封面
市场调查报告书
商品编码
1865425

全球软体定义汽车 (SDV) 市场:预测至 2032 年 - 按架构、软体、经营模式、车辆类型、最终用户和地区进行分析

Software-Defined Vehicle Market Forecasts to 2032 - Global Analysis By Architecture, Software, Business Model, Vehicle Type, End User and By Geography.

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球软体定义汽车 (SDV) 市场规模将达到 1,347 亿美元,到 2032 年将达到 7,179 亿美元,预测期内复合年增长率为 27%。

软体定义车辆 (SDV) 指的是一种现代车辆,其关键功能和使用者体验由软体架构而非纯粹的机械硬体决定。关键特性、效能特征和新功能均透过空中下载 (OTA) 软体更新进行交付、更新和管理。 SDV 的目的是使汽车製造商能够快速推出新功能、个人化驾驶体验、提升售后安全性和性能,并在车辆的整个生命週期中创造新的基于服务的收入来源。

市政案例研究表明,该模式透过收取订阅费,为城市提供联网的 LED 照明和嵌入式感测器,从而为公共基础设施创建数据生成网路。

对无线软体更新(OTA)的需求不断增长

互联智慧路灯系统的日益普及推动了对空中下载 (OTA) 软体更新的需求。市政当局正越来越多地采用自动化远端系统管理平台,这些平台无需人工干预即可更新照明韧体、增强网路功能并提高能源效率。 OTA 更新能够更快地修復漏洞、增强网路安全并改善功能,从而减少停机时间和营运成本。这种能力有助于即时优化并延长系统使用寿命,使其成为推动软体定义车辆 (SDV) 普及的关键因素。

整合现有系统的复杂性

将现代智慧路灯解决方案与现有传统照明系统整合仍然是一大难题。许多城市运作老旧的电力和控制基础设施,需要进行复杂的维修才能实现网路相容性。将这些系统适配到分散式云端管理平台和基于物联网的通讯,会增加技术和经济负担。此外,确保跨多个硬体和供应商生态系统的互通性,也进一步加剧了部署的复杂性,并减缓了城市照明现代化计划的数位转型步伐。

云端原生平台的兴起

云端原生平台的快速发展为软体定义车辆 (SDV) 解决方案的扩展提供了巨大机会。云端整合实现了对照明网路的集中监控、预测性维护和即时分析,从而提高了能源利用率和营运效率。微服务架构和边缘运算的采用增强了系统设计的弹性和灵活性。这些技术将使更多市政当局能够采用基于订阅的照明管理模式,从而加速全球智慧、互联和数据驱动型城市照明基础设施的部署。

软体故障风险增加,遭受网路攻击的风险也随之增加。

随着对互联自动化照明网路的依赖性日益增强,软体故障和网路威胁的风险也随之增加。系统漏洞可能导致大范围的运作中断和市政资料的未授权存取。加密强度不足和韧体保护措施不完善也会带来额外的风险。持续的软体测试、强大的加密通讯协定和事件回应机制对于维护系统完整性至关重要。随着城市照明系统互联程度的不断提高,网路安全漏洞将继续成为服务供应商和公共机构面临的主要挑战。

新冠疫情的影响:

新冠疫情初期,由于财政不确定性和市政预算延迟,智慧基础设施计划受到衝击。然而,疫情也加速了可远端系统管理的自动化、数位化监控路灯系统的需求。这场危机凸显了营运连续性、能源效率和减少现场维护需求的重要性。疫情后的復苏工作以及对智慧城市基础设施的重新投资,正在加速互联照明服务模式的普及,从而推动永续和韧性的城市现代化进程。

预计在预测期内,集中式高效能运算领域将占据最大的市场份额。

由于集中式高效能运算在管理来自互联照明节点的大量资料方面发挥关键作用,预计在预测期内,它将占据最大的市场份额。这些计算单元能够实现高级分析、即时故障检测以及大型照明网路间的无缝协作。市政当局倾向于集中式架构,因为其易于控制且延迟低。随着智慧城市平台的扩展,对可扩展的高效能处理能力的需求将持续显着增长。

预计嵌入式作业系统细分市场在预测期内将呈现最高的复合年增长率。

预计在预测期内,嵌入式作业系统领域将实现最高成长率,这主要得益于支援即时决策和空中昇级的智慧照明控制器的日益普及。这些系统能够根据运动、交通和天气状况自适应地调整照明,同时保持高安全性和互通性。路灯硬体中边缘运算的日益普及将进一步扩大嵌入式作业系统在提升本地自主性和功能可靠性方面的作用。

占比最大的地区:

预计亚太地区将在预测期内占据最大的市场份额,这主要得益于中国、日本和印度的快速城市化扩张、政府主导的节能倡议以及智慧城市投资。强大的公私合营和智慧基础设施支援资金正在推动大规模应用。主要照明设备製造商和物联网公司的存在营造了有利的市场环境,有助于加速采用整合式、基于服务的路灯现代化解决方案。

年复合成长率最高的地区:

预计在预测期内,北美地区将保持较高的复合年增长率,这主要得益于其强大的数位基础设施、云端基础监控平台的广泛应用以及地方政府对永续城市照明的日益重视。美国和加拿大在城市现代化专案中实施软体定义车辆(SDV)计划处于主导地位。公共对能源效率的日益关注,以及对5G物联网网路的大力投资,使北美成为快速成长的区域市场。

免费客製化服务

订阅本报告的用户可从以下免费自订选项中选择一项:

  • 公司简介
    • 对最多三家其他公司进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域分类
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 引言

  • 概述
  • 相关利益者
  • 分析范围
  • 分析方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 分析方法
  • 分析材料
    • 原始研究资料
    • 二手研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 介绍
  • 司机
  • 抑制因素
  • 市场机会
  • 威胁
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代产品的威胁
  • 新参与企业的威胁
  • 公司间的竞争

5. 全球软体定义汽车 (SDV) 市场按架构划分

  • 介绍
  • 集中式高效能运算
  • 区域运算架构
  • 网域控制器架构
  • 边缘到云端集成
  • 开放软体生态系(API)
  • 车辆数位双胞胎

6. 全球软体定义汽车 (SDV) 市场(按软体划分)

  • 介绍
  • 嵌入式作业系统
  • 中介软体和编配
  • 应用与服务层
  • 空中下载(OTA)平台
  • 数据管理和遥测
  • 网路安全与安全启动

7. 全球软体定义汽车 (SDV) 市场以经营模式

  • 介绍
  • 软体即服务 (SaaS)
  • 授权和知识产权模式
  • 平台即服务 (PaaS)
  • 与原始设备製造商进行收益分成
  • 订阅功能和付费墙
  • 託管更新和支援服务

8. 全球软体定义汽车 (SDV) 市场(按车辆类型划分)

  • 介绍
  • 搭乘用车
  • 轻型商用车
  • 大型商用车辆
  • 电动车(EV)
  • 自动驾驶接驳车和无人驾驶计程车
  • 专用和工业车辆

9. 全球软体定义汽车 (SDV) 市场(按最终用户划分)

  • 介绍
  • OEM/汽车製造商
  • 一级供应商
  • 车队营运商、旅游服务提供商
  • 软体供应商和整合商
  • 云端遥测供应商
  • 监管与测试实验室

第十章 全球软体定义汽车(SDV)市场(按类型划分)

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章:主要趋势

  • 合约、商业伙伴关係和合资企业
  • 企业合併(M&A)
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十二章 企业概况

  • Bosch
  • Continental AG
  • Aptiv
  • Nvidia Corporation
  • Qualcomm
  • NXP Semiconductors
  • Renesas Electronics
  • BlackBerry QNX
  • Wind River Systems
  • TTTech Auto
  • Magna International
  • Robert Bosch GmbH
  • Denso Corporation
  • Elektrobit(EB)
  • Elektrobit Automotive
Product Code: SMRC32162

According to Stratistics MRC, the Global Software-Defined Vehicle (SDV) Market is accounted for $134.7 billion in 2025 and is expected to reach $717.9 billion by 2032 growing at a CAGR of 27% during the forecast period. A Software-Defined Vehicle (SDV) is a modern automobile whose primary functions and user experience are determined by its software architecture rather than its purely mechanical hardware. Key features, performance characteristics, and new capabilities are delivered, updated, and managed through over-the-air (OTA) software updates. The SDV's purpose is to allow automakers to rapidly introduce new features, personalize the driving experience, enhance safety and performance post-purchase, and generate new service-based revenue streams throughout the vehicle's lifespan.

According to municipal case studies, this model provides cities with connected LED lighting and embedded sensors for a subscription fee, creating a data-generating network for public infrastructure.

Market Dynamics:

Driver:

Rising demand for over-the-air software updates

The growing adoption of connected and intelligent streetlighting systems is driving demand for over-the-air (OTA) software updates. Municipalities are increasingly adopting automated, remotely managed platforms to update lighting firmware, enhance network functionality, and improve energy efficiency without manual intervention. OTA updates enable faster bug fixes, improved cybersecurity, and feature enhancements, reducing downtime and operational costs. This capability fosters real-time optimization and extends system life, making it a key growth driver in Software-Defined Vehicle (SDV) deployments.

Restraint:

Complexity in integrating legacy

Integrating modern smart streetlight solutions with existing legacy lighting systems remains a significant restraint. Most cities operate on outdated electrical and control infrastructure, requiring complex retrofitting for network compatibility. Adapting these systems to decentralized cloud management platforms and IoT-based communication adds to technical and financial burdens. The need for interoperability across multiple hardware and vendor ecosystems further complicates implementation, slowing the pace of digital transformation in urban lighting modernization projects.

Opportunity:

Advancement in cloud-native platforms

Rapid advancement in cloud-native platforms offers major opportunities for scaling Software-Defined Vehicle (SDV) offerings. Cloud integration enables centralized monitoring, predictive maintenance, and real-time analytics across lighting networks, improving energy use and operational efficiency. The introduction of microservices architecture and edge computing strengthens resilience and flexibility in system design. These technologies allow more municipalities to adopt subscription-based lighting management models, accelerating the deployment of intelligent, connected, and data-driven urban lighting infrastructures globally.

Threat:

Increased exposure to software bugs & cyberattacks

The growing reliance on connected and automated lighting networks increases vulnerability to software bugs and cyber threats. Compromised systems can lead to widespread operational outages or unauthorized access to municipal data. Weak encryption or insufficient firmware protection poses additional risks. Maintaining system integrity demands continuous software testing, robust encryption protocols, and incident response frameworks. As urban lighting systems become more interconnected, cybersecurity breaches remain a critical concern for service providers and public authorities.

Covid-19 Impact:

The COVID-19 pandemic initially disrupted smart infrastructure projects due to financial uncertainty and delayed municipal budgets. However, it also accelerated awareness of the need for automated and digitally monitored streetlighting systems supporting remote management. The crisis emphasized operational continuity, energy efficiency, and reduced field maintenance requirements. Post-pandemic recovery initiatives and renewed investments in smart city infrastructure have boosted adoption of connected lighting-as-a-service models, fostering sustainable and resilient urban modernization.

The centralized high-performance compute segment is expected to be the largest during the forecast period

The centralized high-performance compute segment is expected to account for the largest market share during the forecast period, resulting from its critical role in managing vast data from connected lighting nodes. These computing units enable advanced analytics, real-time fault detection, and seamless coordination across large lighting networks. Municipalities prefer centralized architectures for easier control and lower latency. As smart city platforms expand, demand for scalable, high-compute processing capabilities continues to grow significantly.

The embedded operating systems segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the embedded operating systems segment is predicted to witness the highest growth rate, propelled by increasing deployment of intelligent lighting controllers supporting real-time decision-making and OTA updates. These systems facilitate adaptive lighting responses to motion, traffic, and weather conditions while maintaining high-level security and interoperability. The growing shift to edge-based computing in streetlight hardware further amplifies the role of embedded operating systems in enhancing local autonomy and functional reliability.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to rapid urban expansion, government-led energy efficiency initiatives, and smart city investments in China, Japan, and India. Strong public-private partnerships and supportive funding for smart infrastructure are enabling large-scale deployment. The presence of major lighting OEMs and IoT companies provides favorable market conditions, driving enhanced adoption of integrated and service-based streetlight modernization solutions.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with strong digital infrastructure, extensive adoption of cloud-based monitoring platforms, and municipal focus on sustainable city lighting. The United States and Canada are leading in deploying Software-Defined Vehicle (SDV) projects under urban modernization programs. Increasing public awareness of energy efficiency, combined with robust investment in 5G-enabled IoT networks, positions North America as a rapidly advancing regional market.

Key players in the market

Some of the key players in Software-Defined Vehicle (SDV) Market include Bosch, Continental, Aptiv, Nvidia Corporation, Qualcomm, NXP Semiconductors, Renesas Electronics, BlackBerry, Wind River, TTTech Auto, Magna International, Robert Bosch, Denso Corporation, Elektrobit, Elektrobit Automotive, and Rongwen.

Key Developments:

In March 2025, Continental expanded its Vehicle-to-Everything (V2X) infrastructure solutions to include smart streetlight nodes capable of real-time traffic and environmental data exchange. This move supports urban mobility optimization and enhances safety in connected city environments.

In March 2025, Aptiv partnered with a European smart city initiative to deploy edge-computing-enabled streetlight controllers. These units integrate with Aptiv's mobility data platform to support adaptive lighting and traffic flow analytics

In February 2025, Qualcomm launched its Snapdragon Smart City Edge 7250, a chipset designed for intelligent infrastructure including smart streetlights. The platform supports AI-based lighting control, environmental sensing, and V2X communication for urban deployments.

Architectures Covered:

  • Centralized High-Performance Compute
  • Zonal Compute Architecture
  • Domain Controller Architecture
  • Edge-to-Cloud Integration
  • Open Software Ecosystems (APIs)
  • Vehicle Digital Twins

Softwares Covered:

  • Embedded Operating Systems
  • Middleware & Orchestration
  • Application & Services Layer
  • Over-The-Air (OTA) Platforms
  • Data Management & Telemetry
  • Cybersecurity & Secure Boot

Business Models Covered:

  • Software-as-a-Service (SaaS)
  • Licensing & IP Models
  • Platform-as-a-Service (PaaS)
  • Revenue-Sharing with OEMs
  • Subscription Features & Paywalls
  • Managed Update & Support Services

Vehicle Types Covered:

  • Passenger Cars
  • Light Commercial Vehicles
  • Heavy Commercial Vehicles
  • Electric Vehicles (EVs)
  • Autonomous Shuttles & Robotaxis
  • Specialty & Industrial Vehicles

End Users Covered:

  • OEMs & Vehicle Manufacturers
  • Tier-1 Suppliers
  • Fleet Operators & Mobility Providers
  • Software Vendors & Integrators
  • Cloud & Telemetry Providers
  • Regulatory & Test Labs

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Software-Defined Vehicle (SDV) Market, By Architecture

  • 5.1 Introduction
  • 5.2 Centralized High-Performance Compute
  • 5.3 Zonal Compute Architecture
  • 5.4 Domain Controller Architecture
  • 5.5 Edge-to-Cloud Integration
  • 5.6 Open Software Ecosystems (APIs)
  • 5.7 Vehicle Digital Twins

6 Global Software-Defined Vehicle (SDV) Market, By Software

  • 6.1 Introduction
  • 6.2 Embedded Operating Systems
  • 6.3 Middleware & Orchestration
  • 6.4 Application & Services Layer
  • 6.5 Over-The-Air (OTA) Platforms
  • 6.6 Data Management & Telemetry
  • 6.7 Cybersecurity & Secure Boot

7 Global Software-Defined Vehicle (SDV) Market, By Business Model

  • 7.1 Introduction
  • 7.2 Software-as-a-Service (SaaS)
  • 7.3 Licensing & IP Models
  • 7.4 Platform-as-a-Service (PaaS)
  • 7.5 Revenue-Sharing with OEMs
  • 7.6 Subscription Features & Paywalls
  • 7.7 Managed Update & Support Services

8 Global Software-Defined Vehicle (SDV) Market, By Vehicle Type

  • 8.1 Introduction
  • 8.2 Passenger Cars
  • 8.3 Light Commercial Vehicles
  • 8.4 Heavy Commercial Vehicles
  • 8.5 Electric Vehicles (EVs)
  • 8.6 Autonomous Shuttles & Robotaxis
  • 8.7 Specialty & Industrial Vehicles

9 Global Software-Defined Vehicle (SDV) Market, By End User

  • 9.1 Introduction
  • 9.2 OEMs & Vehicle Manufacturers
  • 9.3 Tier-1 Suppliers
  • 9.4 Fleet Operators & Mobility Providers
  • 9.5 Software Vendors & Integrators
  • 9.6 Cloud & Telemetry Providers
  • 9.7 Regulatory & Test Labs

10 Global Software-Defined Vehicle (SDV) Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Bosch
  • 12.2 Continental AG
  • 12.3 Aptiv
  • 12.4 Nvidia Corporation
  • 12.5 Qualcomm
  • 12.6 NXP Semiconductors
  • 12.7 Renesas Electronics
  • 12.8 BlackBerry QNX
  • 12.9 Wind River Systems
  • 12.10 TTTech Auto
  • 12.11 Magna International
  • 12.12 Robert Bosch GmbH
  • 12.13 Denso Corporation
  • 12.14 Elektrobit (EB)
  • 12.15 Elektrobit Automotive

List of Tables

  • Table 1 Global Software-Defined Vehicle (SDV) Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Software-Defined Vehicle (SDV) Market Outlook, By Architecture (2024-2032) ($MN)
  • Table 3 Global Software-Defined Vehicle (SDV) Market Outlook, By Centralized High-Performance Compute (2024-2032) ($MN)
  • Table 4 Global Software-Defined Vehicle (SDV) Market Outlook, By Zonal Compute Architecture (2024-2032) ($MN)
  • Table 5 Global Software-Defined Vehicle (SDV) Market Outlook, By Domain Controller Architecture (2024-2032) ($MN)
  • Table 6 Global Software-Defined Vehicle (SDV) Market Outlook, By Edge-to-Cloud Integration (2024-2032) ($MN)
  • Table 7 Global Software-Defined Vehicle (SDV) Market Outlook, By Open Software Ecosystems (APIs) (2024-2032) ($MN)
  • Table 8 Global Software-Defined Vehicle (SDV) Market Outlook, By Vehicle Digital Twins (2024-2032) ($MN)
  • Table 9 Global Software-Defined Vehicle (SDV) Market Outlook, By Software (2024-2032) ($MN)
  • Table 10 Global Software-Defined Vehicle (SDV) Market Outlook, By Embedded Operating Systems (2024-2032) ($MN)
  • Table 11 Global Software-Defined Vehicle (SDV) Market Outlook, By Middleware & Orchestration (2024-2032) ($MN)
  • Table 12 Global Software-Defined Vehicle (SDV) Market Outlook, By Application & Services Layer (2024-2032) ($MN)
  • Table 13 Global Software-Defined Vehicle (SDV) Market Outlook, By Over-The-Air (OTA) Platforms (2024-2032) ($MN)
  • Table 14 Global Software-Defined Vehicle (SDV) Market Outlook, By Data Management & Telemetry (2024-2032) ($MN)
  • Table 15 Global Software-Defined Vehicle (SDV) Market Outlook, By Cybersecurity & Secure Boot (2024-2032) ($MN)
  • Table 16 Global Software-Defined Vehicle (SDV) Market Outlook, By Business Model (2024-2032) ($MN)
  • Table 17 Global Software-Defined Vehicle (SDV) Market Outlook, By Software-as-a-Service (SaaS) (2024-2032) ($MN)
  • Table 18 Global Software-Defined Vehicle (SDV) Market Outlook, By Licensing & IP Models (2024-2032) ($MN)
  • Table 19 Global Software-Defined Vehicle (SDV) Market Outlook, By Platform-as-a-Service (PaaS) (2024-2032) ($MN)
  • Table 20 Global Software-Defined Vehicle (SDV) Market Outlook, By Revenue-Sharing with OEMs (2024-2032) ($MN)
  • Table 21 Global Software-Defined Vehicle (SDV) Market Outlook, By Subscription Features & Paywalls (2024-2032) ($MN)
  • Table 22 Global Software-Defined Vehicle (SDV) Market Outlook, By Managed Update & Support Services (2024-2032) ($MN)
  • Table 23 Global Software-Defined Vehicle (SDV) Market Outlook, By Vehicle Type (2024-2032) ($MN)
  • Table 24 Global Software-Defined Vehicle (SDV) Market Outlook, By Passenger Cars (2024-2032) ($MN)
  • Table 25 Global Software-Defined Vehicle (SDV) Market Outlook, By Light Commercial Vehicles (2024-2032) ($MN)
  • Table 26 Global Software-Defined Vehicle (SDV) Market Outlook, By Heavy Commercial Vehicles (2024-2032) ($MN)
  • Table 27 Global Software-Defined Vehicle (SDV) Market Outlook, By Electric Vehicles (EVs) (2024-2032) ($MN)
  • Table 28 Global Software-Defined Vehicle (SDV) Market Outlook, By Autonomous Shuttles & Robotaxis (2024-2032) ($MN)
  • Table 29 Global Software-Defined Vehicle (SDV) Market Outlook, By Specialty & Industrial Vehicles (2024-2032) ($MN)
  • Table 30 Global Software-Defined Vehicle (SDV) Market Outlook, By End User (2024-2032) ($MN)
  • Table 31 Global Software-Defined Vehicle (SDV) Market Outlook, By OEMs & Vehicle Manufacturers (2024-2032) ($MN)
  • Table 32 Global Software-Defined Vehicle (SDV) Market Outlook, By Tier-1 Suppliers (2024-2032) ($MN)
  • Table 33 Global Software-Defined Vehicle (SDV) Market Outlook, By Fleet Operators & Mobility Providers (2024-2032) ($MN)
  • Table 34 Global Software-Defined Vehicle (SDV) Market Outlook, By Software Vendors & Integrators (2024-2032) ($MN)
  • Table 35 Global Software-Defined Vehicle (SDV) Market Outlook, By Cloud & Telemetry Providers (2024-2032) ($MN)
  • Table 36 Global Software-Defined Vehicle (SDV) Market Outlook, By Regulatory & Test Labs (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.