封面
市场调查报告书
商品编码
1876708

2032年电网级储能市场预测:按技术、所有权模式、经营模式、应用、最终用户和区域分類的全球分析

Grid-Scale Energy Storage Market Forecasts to 2032 - Global Analysis By Technology, Ownership Model, Business Model, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球电网级储能市场价值将达到 325 亿美元,到 2032 年将达到 1,545 亿美元。

预计在预测期内,电网级储能将以24.9%的复合年增长率成长。电网级储能整合了大型电池、抽水蓄能和热能储存技术,以平衡整个电网的供需。这提高了可再生能源的调度能力,改善了电网稳定性,并减少了对调峰电厂的依赖。电力公司、独立发电企业和电网营运商正在利用储能技术进行频率稳定、降低尖峰需求和提供备用电源。电池成本下降、扶持政策以及可再生能源渗透率的提高正在推动相关投资。

根据国际能源总署(IEA)的数据,到 2022 年底,电网级电池储能设施的总装置容量将达到约 28GW,预计电池将继续推动储能设施的成长。

更广泛地整合间歇性再生能源来源

间歇性再生能源来源併网程度的不断提高,推动了对电网级储能的需求,以平抑供电波动并稳定电网。电池和其他储能係统在可再生发电高峰期储存过剩电能,并在发电量较低时释放,从而提高系统可靠性并减少弃风弃光。这种併网方式有助于提高可再生渗透率,支持辅助服务,并延缓基础设施升级,使储能成为公用事业公司和电网运营商在经济上极具吸引力的选择。此外,政策奖励和技术成本的下降也进一步加速了储能技术的部署。

初始投资成本高,投资回收期长

儘管电网级储能具有许多营运优势,但其高昂的初始资本成本和较长的投资回收期限制了其普及应用。电池、安装和併网都需要大量投资,而收益则取决于市场结构、收费系统和运转率。不明确的法规结构和分散的奖励机制延长了投资回收期,并可能阻碍保守的电力公司和投资者。资金筹措机制和价值迭加策略正在不断发展,但各地区之间仍存在不平衡,这导致成本敏感型市场的计划推进进程受阻。

随着能源需求的成长,业务拓展至新兴市场

快速电气化、可再生能源装置容量的成长以及电网现代化改造的需求,正在推动对灵活性和可靠性服务的需求。在许多地区,老化的基础设施和输电限制使得社区储能成为抑低尖峰负载和延缓资本密集升级改造的理想选择。本地伙伴关係、客製化资金筹措和模组化技术降低了市场准入门槛,使供应商能够获得长期合约并支持永续能源转型。优惠融资和补贴将进一步推动市场成长。

关键物资供应链中断

关键材料供应链中断对电网级储能市场构成重大威胁,导致生产受限和成本上升。电池化学体系对某些矿物的依赖使製造商面临地缘政治风险、出口限制和原物料价格波动。物流瓶颈和加工能力集中在少数国家可能导致计划延期和资金需求增加。製造商正在努力实现供应来源多元化、实施回收计划并采用替代化学体系,但这些措施需要时间和投资才能有效扩大规模。

新冠疫情的感染疾病:

关键材料供应链中断对电网级储能市场构成重大威胁,因为这会限制生产并增加成本。电池化学体系对某些矿物的依赖使製造商面临地缘政治风险、出口限制和原物料价格波动。物流瓶颈和加工能力集中在少数国家会导致计划延期和资金需求增加。製造商正在寻求供应来源多元化、回收计划和替代化学体系,但这些措施需要时间和投资才能有效扩大规模。

预计在预测期内,公共产业所有权部门将占据最大的市场份额。

预计在预测期内,公共产业公司拥有的储能係统将占据最大的市场份额,因为整合大规模储能係统能够帮助公用事业公司优化电网运作并满足公共产业要求。公共产业允许其进行协调运行,从而实现频率调节、抑低尖峰负载并延缓输电投资,最终带来多元化的收入来源。公共产业能够大量采购、有效利用财务资源并进行长期规划,这有助于其降低成本,并使储能计划与整体系统需求保持一致。随着法规结构朝着有利于灵活性的方向发展,公共产业正在主导各地区的储能係统应用。

预计在预测期内,储能即服务(ESaaS)细分市场将呈现最高的复合年增长率。

预计在预测期内,储能即服务 (ESaaS) 领域将呈现最高的成长率,因为客户对营运灵活性和前期成本的需求日益增长。 ESaaS 使聚合商能够汇集资产并参与市场,从而实现频率响应和需求费用管理等服务的商业化。技术标准化、先进的控制软体和不断发展的收费系统增强了基于服务的产品的商业价值。因此,ESaaS 可以透过客製化的商业合约和效能保证,开拓新的客户群和地理市场。

占比最大的地区:

亚太地区预计将在预测期内保持最大的市场份额,这主要得益于可再生能源的快速普及、工业电气化以及公共产业的强劲投资。中国、日本、韩国和澳洲在容量扩张和采购计画方面处于主导,这些计画优先考虑储能以整合可变发电。大规模的输电网升级和配套的政策框架,包括容量市场和奖励机制,正在吸引国内外供应商。不断扩大的製造能力和本地计划储备进一步巩固了该地区的市场主导地位。

复合年增长率最高的地区:

预计亚太地区在预测期内将实现最高的复合年增长率,不断增长的能源需求和政策支持将推动储能技术的快速普及。电气化率的提高、可再生能源的增加以及对电网韧性的投资,正在为东南亚、印度和中国市场带来强劲的利多因素。电池成本的下降和本地製造业的发展正在改善计划的经济效益,而国际供应商正与当地企业合作,扩大部署规模。与成熟市场相比,这些趋势使该地区有望实现更快的成长。

免费客製化服务资讯:

购买此报告的客户可享有以下免费自订选项之一:

  • 公司概况
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户要求,对主要国家的市场规模进行估算和预测,併计算复合年增长率(註:可行性需确认)。
  • 竞争基准化分析
    • 根据主要企业的产品系列、地理覆盖范围和策略联盟基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 原始研究资料
    • 次级研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 介绍
  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球电网级储能市场(依技术划分)

  • 介绍
  • 电化学储能
    • 锂离子电池
    • 液流电池
    • 先进的铅酸电池
    • 钠基电池
    • 其他新兴化学品
  • 机械能存储
    • 抽水蓄能发电(PHS)
    • 压缩空气储能(CAES)
    • 飞轮储能(FES)
    • 重力储存
  • 化学储能
    • 氢气(电能转气)
    • 合成天然气(SNG)
  • 热能储存
    • 熔盐
    • 冰库
    • 其他显热和潜热储存

6. 全球电网级储能市场(依所有权模式划分)

  • 介绍
  • 公共产业所有权
  • 独立电力生产商(IPP)/开发商所有
  • 第三方所有

7. 全球电网级储能市场(依经营模式划分)

  • 介绍
  • 建造-拥有-营运(BOO)
  • 建设-移交-运作(BTO)
  • 储能即服务(ESaaS)
  • 租赁模式

8. 全球电网级储能市场(依应用领域划分)

  • 介绍
  • 能源转移和套利
  • 频率调整(FR)
  • 尖峰容量/容量提升
  • 骇启动服务
  • 电力传输和分配(T&D)延期
  • 可再生能源併网
  • 微电网和自用
  • 电力能量时移(EETS)
  • 电压支撑/无功功率控制

9. 全球电网级储能市场(依最终用户划分)

  • 介绍
  • 公共产业
    • 投资者所有的公共产业(IOU)
    • 公共产业区 (PUD) 和地方政府公共产业
    • 电力合作社
  • 独立电力生产商(IPP)和可再生能源开发商
  • 商业和工业(C&I)营业单位
  • 社区储能和微电网聚合商
  • 系统运营商(ISO/RTO)
  • 住宅

10. 全球电网级储能市场(按地区划分)

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与併购
  • 新产品上市
  • 业务拓展
  • 其他关键策略

第十二章 企业概况

  • Fluence
  • Tesla, Inc.
  • LG Energy Solution, Ltd.
  • Contemporary Amperex Technology Co. Limited
  • BYD Company Limited
  • Siemens Energy AG
  • ABB Ltd
  • General Electric Company
  • Wartsila Corporation
  • Hitachi Energy
  • Mitsubishi Power, Ltd.
  • Toshiba Energy Systems & Solutions Corporation
  • TotalEnergies SE
  • Eos Energy Enterprises, Inc.
  • ESS Inc.
  • Invinity Energy Systems plc
  • Enel X Global Retail(Enel X)
  • NextEra Energy, Inc.
  • Black & Veatch Corporation
  • NEC Corporation
Product Code: SMRC32436

According to Stratistics MRC, the Global Grid-Scale Energy Storage Market is accounted for $32.5 billion in 2025 and is expected to reach $154.5 billion by 2032, growing at a CAGR of 24.9% during the forecast period. Grid-scale energy storage integrates large batteries, pumped hydro, thermal storage, and other technologies to balance supply and demand across electricity networks. It enables renewables to be dispatchable, improves grid stability, and reduces reliance on peaker plants. Utilities, independent power producers, and system operators use storage to keep the frequency stable, cut down on peak demand, and provide backup power. Falling battery costs, supportive policies, and rising renewable penetration drive investment.

According to the IEA, total installed grid-scale battery storage capacity was close to 28 GW at the end of 2022, with batteries projected to lead storage growth.

Market Dynamics:

Driver:

Rising integration of intermittent renewable energy sources

Rising integration of intermittent renewable energy sources drives demand for grid-scale energy storage by balancing supply variability and stabilizing grids. When renewable energy output is at its highest, batteries and other storage systems store the extra energy and release it when output drops. This makes the system more reliable and cuts down on curtailment. This integration enables higher renewable penetration, supports ancillary services, and defers infrastructure upgrades, making storage economically attractive for utilities and system operators. Additionally, policy incentives and falling technology costs further accelerate deployments.

Restraint:

High upfront capital costs and long payback periods

High upfront capital costs and long payback periods limit the adoption of energy storage systems at a grid scale despite operational benefits. Significant investment is required for batteries, installation, and grid interconnection, while revenue streams depend on market structures, tariffs, and capacity factors. Uncertain regulatory frameworks and fragmented incentive schemes can extend payback timelines, deterring conservative utility and investor appetite. Financing mechanisms and value-stacking strategies are evolving but remain uneven across regions, slowing project pipelines in cost-sensitive markets.

Opportunity:

Expansion into emerging markets with growing energy demand

Rapid electrification, rising renewable installations and grid modernization needs create demand for flexibility and reliability services. In many regions, aging infrastructure and transmission constraints make localized storage attractive for peak shaving and deferral of capital-intensive upgrades. Local partnerships, tailored financing, and modular technologies can lower entry barriers, enabling vendors to capture long-term contracts and support sustainable energy transitions. Concessional finance and subsidies will support market growth.

Threat:

Supply chain disruptions for critical materials

Supply chain disruptions for critical materials pose a significant threat to the market for grid-scale energy storage by constraining production and raising costs. Dependence on specific minerals for battery chemistries exposes manufacturers to geopolitical risks, export controls, and raw material volatility. Logistics bottlenecks and concentration of processing capacity in a few countries can delay project timelines and increase capital requirements. Manufacturers are diversifying supply sources, recycling initiatives, and alternative chemistries, but these responses require time and investment to scale effectively.

Covid-19 Impact:

Supply chain disruptions for critical materials pose a significant threat to the market for grid-scale energy storage by constraining production and raising costs. Dependence on specific minerals for battery chemistries exposes manufacturers to geopolitical risks, export controls, and raw material volatility. Logistics bottlenecks and concentration of processing capacity in a few countries can delay project timelines and increase capital requirements. Manufacturers are diversifying supply sources, recycling initiatives, and alternative chemistries, but these responses require time and investment to scale effectively.

The utility-owned segment is expected to be the largest during the forecast period

The utility-owned segment is expected to account for the largest market share during the forecast period because utilities can integrate large-scale storage to optimize grid operations and meet regulatory obligations. Utility ownership enables coordinated dispatch for frequency regulation, peak shaving, and deferred transmission investments, capturing multiple revenue streams. Utilities can buy in bulk, use their financial resources effectively, and plan for the long term, which helps them save money and align storage projects with their overall system needs As regulatory frameworks evolve to value flexibility, utilities lead deployments across regions.

The energy storage-as-a-service (ESaaS) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the energy storage-as-a-service (ESaaS) segment is predicted to witness the highest growth rate as customers increasingly prefer operational flexibility and lower upfront costs. ESaaS allows aggregators to pool assets for market participation, monetizing services like frequency response and demand charge management. Technology standardization, sophisticated control software, and evolving tariff structures enhance the business case for service-based offerings. Consequently, ESaaS can unlock new customer segments and geographic markets with tailored commercial arrangements and managed performance guarantees.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, driven by rapid renewable deployment, industrial electrification, and strong utility investment. China, Japan, South Korea, and Australia lead in capacity additions and procurement programs that prioritize storage to integrate variable generation. Large-scale grid upgrades and supportive policy frameworks, including capacity markets and incentive schemes, attract both domestic and international suppliers. Growing manufacturing capability and localized project pipelines further consolidate the region's market dominance.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, as expanding energy demand and policy support drive rapid storage uptake. Rising electrification, increasing renewables, and investment in grid resilience create strong market tailwinds across Southeast Asia, India, and China. Cost reductions in batteries and growing local manufacturing improve project economics, while international vendors partner with local players to scale deployments. These dynamics position the region for accelerated growth relative to mature markets.

Key players in the market

Some of the key players in Grid-Scale Energy Storage Market include Fluence, Tesla, Inc., LG Energy Solution, Ltd., Contemporary Amperex Technology Co. Limited, BYD Company Limited, Siemens Energy AG, ABB Ltd, General Electric Company, Wartsila Corporation, Hitachi Energy, Mitsubishi Power, Ltd., Toshiba Energy Systems & Solutions Corporation, TotalEnergies SE, Eos Energy Enterprises, Inc., ESS Inc., Invinity Energy Systems plc, Enel X Global Retail (Enel X), NextEra Energy, Inc., Black & Veatch Corporation, and NEC Corporation.

Key Developments:

In August 2025, Global energy storage technology and energy software services provider Fluence and ACE Engineering have opened a new automated battery storage manufacturing facility in Vietnam's Bac Giang Province. The facility, which boasts an annual manufacturing capacity of 35GWh, will produce Fluence's Gridstack Pro and Smartstack energy storage systems using fully automated production processes designed to enhance productivity and quality control.

In August 2025, CATL, a global leader in innovative energy storage solutions, unveiled its latest technologies in its debut at the Smarter E South America 2025, the largest energy storage exhibition on the continent. TENER Stack currently the World's first stackable, 9MWh ultra-large capacity energy storage system is adaptable to CATL's different cell technologies, offering either up to five years of zero degradation or high-temperature resistance. It is suitable for South America's varied climates, underscoring CATL's commitment to sustainable energy development throughout the region.

In March 2025, LG Energy Solution announced today that it has signed an agreement with PGE, Poland's largest energy sector company, to supply 981MWh of grid-scale ESS batteries between 2026 and 2027. Both companies will collaborate to establish a battery energy storage facility in zarnowiec, Poland. PGE plans to commence the project's commercial operation in 2027.

Technologies Covered:

  • Electrochemical Energy Storage
  • Mechanical Energy Storage
  • Chemical Energy Storage
  • Thermal Energy Storage

Ownership Models Covered:

  • Utility-Owned
  • Independent Power Producer (IPP) / Developer-Owned
  • Third-Party Owned

Business Models Covered:

  • Build-Own-Operate (BOO)
  • Build-Transfer-Operate (BTO)
  • Energy Storage-as-a-Service (ESaaS)
  • Leasing Models

Applications Covered:

  • Energy Shifting & Arbitrage
  • Frequency Regulation (FR)
  • Peak Capacity / Capacity Firming
  • Black Start Services
  • Transmission & Distribution (T&D) Deferral
  • Renewables Integration
  • Microgrids and Self-Consumption
  • Electric Energy Time-Shift (EETS)
  • Voltage Support / Reactive Power Control

End Users Covered:

  • Utilities
  • Independent Power Producers (IPPs) & Renewable Energy Developers
  • Commercial & Industrial (C&I) Entities
  • Community Storage & Microgrid Aggregators
  • System Operators (ISOs/RTOs)
  • Residential

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Grid-Scale Energy Storage Market, By Technology

  • 5.1 Introduction
  • 5.2 Electrochemical Energy Storage
    • 5.2.1 Lithium-Ion Batteries
    • 5.2.2 Flow Batteries
    • 5.2.3 Advanced Lead-Acid Batteries
    • 5.2.4 Sodium-Based Batteries
    • 5.2.5 Other Emerging Chemistries
  • 5.3 Mechanical Energy Storage
    • 5.3.1 Pumped Hydro Storage (PHS)
    • 5.3.2 Compressed Air Energy Storage (CAES)
    • 5.3.3 Flywheel Energy Storage (FES)
    • 5.3.4 Gravity-based Storage
  • 5.4 Chemical Energy Storage
    • 5.4.1 Hydrogen (Power-to-Gas)
    • 5.4.2 Synthetic Natural Gas (SNG)
  • 5.5 Thermal Energy Storage
    • 5.5.1 Molten Salt
    • 5.5.2 Ice Storage
    • 5.5.3 Other Sensible and Latent Heat Storage

6 Global Grid-Scale Energy Storage Market, By Ownership Model

  • 6.1 Introduction
  • 6.2 Utility-Owned
  • 6.3 Independent Power Producer (IPP) / Developer-Owned
  • 6.4 Third-Party Owned

7 Global Grid-Scale Energy Storage Market, By Business Model

  • 7.1 Introduction
  • 7.2 Build-Own-Operate (BOO)
  • 7.3 Build-Transfer-Operate (BTO)
  • 7.4 Energy Storage-as-a-Service (ESaaS)
  • 7.5 Leasing Models

8 Global Grid-Scale Energy Storage Market, By Application

  • 8.1 Introduction
  • 8.2 Energy Shifting & Arbitrage
  • 8.3 Frequency Regulation (FR)
  • 8.4 Peak Capacity / Capacity Firming
  • 8.5 Black Start Services
  • 8.6 Transmission & Distribution (T&D) Deferral
  • 8.7 Renewables Integration
  • 8.8 Microgrids and Self-Consumption
  • 8.9 Electric Energy Time-Shift (EETS)
  • 8.10 Voltage Support / Reactive Power Control

9 Global Grid-Scale Energy Storage Market, By End User

  • 9.1 Introduction
  • 9.2 Utilities
    • 9.2.1 Investor-Owned Utilities (IOUs)
    • 9.2.2 Public Utility Districts (PUDs) & Municipal Utilities
    • 9.2.3 Electric Cooperatives
  • 9.3 Independent Power Producers (IPPs) & Renewable Energy Developers
  • 9.4 Commercial & Industrial (C&I) Entities
  • 9.5 Community Storage & Microgrid Aggregators
  • 9.6 System Operators (ISOs/RTOs)
  • 9.7 Residential

10 Global Grid-Scale Energy Storage Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Fluence
  • 12.2 Tesla, Inc.
  • 12.3 LG Energy Solution, Ltd.
  • 12.4 Contemporary Amperex Technology Co. Limited
  • 12.5 BYD Company Limited
  • 12.6 Siemens Energy AG
  • 12.7 ABB Ltd
  • 12.8 General Electric Company
  • 12.9 Wartsila Corporation
  • 12.10 Hitachi Energy
  • 12.11 Mitsubishi Power, Ltd.
  • 12.12 Toshiba Energy Systems & Solutions Corporation
  • 12.13 TotalEnergies SE
  • 12.14 Eos Energy Enterprises, Inc.
  • 12.15 ESS Inc.
  • 12.16 Invinity Energy Systems plc
  • 12.17 Enel X Global Retail (Enel X)
  • 12.18 NextEra Energy, Inc.
  • 12.19 Black & Veatch Corporation
  • 12.20 NEC Corporation

List of Tables

  • Table 1 Global Grid-Scale Energy Storage Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Grid-Scale Energy Storage Market Outlook, By Technology (2024-2032) ($MN)
  • Table 3 Global Grid-Scale Energy Storage Market Outlook, By Electrochemical Energy Storage (2024-2032) ($MN)
  • Table 4 Global Grid-Scale Energy Storage Market Outlook, By Lithium-Ion Batteries (2024-2032) ($MN)
  • Table 5 Global Grid-Scale Energy Storage Market Outlook, By Flow Batteries (2024-2032) ($MN)
  • Table 6 Global Grid-Scale Energy Storage Market Outlook, By Advanced Lead-Acid Batteries (2024-2032) ($MN)
  • Table 7 Global Grid-Scale Energy Storage Market Outlook, By Sodium-Based Batteries (2024-2032) ($MN)
  • Table 8 Global Grid-Scale Energy Storage Market Outlook, By Other Emerging Chemistries (2024-2032) ($MN)
  • Table 9 Global Grid-Scale Energy Storage Market Outlook, By Mechanical Energy Storage (2024-2032) ($MN)
  • Table 10 Global Grid-Scale Energy Storage Market Outlook, By Pumped Hydro Storage (PHS) (2024-2032) ($MN)
  • Table 11 Global Grid-Scale Energy Storage Market Outlook, By Compressed Air Energy Storage (CAES) (2024-2032) ($MN)
  • Table 12 Global Grid-Scale Energy Storage Market Outlook, By Flywheel Energy Storage (FES) (2024-2032) ($MN)
  • Table 13 Global Grid-Scale Energy Storage Market Outlook, By Gravity-based Storage (2024-2032) ($MN)
  • Table 14 Global Grid-Scale Energy Storage Market Outlook, By Chemical Energy Storage (2024-2032) ($MN)
  • Table 15 Global Grid-Scale Energy Storage Market Outlook, By Hydrogen (Power-to-Gas) (2024-2032) ($MN)
  • Table 16 Global Grid-Scale Energy Storage Market Outlook, By Synthetic Natural Gas (SNG) (2024-2032) ($MN)
  • Table 17 Global Grid-Scale Energy Storage Market Outlook, By Thermal Energy Storage (2024-2032) ($MN)
  • Table 18 Global Grid-Scale Energy Storage Market Outlook, By Molten Salt (2024-2032) ($MN)
  • Table 19 Global Grid-Scale Energy Storage Market Outlook, By Ice Storage (2024-2032) ($MN)
  • Table 20 Global Grid-Scale Energy Storage Market Outlook, By Other Sensible and Latent Heat Storage (2024-2032) ($MN)
  • Table 21 Global Grid-Scale Energy Storage Market Outlook, By Ownership Model (2024-2032) ($MN)
  • Table 22 Global Grid-Scale Energy Storage Market Outlook, By Utility-Owned (2024-2032) ($MN)
  • Table 23 Global Grid-Scale Energy Storage Market Outlook, By Independent Power Producer (IPP) / Developer-Owned (2024-2032) ($MN)
  • Table 24 Global Grid-Scale Energy Storage Market Outlook, By Third-Party Owned (2024-2032) ($MN)
  • Table 25 Global Grid-Scale Energy Storage Market Outlook, By Business Model (2024-2032) ($MN)
  • Table 26 Global Grid-Scale Energy Storage Market Outlook, By Build-Own-Operate (BOO) (2024-2032) ($MN)
  • Table 27 Global Grid-Scale Energy Storage Market Outlook, By Build-Transfer-Operate (BTO) (2024-2032) ($MN)
  • Table 28 Global Grid-Scale Energy Storage Market Outlook, By Energy Storage-as-a-Service (ESaaS) (2024-2032) ($MN)
  • Table 29 Global Grid-Scale Energy Storage Market Outlook, By Leasing Models (2024-2032) ($MN)
  • Table 30 Global Grid-Scale Energy Storage Market Outlook, By Application (2024-2032) ($MN)
  • Table 31 Global Grid-Scale Energy Storage Market Outlook, By Energy Shifting & Arbitrage (2024-2032) ($MN)
  • Table 32 Global Grid-Scale Energy Storage Market Outlook, By Frequency Regulation (FR) (2024-2032) ($MN)
  • Table 33 Global Grid-Scale Energy Storage Market Outlook, By Peak Capacity / Capacity Firming (2024-2032) ($MN)
  • Table 34 Global Grid-Scale Energy Storage Market Outlook, By Black Start Services (2024-2032) ($MN)
  • Table 35 Global Grid-Scale Energy Storage Market Outlook, By Transmission & Distribution (T&D) Deferral (2024-2032) ($MN)
  • Table 36 Global Grid-Scale Energy Storage Market Outlook, By Renewables Integration (2024-2032) ($MN)
  • Table 37 Global Grid-Scale Energy Storage Market Outlook, By Microgrids and Self-Consumption (2024-2032) ($MN)
  • Table 38 Global Grid-Scale Energy Storage Market Outlook, By Electric Energy Time-Shift (EETS) (2024-2032) ($MN)
  • Table 39 Global Grid-Scale Energy Storage Market Outlook, By Voltage Support / Reactive Power Control (2024-2032) ($MN)
  • Table 40 Global Grid-Scale Energy Storage Market Outlook, By End User (2024-2032) ($MN)
  • Table 41 Global Grid-Scale Energy Storage Market Outlook, By Utilities (2024-2032) ($MN)
  • Table 42 Global Grid-Scale Energy Storage Market Outlook, By Investor-Owned Utilities (IOUs) (2024-2032) ($MN)
  • Table 43 Global Grid-Scale Energy Storage Market Outlook, By Public Utility Districts (PUDs) & Municipal Utilities (2024-2032) ($MN)
  • Table 44 Global Grid-Scale Energy Storage Market Outlook, By Electric Cooperatives (2024-2032) ($MN)
  • Table 45 Global Grid-Scale Energy Storage Market Outlook, By Independent Power Producers (IPPs) & Renewable Energy Developers (2024-2032) ($MN)
  • Table 46 Global Grid-Scale Energy Storage Market Outlook, By Commercial & Industrial (C&I) Entities (2024-2032) ($MN)
  • Table 47 Global Grid-Scale Energy Storage Market Outlook, By Community Storage & Microgrid Aggregators (2024-2032) ($MN)
  • Table 48 Global Grid-Scale Energy Storage Market Outlook, By System Operators (ISOs/RTOs) (2024-2032) ($MN)
  • Table 49 Global Grid-Scale Energy Storage Market Outlook, By Residential (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.