封面
市场调查报告书
商品编码
1876668

低碳水泥市场预测至2032年:按类型、原料、通路、应用、最终用户和地区分類的全球分析

Low-Carbon Cement Market Forecasts to 2032 - Global Analysis By Type, Raw Material, Distribution Channel, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球低碳水泥市场规模将达到 24.9382 亿美元,到 2032 年将达到 59.7688 亿美元,预测期内复合年增长率为 13.3%。

低碳水泥是传统硅酸盐水泥的环保替代品,旨在最大限度地减少生产过程中的碳排放。它透过添加矿渣和飞灰等辅助材料并采用节能製程来降低二氧化碳排放。这种水泥的主要目标是在不影响品质、耐久性和结构性能的前提下,透过减少碳足迹来促进永续建筑。

根据国际能源总署(IEA)的数据,水泥生产是全球第二大二氧化碳排放源,也是全球第三大工业能源消费量。

严格的环境法规

各国政府正收紧排放标准,要求水泥生产商减少生产过程中的二氧化碳排放。碳定价和绿色建筑标准等法规结构正在推动永续材料的应用。为了满足监管标准,业内相关人员正在投资开发替代接合材料和水泥熟料替代品。碳捕获和利用技术的创新也作为脱碳策略的一部分而备受关注。这些监管压力正在重新调整采购重点,并增加对低排放量水泥配方的需求。

供应链限制

水泥外加剂(例如飞灰和矿渣)供不应求,造成生产瓶颈。运输效率低下以及原材料采购的区域差异进一步加剧了物流难题。中小型製造商在采购混合水泥配方所需的稳定优质原料方面面临挑战。高成本和分散的供应链阻碍了新兴市场的普及。如果没有健全的基础设施和协调的采购,供应方面的限制可能会阻碍市场扩张。

绩效标准的提升

性能标准的兴起为低碳水泥开闢了新的成长路径。这些标准优先考虑耐久性、强度和全生命週期排放,而非特定的材料成分。建筑商和监管机构正日益采用以结果为导向的指标,强调创新水泥混合物。这种转变使得替代配方(例如PLC水泥和无机聚合物水泥)得到更广泛的认可。同时,它也推动了针对特定结构和环境需求的解决方案的研发投入。

客户感知和品质问题

人们仍然对结构完整性、养护性能以及与现有施工方法的兼容性存在担忧。建筑商和承包商可能不愿意在缺乏充分检验的情况下采用未知类型的水泥。早期计划中的表现差异可能会加剧这些负面看法。教育课程和认证系统对于建立信任和证明其与传统水泥的等效性至关重要。如果没有积极主动的努力,品质问题可能会减缓水泥的推广应用,并限制市场成长。

新冠疫情的影响:

疫情扰乱了水泥供应链,导致全球基础设施计划延期,并影响了对低碳替代材料的需求。封锁和劳动力短缺使建设活动停滞,短期消费量下降。然而,疫情后的復苏计画优先考虑绿色基础设施和气候适应型材料。各国政府正投入奖励策略资金支持永续建筑倡议,提高了人们对低排放水泥的兴趣。远端协作和数位化采购平台正在加速创新并提升市场认知。

预计在预测期内,波特兰石灰水泥(PLC)细分市场将占据最大份额。

由于波特兰石灰水泥(PLC)能够在保持结构性能的同时减少二氧化碳排放,预计在预测期内,PLC将占据最大的市场份额。 PLC采用细磨石灰石配製而成,这降低了水泥熟料用量,使其更具永续性。监管部门的核准以及与建筑规范的兼容性推动了PLC在各地的快速普及。製造商正在提高PLC的产量,以满足基础设施和商业计划日益增长的需求。

预计能源和公共产业板块在预测期内将实现最高的复合年增长率。

预计在预测期内,能源和公共产业板块将实现最高成长率,这主要得益于可再生能源基础设施和电网现代化投资的增加。水泥是风力发电机基础、水力发电大坝和大型太阳能发电厂建设的关键材料。永续性要求和ESG(环境、社会和治理)报告要求正促使公共产业优先考虑低排放建筑材料。该产业对资产长期耐久性的重视与低碳水泥的性能特征高度契合。

占比最大的地区:

预计亚太地区将在预测期内占据最大的市场份额。中国、印度和印尼等国的快速都市化和基础设施扩张正在推动水泥需求。区域各国政府正在推行绿建筑标准并推广永续建筑实践。在有利的政策架构和产业投资的支持下,混合水泥的国内产量正在成长。全球企业与当地企业之间的策略伙伴关係正在促进技术转移和市场进入。

复合年增长率最高的地区:

预计北美地区在预测期内将呈现最高的复合年增长率。美国和加拿大在永续建筑创新和碳减排倡议处于主导地位。联邦和州政府层级的奖励正在推动公共基础设施中使用低排放材料。先进的研发能力和强而有力的监管支持正在加速新型水泥技术的商业化。承包商越来越多地将生命週期分析和碳计量纳入计划规划。

免费客製化服务:

购买此报告的客户可以选择以下免费自订选项之一:

  • 公司概况
    • 对其他市场参与者(最多 3 家公司)进行全面分析
    • 主要参与者(最多3家公司)的SWOT分析
  • 区域细分
    • 根据客户要求,提供主要国家的市场估算、预测和复合年增长率(註:可行性需确认)。
  • 竞争基准化分析
    • 根据主要参与者的产品系列、地理覆盖范围和策略联盟基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 原始研究资料
    • 二手研究资料
    • 先决条件

第三章 市场趋势分析

  • 介绍
  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球低碳水泥市场(按类型划分)

  • 介绍
  • 无机聚合物水泥
  • 硫铝酸钙(CSA)水泥
  • 飞灰水泥
  • 矿渣水泥
  • 波特兰石灰石水泥公司(PLC)
  • 贝利特水泥
  • 碳捕获水泥
  • 其他类型

6. 全球低碳水泥市场(以原始材料划分)

  • 介绍
  • 飞灰
  • 矿渣
  • 石灰岩
  • 硅灰
  • 回收利用的工业废弃物
  • 其他成分

7. 全球低碳水泥市场依通路划分

  • 介绍
  • 直销
  • 间接销售
    • 零售商
    • 经销商

8. 全球低碳水泥市场依应用领域划分

  • 介绍
  • 住宅
  • 商业建筑
  • 基础设施
  • 工业建筑
  • 其他用途

9. 全球低碳水泥市场(以最终用户划分)

  • 介绍
  • 建筑/施工
  • 运输
  • 能源与公共产业
  • 水和废弃物管理
  • 其他最终用户

第十章 全球低碳水泥市场(依地区划分)

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与併购
  • 新产品上市
  • 业务拓展
  • 其他关键策略

第十二章 企业概况

  • Holcim
  • HeidelbergCement
  • Cemex
  • CRH
  • China National Building Material
  • Anhui Conch Cement
  • Votorantim Cimentos
  • Taiheiyo Cement
  • UltraTech Cement
  • Buzzi Unicem
  • Siam Cement Group
  • Cementir Holding
  • CalPortland
  • Solidia Technologies
  • CarbonCure Technologies
Product Code: SMRC32420

According to Stratistics MRC, the Global Low-Carbon Cement Market is accounted for $2493.82 million in 2025 and is expected to reach $5976.88 million by 2032 growing at a CAGR of 13.3% during the forecast period. Low-carbon cement is eco-friendly alternative to conventional Portland cement, designed to minimize carbon emissions during manufacturing. It incorporates supplementary materials like slag or fly ash and employs energy-efficient processes to cut CO2 output. The key objective of this cement type is to promote sustainable construction by reducing its carbon footprint without compromising on quality, durability, or structural performance.

According to International Energy Agency, worldwide cement production is the second-largest source of CO2 emissions and the third-largest consumer of industrial energy.

Market Dynamics:

Driver:

Stringent environmental regulations

Governments are enforcing stricter emissions standards, compelling manufacturers to reduce CO2 footprints in cement production. Regulatory frameworks such as carbon pricing and green building codes are incentivizing sustainable material adoption. Industry players are investing in alternative binders and clinker substitutes to meet compliance thresholds. Innovations in carbon capture and utilization are gaining traction as part of decarbonization strategies. These regulatory pressures are reshaping procurement priorities and driving demand for low-emission cement formulations.

Restraint:

Supply chain limitations

Limited availability of supplementary cementitious materials like fly ash and slag is creating bottlenecks in production. Transportation inefficiencies and regional disparities in raw material access are further complicating logistics. Smaller manufacturers face challenges in sourcing consistent-quality inputs for blended cement formulations. High costs and fragmented supplier networks are slowing down adoption in emerging markets. Without robust infrastructure and procurement coordination, supply-side limitations may restrict market expansion.

Opportunity:

Performance-based standards

The rise of performance-based standards is unlocking new growth avenues for low-carbon cement. These standards prioritize durability, strength, and lifecycle emissions over prescriptive material compositions. Builders and regulators are increasingly embracing outcome-driven metrics that favor innovative cement blends. This shift enables broader acceptance of alternative formulations like PLC and geopolymer cement. It also encourages R&D investment in tailored solutions for specific structural and environmental needs.

Threat:

Customer perception and quality concerns

Concerns about structural integrity, curing behavior, and compatibility with existing construction practices persist. Builders and contractors may hesitate to adopt unfamiliar cement types without extensive validation. Negative perceptions can be amplified by inconsistent performance in early-stage projects. Education and certification programs are essential to build trust and demonstrate equivalency with traditional cement. Without proactive engagement, quality concerns could slow adoption and limit market growth.

Covid-19 Impact:

The pandemic disrupted cement supply chains and delayed infrastructure projects worldwide, impacting demand for low-carbon alternatives. Lockdowns and labor shortages stalled construction activity, reducing short-term consumption. However, post-pandemic recovery plans are emphasizing green infrastructure and climate-resilient materials. Governments are channeling stimulus funds into sustainable building initiatives, boosting interest in low-emission cement. Remote collaboration and digital procurement platforms have accelerated innovation and market visibility.

The portland limestone cement (PLC) segment is expected to be the largest during the forecast period

The portland limestone cement (PLC) segment is expected to account for the largest market share during the forecast period, due to its ability to reduce CO2 emissions while maintaining structural performance. PLC integrates finely ground limestone, lowering clinker content and enhancing sustainability. Regulatory approvals and building code compatibility have facilitated its rapid adoption across regions. Manufacturers are scaling up PLC production to meet growing demand from infrastructure and commercial projects.

The energy and utilities segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the energy and utilities segment is predicted to witness the highest growth rate, driven by increasing investments in renewable energy infrastructure and grid modernization. Cement is a key material in constructing wind turbine bases, hydroelectric dams, and utility-scale solar installations. Sustainability mandates and ESG reporting are prompting utilities to prioritize low-emission building materials. The sector's focus on long-term asset durability aligns well with performance attributes of low-carbon cement.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share. Rapid urbanization and infrastructure expansion in countries like China, India, and Indonesia are fueling cement demand. Regional governments are implementing green building codes and promoting sustainable construction practices. Domestic production of blended cement is rising, supported by favorable policy frameworks and industrial investments. Strategic collaborations between global firms and local players are enhancing technology transfer and market access.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR. The U.S. and Canada are leading in sustainable construction innovation and carbon reduction initiatives. Federal and state-level incentives are encouraging the use of low-emission materials in public infrastructure. Advanced R&D capabilities and strong regulatory support are accelerating commercialization of novel cement technologies. Builders are increasingly integrating lifecycle analysis and carbon accounting into project planning.

Key players in the market

Some of the key players in Low-Carbon Cement Market include Holcim, Heidelberg, Cemex, CRH, China Nati, Anhui Con, Votoranti, Taiheiyo C, UltraTech, Buzzi Unic, Siam Cemi, Cementir, CalPortlan, Solidia Te, and CarbonCure.

Key Developments:

In May 2025, Heidelberg Materials and Arup have signed a Memorandum of Understanding. Both partners will collaborate in the field of decarbonisation of the built environment by exploring deployment of carbon capture and storage (CCS)-enabled cement and concrete production and supply. CCS represents an essential route to decarbonisation for the production of cement and concrete.

In April 2025, Cemex Ventures, Cemex's corporate venture capital (CVC) and open innovation unit, announced that it has executed an investment agreement with OPTIMITIVE, a Spanish company that provides high-tech solutions through advanced analytics & artificial intelligence (AI) to optimize efficiency and sustainability in processes within energy-intensive industries.

Types Covered:

  • Geopolymer Cement
  • Calcium Sulfoaluminate (CSA) Cement
  • Fly Ash-Based Cement
  • Slag-Based Cement
  • Portland Limestone Cement (PLC)
  • Belite Cement
  • Carbon Capture Cement
  • Other Types

Raw Materials Covered:

  • Fly Ash
  • Slag
  • Limestone
  • Silica Fume
  • Recycled Industrial Waste
  • Other Raw Materials

Distribution Channels Covered:

  • Direct Sales
  • Indirect Sales

Applications Covered:

  • Residential Construction
  • Commercial Construction
  • Infrastructure
  • Industrial Construction
  • Other Applications

End Users Covered:

  • Building and Construction
  • Transportation
  • Energy and Utilities
  • Water and Waste Management
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Low-Carbon Cement Market, By Type

  • 5.1 Introduction
  • 5.2 Geopolymer Cement
  • 5.3 Calcium Sulfoaluminate (CSA) Cement
  • 5.4 Fly Ash-Based Cement
  • 5.5 Slag-Based Cement
  • 5.6 Portland Limestone Cement (PLC)
  • 5.7 Belite Cement
  • 5.8 Carbon Capture Cement
  • 5.9 Other Types

6 Global Low-Carbon Cement Market, By Raw Material

  • 6.1 Introduction
  • 6.2 Fly Ash
  • 6.3 Slag
  • 6.4 Limestone
  • 6.5 Silica Fume
  • 6.6 Recycled Industrial Waste
  • 6.7 Other Raw Materials

7 Global Low-Carbon Cement Market, By Distribution Channel

  • 7.1 Introduction
  • 7.2 Direct Sales
  • 7.3 Indirect Sales
    • 7.3.1 Retailers
    • 7.3.2 Distributors

8 Global Low-Carbon Cement Market, By Application

  • 8.1 Introduction
  • 8.2 Residential Construction
  • 8.3 Commercial Construction
  • 8.4 Infrastructure
  • 8.5 Industrial Construction
  • 8.6 Other Applications

9 Global Low-Carbon Cement Market, By End User

  • 9.1 Introduction
  • 9.2 Building and Construction
  • 9.3 Transportation
  • 9.4 Energy and Utilities
  • 9.5 Water and Waste Management
  • 9.6 Other End Users

10 Global Low-Carbon Cement Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Holcim
  • 12.2 HeidelbergCement
  • 12.3 Cemex
  • 12.4 CRH
  • 12.5 China National Building Material
  • 12.6 Anhui Conch Cement
  • 12.7 Votorantim Cimentos
  • 12.8 Taiheiyo Cement
  • 12.9 UltraTech Cement
  • 12.10 Buzzi Unicem
  • 12.11 Siam Cement Group
  • 12.12 Cementir Holding
  • 12.13 CalPortland
  • 12.14 Solidia Technologies
  • 12.15 CarbonCure Technologies

List of Tables

  • Table 1 Global Low-Carbon Cement Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Low-Carbon Cement Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Low-Carbon Cement Market Outlook, By Geopolymer Cement (2024-2032) ($MN)
  • Table 4 Global Low-Carbon Cement Market Outlook, By Calcium Sulfoaluminate (CSA) Cement (2024-2032) ($MN)
  • Table 5 Global Low-Carbon Cement Market Outlook, By Fly Ash-Based Cement (2024-2032) ($MN)
  • Table 6 Global Low-Carbon Cement Market Outlook, By Slag-Based Cement (2024-2032) ($MN)
  • Table 7 Global Low-Carbon Cement Market Outlook, By Portland Limestone Cement (PLC) (2024-2032) ($MN)
  • Table 8 Global Low-Carbon Cement Market Outlook, By Belite Cement (2024-2032) ($MN)
  • Table 9 Global Low-Carbon Cement Market Outlook, By Carbon Capture Cement (2024-2032) ($MN)
  • Table 10 Global Low-Carbon Cement Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 11 Global Low-Carbon Cement Market Outlook, By Raw Material (2024-2032) ($MN)
  • Table 12 Global Low-Carbon Cement Market Outlook, By Fly Ash (2024-2032) ($MN)
  • Table 13 Global Low-Carbon Cement Market Outlook, By Slag (2024-2032) ($MN)
  • Table 14 Global Low-Carbon Cement Market Outlook, By Limestone (2024-2032) ($MN)
  • Table 15 Global Low-Carbon Cement Market Outlook, By Silica Fume (2024-2032) ($MN)
  • Table 16 Global Low-Carbon Cement Market Outlook, By Recycled Industrial Waste (2024-2032) ($MN)
  • Table 17 Global Low-Carbon Cement Market Outlook, By Other Raw Materials (2024-2032) ($MN)
  • Table 18 Global Low-Carbon Cement Market Outlook, By Distribution Channel (2024-2032) ($MN)
  • Table 19 Global Low-Carbon Cement Market Outlook, By Direct Sales (2024-2032) ($MN)
  • Table 20 Global Low-Carbon Cement Market Outlook, By Indirect Sales (2024-2032) ($MN)
  • Table 21 Global Low-Carbon Cement Market Outlook, By Retailers (2024-2032) ($MN)
  • Table 22 Global Low-Carbon Cement Market Outlook, By Distributors (2024-2032) ($MN)
  • Table 23 Global Low-Carbon Cement Market Outlook, By Application (2024-2032) ($MN)
  • Table 24 Global Low-Carbon Cement Market Outlook, By Residential Construction (2024-2032) ($MN)
  • Table 25 Global Low-Carbon Cement Market Outlook, By Commercial Construction (2024-2032) ($MN)
  • Table 26 Global Low-Carbon Cement Market Outlook, By Infrastructure (2024-2032) ($MN)
  • Table 27 Global Low-Carbon Cement Market Outlook, By Industrial Construction (2024-2032) ($MN)
  • Table 28 Global Low-Carbon Cement Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 29 Global Low-Carbon Cement Market Outlook, By End User (2024-2032) ($MN)
  • Table 30 Global Low-Carbon Cement Market Outlook, By Building and Construction (2024-2032) ($MN)
  • Table 31 Global Low-Carbon Cement Market Outlook, By Transportation (2024-2032) ($MN)
  • Table 32 Global Low-Carbon Cement Market Outlook, By Energy and Utilities (2024-2032) ($MN)
  • Table 33 Global Low-Carbon Cement Market Outlook, By Water and Waste Management (2024-2032) ($MN)
  • Table 34 Global Low-Carbon Cement Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.