2032) ($MN)
  • Table 20 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Cooling Panels (2024-2032) ($MN)
  • Table 21 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Thermal Interface Materials (2024-2032) ($MN)
  • Table 22 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Vents and Filters (2024-2032) ($MN)
  • Table 23 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other Components (2024-2032) ($MN)
  • Table 24 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Installation (2024-2032) ($MN)
  • Table 25 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By New Installation (2024-2032) ($MN)
  • Table 26 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Retrofit Installation (2024-2032) ($MN)
  • Table 27 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Portable Installations (2024-2032) ($MN)
  • Table 28 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Cooling Mechanism (2024-2032) ($MN)
  • Table 29 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Conduction Cooling (2024-2032) ($MN)
  • Table 30 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Convection Cooling (2024-2032) ($MN)
  • Table 31 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Radiation Cooling (2024-2032) ($MN)
  • Table 32 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Evaporative Cooling (2024-2032) ($MN)
  • Table 33 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Hybrid Mechanisms (2024-2032) ($MN)
  • Table 34 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other Cooling Mechanisms (2024-2032) ($MN)
  • Table 35 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Application (2024-2032) ($MN)
  • Table 36 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Telecom Towers (2024-2032) ($MN)
  • Table 37 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Base Transceiver Stations (BTS) (2024-2032) ($MN)
  • Table 38 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Data Centers and Edge Facilities (2024-2032) ($MN)
  • Table 39 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Remote Radio Units (RRUs) (2024-2032) ($MN)
  • Table 40 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Small Cells and Micro Sites (2024-2032) ($MN)
  • Table 41 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Fiber Optic and Network Equipment (2024-2032) ($MN)
  • Table 42 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 43 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By End User (2024-2032) ($MN)
  • Table 44 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Telecom Operators (2024-2032) ($MN)
  • Table 45 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Internet Service Providers (ISPs) (2024-2032) ($MN)
  • Table 46 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Data Center Operators (2024-2032) ($MN)
  • Table 47 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Network Equipment Manufacturers (2024-2032) ($MN)
  • Table 48 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Government & Defense Communication Units (2024-2032) ($MN)
  • Table 49 Global Passive Cooling Systems for Telecom Infrastructure Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.