封面
市场调查报告书
商品编码
1865398

全球基础设施用自修復材料市场:预测至2032年-按材料类型、修復机制、技术、应用、最终用户和地区分類的分析

Self-Healing Materials for Infrastructure Market Forecasts to 2032 - Global Analysis By Material Type, Healing Mechanism, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,预计 2025 年全球基础设施自修復材料市场规模将达到 7.291 亿美元,到 2032 年将达到 30.182 亿美元,预测期内复合年增长率为 22.5%。

用于基础设施的自修復材料是一种先进的复合材料,无需外部干预即可自主检测并修復裂缝和微裂缝等损伤。这些材料包含修復剂,例如胶囊、血管网络或化学触发剂,这些修復剂会在受到应力或环境因素作用时被激活。透过恢復结构完整性并延长使用寿命,它们可以降低维护成本并提高安全性。自修復技术广泛应用于混凝土、沥青和涂料等领域,有助于建立符合长期耐久性目标的韧性永续基础设施。

对弹性基础设施的需求日益增长

自修復材料能够自主修復微裂纹和结构损伤,从而延长使用寿命并最大限度地减少昂贵的维护成本,为解决基础设施问题提供了极具吸引力的解决方案。这一趋势在高流量应用场景(例如高速公路、隧道和桥樑)中尤其重要,因为这些场景的停机时间和维修成本都非常高。此外,气候适应基础设施正日益成为政策关注的焦点,而自修復复合材料则能够提高基础设施在恶劣条件下的耐久性,从而契合这些目标。

缺乏现场检验

由于缺乏长期案例研究和标准化测试通讯协定,基础设施相关人员仍持谨慎态度。修復效率会因环境因素(例如湿度、温度和工况週期)而异,这引发了对可靠性的担忧。此外,将修復剂整合到传统的施工流程中会带来后勤方面的挑战,尤其是在大型公共工程专案中。这些不确定性阻碍了修復剂的广泛应用,并延缓了其获得监管部门核准用于主流用途。

维修老旧基础设施

城市无需彻底重建,即可利用这些材料延长现有设施的使用寿命,从而减少环境影响和资本支出。喷涂式和浇注式自修復组合药物的创新使得桥樑、路面和供水系统的维修成为可能。此外,越来越多的公私合营试验计画获得资助,用于在实际环境中测试这些材料。这种维修方法符合循环经济原则,并支持建筑业的脱碳目标。

与替代技术的竞争

自修復材料虽然具有独特的优势,但却面临其他先进解决方案的激烈竞争,例如超高性能混凝土(UHPC)、纤维增强聚合物和奈米涂层。这些替代技术通常前期成本更低,并且有大量的实证数据支持,因此对较保守的基础设施负责人更具吸引力。此外,专有的自修復技术可能会导致市场分散化,并使采购和标准化变得更加复杂。

新冠疫情的影响:

疫情扰乱了供应链,导致全球基础设施计划延期,并影响了自修復材料的应用。然而,疫情也加速了人们对低维护、自主修復技术的兴趣,尤其是在面临劳动力短缺和预算限制的地区。随着各国政府将刺激资金转向韧性基础建设,自修復材料在策略规划中日益凸显。远端监控和预测性维护也变得更加普遍,这与能够自我报告损伤的智慧材料形成了协同效应。

预计在预测期内,聚合物密封剂和涂料细分市场将占据最大的市场份额。

由于其用途广泛、易于施工且与现有基础设施相容,预计在预测期内,聚合物基密封剂和涂料将占据最大的市场份额。这些材料广泛应用于道路、隧道和建筑建筑幕墙,用于密封裂缝和防止水分渗入。它们具有自癒能力,通常由水分、热量或机械应力触发,使其成为动态环境的理想选择。此外,微胶囊化技术和可逆黏合剂化学的进步也提高了其性能和保质期。

预计形状记忆材料细分市场在预测期内将呈现最高的复合年增长率。

形状记忆材料领域预计将在预测期内实现最高成长率,这主要得益于其在受到诸如热或应力等特定刺激后能够恢復原状的特性。这些材料在地震多发地区和经常发生变形的重载基础设施中尤其重要。形状记忆合金和聚合物的创新正在推动其在伸缩缝、结构加固和自适应建筑幕墙等领域的应用。与感测器网路整合进行即时监测进一步提升了其价值,使其成为智慧基础设施计划的理想选择。

占比最大的地区:

预计亚太地区将在预测期内占据最大的市场份额,这主要得益于中国、印度和东南亚的大规模基础设施投资。快速的都市化以及政府主导的智慧城市计画正在推动对先进建筑材料的需求。该地区各国也面临基础设施老化和极端天气条件的挑战,进一步凸显了自修復解决方案的重要性。当地製造商正与全球企业进行越来越多的合作,以开发适合当地气候的、具成本效益的配方。该地区对永续性和创新的积极态度也进一步推动了市场扩张。

预计年复合成长率最高的地区:

由于强劲的研发活动、有利的法规结构以及智慧基础设施技术的早期应用,预计北美在预测期内将实现最高的复合年增长率。联邦和州级项目正在资助先导计画,将自修復材料应用于公路、桥樑和供水系统。该地区对气候适应能力和基础设施现代化的重视,为尖端材料的发展创造了沃土。此外,大学、Start-Ups和建设公司之间的合作正在加速商业化进程。

免费客製化服务

订阅本报告的用户可从以下免费自订选项中选择一项:

  • 公司简介
    • 对最多三家其他公司进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域分类
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 引言

  • 概述
  • 相关利益者
  • 分析范围
  • 分析方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 分析方法
  • 分析材料
    • 原始研究资料
    • 二手研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 介绍
  • 司机
  • 抑制因素
  • 市场机会
  • 威胁
  • 技术分析
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代产品的威胁
  • 新参与企业的威胁
  • 公司间的竞争

5. 全球基础设施自修復材料市场(依材料类型划分)

  • 介绍
  • 聚合物密封涂层
  • 基于混凝土的自修復系统
  • 胶囊型修復剂
  • 酵素自修復系统
  • 混合自修復材料
  • 其他材料类型

6. 全球基础设施自修復材料市场(依修復机制划分)

  • 介绍
  • 内在修復
  • 外源性修復
  • 自主修復
  • 非自主修復
  • 其他修復机制

7. 全球基础设施自修復材料市场(依技术划分)

  • 介绍
  • 微胶囊化
  • 血管网络
  • 形状记忆材料
  • 可逆聚合物
  • 生物修復
  • 其他技术

8. 全球基础设施自修復材料市场(按应用领域划分)

  • 介绍
  • 道路和人行道
  • 桥樑和高架桥
  • 隧道和地下结构
  • 建筑物和水泥建筑物
  • 港口和沿海基础设施
  • 管道和公用设施基础设施
  • 其他用途

9. 全球基础设施自修復材料市场(依最终用户划分)

  • 介绍
  • 建筑公司
  • 政府,
  • 基础设施承包商
  • 工程和设计公司
  • 研究所
  • 其他最终用户

10. 全球基础设施自修復材料市场(按地区划分)

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章:主要趋势

  • 合约、商业伙伴关係和合资企业
  • 企业合併(M&A)
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十二章:企业概况

  • BASF SE
  • Akzo Nobel NV
  • Covestro AG
  • Evonik Industries AG
  • Dow Inc.
  • Arkema Group
  • Autonomic Materials Inc.
  • Sensor Coating Systems Ltd.
  • NEI Corporation
  • Applied Thin Films Inc.
  • LG Chem
  • Huntsman Corporation
  • Nouryon
  • Teijin Limited
  • Sika AG
  • PPG Industries
  • Saint-Gobain
  • Wacker Chemie AG
  • Solvay SA
  • HB Fuller Company
Product Code: SMRC32089

According to Stratistics MRC, the Global Self-Healing Materials for Infrastructure Market is accounted for $729.1 million in 2025 and is expected to reach $3,018.2 million by 2032 growing at a CAGR of 22.5% during the forecast period. Self-healing materials for infrastructure are advanced composites engineered to autonomously detect and repair damage, such as cracks or microfractures, without external intervention. These materials incorporate healing agents like capsules, vascular networks, or chemical triggers that activate upon stress or exposure to environmental factors. By restoring structural integrity and extending service life, they reduce maintenance costs and enhance safety. Widely applied in concrete, asphalt, and coatings, self-healing technologies support resilient, sustainable infrastructure development aligned with long-term durability goals.

Market Dynamics:

Driver:

Rising demand for resilient infrastructure

Self-healing materials offer a compelling solution by autonomously repairing micro-cracks and structural damage, thereby extending service life and minimizing costly interventions. This trend is particularly relevant in high-traffic applications such as highways, tunnels, and bridges, where downtime and repair costs are significant. Additionally, climate-resilient infrastructure is becoming a policy focus, and self-healing composites align with these goals by enhancing durability under extreme conditions.

Restraint:

Limited field validation

Infrastructure stakeholders remain cautious due to the absence of long-term case studies and standardized testing protocols. Variability in healing efficiency based on environmental exposure-such as humidity, temperature, and load cycles raises concerns about reliability. Moreover, the integration of healing agents into traditional construction workflows poses logistical challenges, especially in large-scale public projects. These uncertainties hinder widespread adoption and delay regulatory approvals for mainstream use.

Opportunity:

Retrofitting aging infrastructure

Instead of full-scale reconstruction, municipalities can deploy these materials to extend the lifespan of existing assets, reducing environmental impact and capital expenditure. Innovations in sprayable and injectable self-healing formulations make retrofitting feasible for bridges, pavements, and water systems. Additionally, public-private partnerships are increasingly funding pilot programs to test these materials in real-world conditions. This retrofit approach aligns with circular economy principles and supports decarbonization goals in the construction sector.

Threat:

Competition from alternative technologies

While self-healing materials offer unique benefits, they face stiff competition from other advanced solutions such as ultra-high-performance concrete (UHPC), fiber-reinforced polymers, and nanocoatings. These alternatives often have lower upfront costs and are backed by extensive field data, making them more attractive to conservative infrastructure planners. Furthermore, proprietary self-healing technologies can create fragmentation in the market, complicating procurement and standardization.

Covid-19 Impact:

The pandemic disrupted supply chains and delayed infrastructure projects globally, affecting the rollout of self-healing materials. However, it also accelerated interest in low-maintenance and autonomous repair technologies, especially in regions facing labor shortages and budget constraints. As governments redirected stimulus funds toward resilient infrastructure, self-healing materials gained visibility in strategic planning. Remote monitoring and predictive maintenance became more prevalent, creating synergies with smart materials that can self-report damage.

The polymeric sealants and coatings segment is expected to be the largest during the forecast period

The polymeric sealants and coatings segment is expected to account for the largest market share during the forecast period propelled by, their versatility, ease of application, and compatibility with existing infrastructure. These materials are widely used in roads, tunnels, and building facades to seal cracks and prevent moisture ingress. Their self-healing capabilities-often triggered by moisture, heat, or mechanical stress-make them ideal for dynamic environments. Additionally, advancements in microencapsulation and reversible bonding chemistries have enhanced their performance and shelf life.

The shape memory materials segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the shape memory materials segment is predicted to witness the highest growth rate, influenced by, their ability to recover original form upon exposure to specific stimuli such as heat or stress. These materials are particularly valuable in seismic zones and high-load infrastructure where deformation is common. Innovations in shape memory alloys and polymers are enabling applications in expansion joints, structural reinforcements, and adaptive facades. Their integration with sensor networks for real-time monitoring adds further value, making them attractive for smart infrastructure projects.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, fuelled by, massive infrastructure investments across China, India, and Southeast Asia. Rapid urbanization, coupled with government-backed smart city initiatives, is driving demand for advanced construction materials. Countries in this region are also grappling with aging infrastructure and extreme weather events, making self-healing solutions highly relevant. Local manufacturers are increasingly collaborating with global players to develop cost-effective formulations tailored for regional climates. The region's proactive stance on sustainability and innovation further supports market expansion.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by, strong R&D activity, favorable regulatory frameworks, and early adoption of smart infrastructure technologies. Federal and state-level programs are funding pilot projects that incorporate self-healing materials in highways, bridges, and water systems. The region's emphasis on climate resilience and infrastructure modernization is creating fertile ground for advanced materials. Additionally, collaborations between universities, startups, and construction firms are accelerating commercialization.

Key players in the market

Some of the key players in Self-Healing Materials for Infrastructure Market include BASF SE, Akzo Nobel N.V., Covestro AG, Evonik Industries AG, Dow Inc., Arkema Group, Autonomic Materials Inc., Sensor Coating Systems Ltd., NEI Corporation, Applied Thin Films Inc., LG Chem, Huntsman Corporation, Nouryon, Teijin Limited, Sika AG, PPG Industries, Saint-Gobain, Wacker Chemie AG, Solvay SA, and H.B. Fuller Company.

Key Developments:

In October 2025, BASF partnered with IFF to co-develop next-gen enzyme technologies for cleaning and personal care. The collaboration enhances IFF's Designed Enzymatic Biomaterials(TM) platform. It targets industrial and consumer applications.

In October 2025, Covestro showcased "The Material Effect" at K 2025, emphasizing circular economy and sustainable design. It won the Good Design Award for its polycarbonate innovations. The event highlighted its materials science leadership.

In June 2025, JSW Paints signed definitive agreements to acquire a 74.76% stake in Akzo Nobel India. The deal is valued at INR 8,986 crore and strengthens JSW's coatings portfolio. Completion is expected by Q4 2025.

Material Types Covered:

  • Polymeric Sealants and Coatings
  • Concrete-Based Self-Healing Systems
  • Encapsulated Healing Agents
  • Enzymatic Self-Healing Systems
  • Hybrid Self-Healing Materials
  • Other Material Types

Healing Mechanisms Covered:

  • Intrinsic Healing
  • Extrinsic Healing
  • Autonomous Healing
  • Non-Autonomous Healing
  • Other Healing Mechanisms

Technologies Covered:

  • Microencapsulation
  • Vascular Networks
  • Shape Memory Materials
  • Reversible Polymers
  • Biological Healing Agents
  • Other Technologies

Applications Covered:

  • Roads & Pavements
  • Bridges & Viaducts
  • Tunnels & Underground Structures
  • Buildings & Concrete Structures
  • Harbors & Coastal Infrastructure
  • Pipelines & Utility Infrastructure
  • Other Applications

End Users Covered:

  • Construction Companies
  • Government & Municipal Authorities
  • Infrastructure Maintenance Contractors
  • Engineering & Design Firms
  • Research Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Self-Healing Materials for Infrastructure Market, By Material Type

  • 5.1 Introduction
  • 5.2 Polymeric Sealants and Coatings
  • 5.3 Concrete-Based Self-Healing Systems
  • 5.4 Encapsulated Healing Agents
  • 5.5 Enzymatic Self-Healing Systems
  • 5.6 Hybrid Self-Healing Materials
  • 5.7 Other Material Types

6 Global Self-Healing Materials for Infrastructure Market, By Healing Mechanism

  • 6.1 Introduction
  • 6.2 Intrinsic Healing
  • 6.3 Extrinsic Healing
  • 6.4 Autonomous Healing
  • 6.5 Non-Autonomous Healing
  • 6.6 Other Healing Mechanisms

7 Global Self-Healing Materials for Infrastructure Market, By Technology

  • 7.1 Introduction
  • 7.2 Microencapsulation
  • 7.3 Vascular Networks
  • 7.4 Shape Memory Materials
  • 7.5 Reversible Polymers
  • 7.6 Biological Healing Agents
  • 7.7 Other Technologies

8 Global Self-Healing Materials for Infrastructure Market, By Application

  • 8.1 Introduction
  • 8.2 Roads & Pavements
  • 8.3 Bridges & Viaducts
  • 8.4 Tunnels & Underground Structures
  • 8.5 Buildings & Concrete Structures
  • 8.6 Harbors & Coastal Infrastructure
  • 8.7 Pipelines & Utility Infrastructure
  • 8.8 Other Applications

9 Global Self-Healing Materials for Infrastructure Market, By End User

  • 9.1 Introduction
  • 9.2 Construction Companies
  • 9.3 Government & Municipal Authorities
  • 9.4 Infrastructure Maintenance Contractors
  • 9.5 Engineering & Design Firms
  • 9.6 Research Institutions
  • 9.7 Other End Users

10 Global Self-Healing Materials for Infrastructure Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 BASF SE
  • 12.2 Akzo Nobel N.V.
  • 12.3 Covestro AG
  • 12.4 Evonik Industries AG
  • 12.5 Dow Inc.
  • 12.6 Arkema Group
  • 12.7 Autonomic Materials Inc.
  • 12.8 Sensor Coating Systems Ltd.
  • 12.9 NEI Corporation
  • 12.10 Applied Thin Films Inc.
  • 12.11 LG Chem
  • 12.12 Huntsman Corporation
  • 12.13 Nouryon
  • 12.14 Teijin Limited
  • 12.15 Sika AG
  • 12.16 PPG Industries
  • 12.17 Saint-Gobain
  • 12.18 Wacker Chemie AG
  • 12.19 Solvay SA
  • 12.20 H.B. Fuller Company

List of Tables

  • Table 1 Global Self-Healing Materials for Infrastructure Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Self-Healing Materials for Infrastructure Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 3 Global Self-Healing Materials for Infrastructure Market Outlook, By Polymeric Sealants and Coatings (2024-2032) ($MN)
  • Table 4 Global Self-Healing Materials for Infrastructure Market Outlook, By Concrete-Based Self-Healing Systems (2024-2032) ($MN)
  • Table 5 Global Self-Healing Materials for Infrastructure Market Outlook, By Encapsulated Healing Agents (2024-2032) ($MN)
  • Table 6 Global Self-Healing Materials for Infrastructure Market Outlook, By Enzymatic Self-Healing Systems (2024-2032) ($MN)
  • Table 7 Global Self-Healing Materials for Infrastructure Market Outlook, By Hybrid Self-Healing Materials (2024-2032) ($MN)
  • Table 8 Global Self-Healing Materials for Infrastructure Market Outlook, By Other Material Types (2024-2032) ($MN)
  • Table 9 Global Self-Healing Materials for Infrastructure Market Outlook, By Healing Mechanism (2024-2032) ($MN)
  • Table 10 Global Self-Healing Materials for Infrastructure Market Outlook, By Intrinsic Healing (2024-2032) ($MN)
  • Table 11 Global Self-Healing Materials for Infrastructure Market Outlook, By Extrinsic Healing (2024-2032) ($MN)
  • Table 12 Global Self-Healing Materials for Infrastructure Market Outlook, By Autonomous Healing (2024-2032) ($MN)
  • Table 13 Global Self-Healing Materials for Infrastructure Market Outlook, By Non-Autonomous Healing (2024-2032) ($MN)
  • Table 14 Global Self-Healing Materials for Infrastructure Market Outlook, By Other Healing Mechanisms (2024-2032) ($MN)
  • Table 15 Global Self-Healing Materials for Infrastructure Market Outlook, By Technology (2024-2032) ($MN)
  • Table 16 Global Self-Healing Materials for Infrastructure Market Outlook, By Microencapsulation (2024-2032) ($MN)
  • Table 17 Global Self-Healing Materials for Infrastructure Market Outlook, By Vascular Networks (2024-2032) ($MN)
  • Table 18 Global Self-Healing Materials for Infrastructure Market Outlook, By Shape Memory Materials (2024-2032) ($MN)
  • Table 19 Global Self-Healing Materials for Infrastructure Market Outlook, By Reversible Polymers (2024-2032) ($MN)
  • Table 20 Global Self-Healing Materials for Infrastructure Market Outlook, By Biological Healing Agents (2024-2032) ($MN)
  • Table 21 Global Self-Healing Materials for Infrastructure Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 22 Global Self-Healing Materials for Infrastructure Market Outlook, By Application (2024-2032) ($MN)
  • Table 23 Global Self-Healing Materials for Infrastructure Market Outlook, By Roads & Pavements (2024-2032) ($MN)
  • Table 24 Global Self-Healing Materials for Infrastructure Market Outlook, By Bridges & Viaducts (2024-2032) ($MN)
  • Table 25 Global Self-Healing Materials for Infrastructure Market Outlook, By Tunnels & Underground Structures (2024-2032) ($MN)
  • Table 26 Global Self-Healing Materials for Infrastructure Market Outlook, By Buildings & Concrete Structures (2024-2032) ($MN)
  • Table 27 Global Self-Healing Materials for Infrastructure Market Outlook, By Harbors & Coastal Infrastructure (2024-2032) ($MN)
  • Table 28 Global Self-Healing Materials for Infrastructure Market Outlook, By Pipelines & Utility Infrastructure (2024-2032) ($MN)
  • Table 29 Global Self-Healing Materials for Infrastructure Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 30 Global Self-Healing Materials for Infrastructure Market Outlook, By End User (2024-2032) ($MN)
  • Table 31 Global Self-Healing Materials for Infrastructure Market Outlook, By Construction Companies (2024-2032) ($MN)
  • Table 32 Global Self-Healing Materials for Infrastructure Market Outlook, By Government & Municipal Authorities (2024-2032) ($MN)
  • Table 33 Global Self-Healing Materials for Infrastructure Market Outlook, By Infrastructure Maintenance Contractors (2024-2032) ($MN)
  • Table 34 Global Self-Healing Materials for Infrastructure Market Outlook, By Engineering & Design Firms (2024-2032) ($MN)
  • Table 35 Global Self-Healing Materials for Infrastructure Market Outlook, By Research Institutions (2024-2032) ($MN)
  • Table 36 Global Self-Healing Materials for Infrastructure Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.