封面
市场调查报告书
商品编码
1889202

全球联邦学习市场:预测(至 2032 年)—按组件、部署方法、学习类型、通讯模式、用例、组织规模和地区进行分析

Federated Learning Market Forecasts to 2032 - Global Analysis By Component (Software and Services), Deployment Mode, Learning Type, Communication Pattern, Application, Organization Size and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球联邦学习市场规模将达到 1.6133 亿美元,到 2032 年将达到 4.6707 亿美元,在预测期内复合年增长率为 16.4%。

联邦学习是一种协作式训练技术,它允许多个设备或节点建立一个通用的机器学习模型,同时将原始资料保留在本地。这种方法无需将敏感资讯传输到中央伺服器,只需传输并安全地聚合已处理的模型参数即可。它增强了资料隐私,降低了通讯开销,并支援从分散式资料来源学习。在智慧型手机、医疗保健系统、银行和连网设备等领域,保护个人资讯至关重要,因此联邦学习尤其有用。

对协作人工智慧的需求日益增长

各组织机构正日益寻求在不损害隐私的前提下,利用分散式资料训练模型的方法。联邦学习允许多方协作建构共用智能,同时保持敏感资料集的去中心化。这种协作方式在医疗保健、金融和通讯等领域变得至关重要。边缘设备和安全运算的进步进一步强化了这一趋势。随着各行业努力建构可扩展且保护隐私的人工智慧生态系统,对联邦学习的需求持续成长。

通讯开销高

客户端和伺服器之间频繁的资料交换会降低处理速度并增加网路资源压力。大规模的模型规模和不可靠的连结会加剧这个挑战。目前,各组织机构正被鼓励投资于优化的通讯协定,以降低延迟并提高同步效率。诸如模型压缩和自适应更新规则等技术正在被探索用于应对这一挑战。儘管取得了这些进展,通讯效率低下仍然是限制其广泛应用的持续性阻碍因素。

与区块链和安全计算的集成

区块链为共用模型更新增添了透明度和防篡改性,从而增强了参与者之间的信任。同态加密和差分隐私等安全运算技术确保了分散式网路中的机密性。这些技术的结合使得以往不愿共用资料的组织之间能够进行安全协作。新兴框架着重于去中心化管治、智慧合约和自动化信任检验。这种融合有望显着扩展联邦学习在受监管行业中的应用场景。

缺乏标准化和互通性

不同平台通常使用不相容的框架,限制了无缝协作。这种分散化减缓了技术的普及,并使其难以与现有人工智慧工作流程整合。缺乏统一的通讯协定增加了开发人员和企业的技术难度。产业协会和研究机构正在努力製定通用准则,但进展缓慢。在标准成熟之前,互通性问题将继续阻碍联邦学习解决方案的可扩展性。

新冠疫情的感染疾病:

新冠疫情加速了跨产业、保护隐私的资料协作需求。医疗机构尤其采用联邦学习技术来分析病患数据,同时避免洩漏敏感资讯。全球业务中断也促使企业更加依赖分散式系统来降低资料共用风险。远距办公环境促使企业考虑采用可在多种装置上运行的分散式人工智慧模型。这次危机凸显了安全协作分析的重要性,并激发了人们对联邦学习研究的兴趣。

在预测期内,解决方案领域将占据最大的市场份额。

预计在预测期内,解决方案领域将占据最大的市场份额,这主要得益于企业对可简化分散式训练的即用型部署平台的需求不断增长。这些解决方案提供内建的安全性、模型管理和编配功能。金融、医疗保健和零售业的企业更倾向于选择综合软体套件,而非客製化开发。此外,日益增长的资料隐私合规需求也进一步推动了打包式联邦学习解决方案的普及。

在预测期内,汽车产业将实现最高的复合年增长率。

预计在预测期内,汽车产业将实现最高成长率,因为联网汽车和自动驾驶系统的日益普及推动了对协同模型训练的需求。联邦学习使汽车製造商能够利用车辆产生的数据,而无需将其传输到中央伺服器。这既增强了即时决策能力,也保障了使用者隐私。应用范例包括驾驶员行为建模、预测性维护和进阶感知系统。

占比最大的地区:

预计北美将在预测期内占据最大的市场份额。强大的技术基础设施和对先进人工智慧框架的早期应用支撑了这一主导地位。该地区对资料隐私的监管重视正在推动企业采用联邦学习技术。领先的科技公司和研究机构持续增加对去中心化人工智慧技术研发的投入。产业合作和政府主导的措施也进一步促进了市场成长。

年复合成长率最高的地区:

预计亚太地区在预测期内将实现最高的复合年增长率。快速的数位化、不断扩展的行动生态系统以及对人工智慧的大力投资将推动这一成长。中国、日本、韩国和印度等国家正积极探索用于大规模应用的去中心化人工智慧模式。医疗保健、零售和製造业等行业的公司正在采用隐私保护技术来处理大量资料集。政府支持人工智慧创新的措施也进一步增强了该地区的发展动能。

免费客製化服务:

订阅本报告的用户可从以下免费自订选项中选择一项:

  • 公司简介
    • 对最多三家其他公司进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域分类
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 引言

  • 概述
  • 相关利益者
  • 分析范围
  • 分析方法
  • 分析材料

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代产品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球联邦学习市场(按组件划分)

  • 解决方案
  • 服务
    • 咨询
    • 支援与维护
    • 整合与实施

6. 全球联邦学习市场以部署方式划分

  • 本地部署
  • 混合/边缘

7. 全球联邦学习市场依学习类型划分

  • 横向联想学习
  • 垂直联想学习
  • 联想学习与迁移学习

8. 按通讯模式分類的全球联邦学习市场

  • 跨装置联邦学习
  • 孤岛式咨询联邦学习

9. 全球联邦学习市场(按应用划分)

  • 资料隐私与安全
  • 物联网/边缘设备分析
  • 个性化建议
  • 自动驾驶与移动出行
  • 预测分析
  • 远端患者监护
  • 诈欺侦测和风险评分
  • 医疗图像

10. 按组织规模分類的全球联邦学习市场

  • 大公司
  • 中小企业

第十一章 全球联邦学习市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十二章:主要趋势

  • 合约、商业伙伴关係和合资企业
  • 企业合併(M&A)
  • 新产品上市
  • 业务拓展
  • 其他关键策略

第十三章:企业概况

  • Google
  • Intellegens
  • Apple
  • Sherpa.ai
  • NVIDIA
  • Secure AI Labs
  • Microsoft
  • DataFleets
  • IBM
  • Enveil
  • Intel
  • Lifebit
  • Cloudera
  • Flower
  • Owkin
Product Code: SMRC32662

According to Stratistics MRC, the Global Federated Learning Market is accounted for $161.33 million in 2025 and is expected to reach $467.07 million by 2032 growing at a CAGR of 16.4% during the forecast period. Federated Learning is a collaborative training technique that allows many devices or nodes to build a common machine learning model while keeping their original data stored locally. Rather than moving sensitive information to a central server, only processed model parameters are sent for secure aggregation. This approach strengthens data privacy, lowers communication overhead, and supports learning from dispersed data sources. It is especially useful in areas like smartphones, medical systems, banking, and connected devices where protecting personal information is critical.

Market Dynamics:

Driver:

Rising demand for collaborative AI

Organizations are increasingly seeking ways to train models using distributed data without compromising privacy. Federated learning enables multiple entities to work together on shared intelligence while keeping sensitive datasets decentralized. This collaborative approach is becoming vital across sectors like healthcare, finance, and telecommunications. Advancements in edge devices and secure computation have further strengthened this trend. As industries aim for scalable, privacy-preserving AI ecosystems, the demand for federated learning continues to surge.

Restraint:

High communication overhead

Frequent data exchanges between clients and servers can slow down processes and strain network resources. This challenge becomes more evident when dealing with large model sizes or unstable connectivity environments. Organizations must invest in optimized communication protocols to reduce latency and improve synchronization. Techniques such as model compression and adaptive update rules are being explored to address the issue. Despite these advancements, communication inefficiency remains a persistent constraint for widespread deployment.

Opportunity:

Integration with blockchain and secure computing

Blockchain adds transparency and tamper-resistance to shared model updates, enhancing trust among participants. Secure computing techniques like homomorphic encryption and differential privacy strengthen confidentiality across decentralized networks. These combined technologies enable safer collaboration between organizations that would otherwise hesitate to share data. Emerging frameworks are focusing on decentralized governance, smart contracts, and automated trust verification. This convergence could significantly expand federated learning use cases across regulated industries.

Threat:

Lack of standardization and interoperability

Different platforms often use incompatible frameworks, limiting seamless collaboration. This fragmentation slows adoption and complicates integration with existing AI workflows. The absence of unified protocols increases technical complexity for developers and enterprises. Industry associations and research groups are working to establish shared guidelines, but progress is gradual. Until standards mature, interoperability issues will continue to hinder the scalability of federated learning solutions.

Covid-19 Impact:

The Covid-19 pandemic accelerated the need for privacy-preserving data collaboration across industries. Healthcare institutions in particular adopted federated learning to analyze patient data without exposing sensitive information. Disruptions in global operations also increased reliance on decentralized systems that reduce data-sharing risks. Remote work environments encouraged organizations to explore distributed AI models that could function across multiple devices. The crisis highlighted the importance of secure, collaborative analytics, raising interest in federated learning research.

The solutions segment is expected to be the largest during the forecast period

The solutions segment is expected to account for the largest market share during the forecast period, driven by growing enterprise demand for ready-to-deploy platforms that simplify decentralized training. These solutions offer built-in security, model management, and orchestration capabilities. Businesses across finance, healthcare, and retail prefer comprehensive software suites over custom development. The rising need for data privacy compliance further boosts adoption of packaged federated learning solutions.

The automotive segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive segment is predicted to witness the highest growth rate, due to increasing deployment of connected cars and autonomous systems are driving the need for collaborative model training. Federated learning enables automotive companies to utilize vehicle-generated data without transferring it to centralized servers. This enhances real-time decision-making while maintaining user privacy. Applications include driver behavior modeling, predictive maintenance, and advanced perception systems.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. Strong technological infrastructure and early adoption of advanced AI frameworks support this dominance. The region's regulatory focus on data privacy encourages enterprises to adopt federated learning. Leading tech companies and research institutions continue to invest heavily in decentralized AI advancements. Industry collaborations and government-backed initiatives further accelerate market growth.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. Rapid digitalization, expanding mobile ecosystems, and strong AI investments fuel this growth. Countries like China, Japan, South Korea, and India are actively exploring decentralized AI models for large-scale applications. Enterprises in sectors such as healthcare, retail, and manufacturing are adopting privacy-preserving technologies to handle massive datasets. Government initiatives supporting AI innovation further strengthen regional momentum.

Key players in the market

Some of the key players in Federated Learning Market include Google, Intellegent, Apple, Sherpa.ai, NVIDIA, Secure AI, Microsoft, DataFleets, IBM, Enveil, Intel, Lifebit, Cloudera, Flower, and Owkin.

Key Developments:

In November 2025, IBM and the University of Dayton announced an agreement for the joint research and development of next-generation semiconductor technologies and materials. The collaboration aims to advance critical technologies for the age of AI including AI hardware, advanced packaging, and photonics.

In November 2025, Cisco, in collaboration with Intel, has announced a first-of-its-kind integrated platform for distributed AI workloads. Powered by Intel(R) Xeon(R) 6 system-on-chip (SoC), the solution brings compute, networking, storage and security closer to data generated at the edge for real-time AI inferencing and agentic workloads.

Components Covered:

  • Solutions
  • Services

Deployment Modes Covered:

  • Cloud
  • On-Premises
  • Hybrid / Edge

Learning Types Covered:

  • Horizontal Federated Learning
  • Vertical Federated Learning
  • Federated Transfer Learning

Communication Patterns Covered:

  • Cross-Device Federated Learning
  • Cross-Silo Federated Learning

Applications Covered:

  • Data Privacy & Security
  • IoT & Edge Device Analytics
  • Personalized Recommendations
  • Autonomous Driving & Mobility
  • Predictive Analytics
  • Remote Patient Monitoring
  • Fraud Detection & Risk Scoring
  • Medical Imaging & Diagnostics

Organization Sizes Covered:

  • Large Enterprises
  • Small & Medium Enterprises (SMEs)

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Federated Learning Market, By Component

  • 5.1 Introduction
  • 5.2 Solutions
  • 5.3 Services
    • 5.3.1 Consulting
    • 5.3.2 Support & Maintenance
    • 5.3.3 Integration & Deployment

6 Global Federated Learning Market, By Deployment Mode

  • 6.1 Introduction
  • 6.2 Cloud
  • 6.3 On-Premises
  • 6.4 Hybrid / Edge

7 Global Federated Learning Market, By Learning Type

  • 7.1 Introduction
  • 7.2 Horizontal Federated Learning
  • 7.3 Vertical Federated Learning
  • 7.4 Federated Transfer Learning

8 Global Federated Learning Market, By Communication Pattern

  • 8.1 Introduction
  • 8.2 Cross-Device Federated Learning
  • 8.3 Cross-Silo Federated Learning

9 Global Federated Learning Market, By Application

  • 9.1 Introduction
  • 9.2 Data Privacy & Security
  • 9.3 IoT & Edge Device Analytics
  • 9.4 Personalized Recommendations
  • 9.5 Autonomous Driving & Mobility
  • 9.6 Predictive Analytics
  • 9.7 Remote Patient Monitoring
  • 9.8 Fraud Detection & Risk Scoring
  • 9.9 Medical Imaging & Diagnostics

10 Global Federated Learning Market, By Organization Size

  • 10.1 Introduction
  • 10.2 Large Enterprises
  • 10.3 Small & Medium Enterprises (SMEs)

11 Global Federated Learning Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Google
  • 13.2 Intellegens
  • 13.3 Apple
  • 13.4 Sherpa.ai
  • 13.5 NVIDIA
  • 13.6 Secure AI Labs
  • 13.7 Microsoft
  • 13.8 DataFleets
  • 13.9 IBM
  • 13.10 Enveil
  • 13.11 Intel
  • 13.12 Lifebit
  • 13.13 Cloudera
  • 13.14 Flower
  • 13.15 Owkin

List of Tables

  • Table 1 Global Federated Learning Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Federated Learning Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Federated Learning Market Outlook, By Solutions (2024-2032) ($MN)
  • Table 4 Global Federated Learning Market Outlook, By Services (2024-2032) ($MN)
  • Table 5 Global Federated Learning Market Outlook, By Consulting (2024-2032) ($MN)
  • Table 6 Global Federated Learning Market Outlook, By Support & Maintenance (2024-2032) ($MN)
  • Table 7 Global Federated Learning Market Outlook, By Integration & Deployment (2024-2032) ($MN)
  • Table 8 Global Federated Learning Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 9 Global Federated Learning Market Outlook, By Cloud (2024-2032) ($MN)
  • Table 10 Global Federated Learning Market Outlook, By On-Premises (2024-2032) ($MN)
  • Table 11 Global Federated Learning Market Outlook, By Hybrid / Edge (2024-2032) ($MN)
  • Table 12 Global Federated Learning Market Outlook, By Learning Type (2024-2032) ($MN)
  • Table 13 Global Federated Learning Market Outlook, By Horizontal Federated Learning (2024-2032) ($MN)
  • Table 14 Global Federated Learning Market Outlook, By Vertical Federated Learning (2024-2032) ($MN)
  • Table 15 Global Federated Learning Market Outlook, By Federated Transfer Learning (2024-2032) ($MN)
  • Table 16 Global Federated Learning Market Outlook, By Communication Pattern (2024-2032) ($MN)
  • Table 17 Global Federated Learning Market Outlook, By Cross-Device Federated Learning (2024-2032) ($MN)
  • Table 18 Global Federated Learning Market Outlook, By Cross-Silo Federated Learning (2024-2032) ($MN)
  • Table 19 Global Federated Learning Market Outlook, By Application (2024-2032) ($MN)
  • Table 20 Global Federated Learning Market Outlook, By Data Privacy & Security (2024-2032) ($MN)
  • Table 21 Global Federated Learning Market Outlook, By IoT & Edge Device Analytics (2024-2032) ($MN)
  • Table 22 Global Federated Learning Market Outlook, By Personalized Recommendations (2024-2032) ($MN)
  • Table 23 Global Federated Learning Market Outlook, By Autonomous Driving & Mobility (2024-2032) ($MN)
  • Table 24 Global Federated Learning Market Outlook, By Predictive Analytics (2024-2032) ($MN)
  • Table 25 Global Federated Learning Market Outlook, By Remote Patient Monitoring (2024-2032) ($MN)
  • Table 26 Global Federated Learning Market Outlook, By Fraud Detection & Risk Scoring (2024-2032) ($MN)
  • Table 27 Global Federated Learning Market Outlook, By Medical Imaging & Diagnostics (2024-2032) ($MN)
  • Table 28 Global Federated Learning Market Outlook, By Organization Size (2024-2032) ($MN)
  • Table 29 Global Federated Learning Market Outlook, By Large Enterprises (2024-2032) ($MN)
  • Table 30 Global Federated Learning Market Outlook, By Small & Medium Enterprises (SMEs) (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.