封面
市场调查报告书
商品编码
1889207

全球晶片器官市场:预测至2032年-按器官类型、产品、技术、应用、最终用户和地区进行分析

Organs-On-Chips Market Forecasts to 2032 - Global Analysis By Organ Type, Offering, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球器官晶片市场价值将达到 9,921 万美元,到 2032 年将达到 5.3455 亿美元,在预测期内的复合年增长率为 27.2%。

器官晶片是一种基于细胞的微观平台,旨在模拟人体器官的功能。它们由微流体网络和人类细胞建构而成,能够重现循环、机械运动和组织间相互作用等活动。与传统的实验室技术相比,这些晶片为检验疾病机制、评估药物和理解人体生物学提供了一个更接近真实情况的环境,是动物实验的先进替代方案。

研究表明,在美国,每 1000 种潜在药物中只有 1 种能够透过临床前试验进入临床试验,而 90% 的药物在临床试验中失败,主要原因是缺乏疗效或意外的毒性。

对个人化医疗的需求

这些平台使研究人员能够复製患者独特的病理,从而实现个人化药物测试和治疗方法的开发。与传统模型不同,晶片器官系统可以模拟个体间的遗传和生理差异,提高治疗结果预测的准确性。微流体和生物材料的进步正在提升这些设备的精确度。随着精准医疗在全球的普及,製药公司正在加速采用晶片器官解决方案,以减少药物研发过程中的试验。预计这一趋势将加速晶片器官技术在已开发医疗市场和新兴医疗市场的应用。

缺乏标准化和可重复性

设计、製造方法和生物原料的差异常常导致不同实验室间结果不一致。监管机构要求提供检验且可重复的数据,这阻碍了技术的广泛应用。缺乏普遍接受的通讯协定也使科学研究与产业合作变得复杂。高变异性也引发了人们对商业应用扩充性的担忧。在统一标准建立之前,技术的应用可能仍将局限于专业研究领域。

多重器官晶片系统的开发

透过整合多个器官模型并模拟复杂的生理交互作用,该系统能够更全面地展现药物作用。此类创新可望彻底革新毒理学研究、疾病建模和个人化治疗策略。微工程和干细胞生物学领域的新兴技术正推动更精细的设计。学术机构、生技公司和製药公司之间的合作计划正在加速研发进程。随着对综合性临床前模型的需求不断增长,多器官晶片系统有望成为先进生物医学研究的基石。

来自其他更先进型号的竞争

晶片器官技术面临其他先进模型的竞争,例如3D生物列印和类器官。这些替代技术也能为药物测试和疾病研究提供与生理相关的环境。这些领域的成熟企业受益于雄厚的资金筹措和不断成长的应用市场。结合类器官和生物列印的混合方法进一步加剧了竞争压力。如果晶片器官开发商在成本效益和扩充性方面缺乏明显的差异化优势,他们可能难以获得市场份额。多种颠覆性技术的存在凸显了策略定位和创新的重要性。

新冠疫情的影响:

新冠疫情扰乱了供应链,延缓了非必要的实验室研究,并影响了器官晶片的研发进度。然而,这场危机也凸显了快速可靠的临床前模型的重要性。器官晶片系统因其能够在受控环境中模拟病毒感染并测试潜在疗法而备受关注。监管机构加快了创新生物医学工具的核准流程,以协助应对疫情。疫情后的策略强调了器官晶片生态系中韧性、数位整合和分散式研究模式的重要性。

在预测期内,晶片肺细分市场将占据最大的市场份额。

预计在预测期内,肺晶片将占据最大的市场份额,因为其能够模拟呼吸功能,使其在研究肺部疾病和药物反应方面极为有用。气喘、慢性阻塞性肺病和感染性呼吸系统疾病的日益普遍正在推动对这类模型的需求。製药公司越来越多地使用肺部晶片系统来评估吸入疗法和疫苗。微流体设计的进步正在提高模拟气血屏障相互作用的精确度。

在预测期内,个人化医疗领域将实现最高的复合年增长率。

预计在预测期内,个人化医疗领域将实现最高成长率,因为它能够进行针对特定患者的药物测试,并降低通用治疗方法的风险。对精准医疗倡议的持续投入正在加速其应用。将患者来源的细胞整合到晶片器官系统中可以提高预测准确性。医疗服务提供者正日益认识到个人化治疗策略的价值。

占比最大的地区:

预计北美将在预测期内占据最大的市场份额,强大的研究基础设施和先进的生物技术能力将推动该技术的广泛应用。在政府和私人资金的大力支持下,美国和加拿大在器官晶片创新领域处于领先地位。该地区的法规结构对新型生物医学技术的发展十分有利。大学、Start-Ups和大型製药公司之间的合作正在加速商业化进程。

年复合成长率最高的地区:

在预测期内,亚太地区预计将实现最高的复合年增长率,这主要得益于医疗基础设施的持续改善和生物医学研究投资的持续成长。中国、日本和印度等国家正积极推动生命科学领域的创新。政府主导的措施和公私合营正在促进技术转移和普及。精准医疗意识的不断提高正在推动先进临床前模型的应用。随着区域经济的现代化,亚太地区有望成为器官晶片技术成长最快的市场。

免费客製化服务:

订阅本报告的用户可从以下免费自订选项中选择一项:

  • 公司简介
    • 对最多三家其他公司进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域分类
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 引言

  • 概述
  • 相关利益者
  • 分析范围
  • 分析方法
  • 分析材料

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代产品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球晶片器官市场(依器官类型划分)

  • 晶片肝臟
  • 晶片上的肿瘤/癌症
  • 晶片肺
  • 晶片上的皮肤
  • 晶片上的心臟
  • 薯片上的肠子
  • 晶片上的肾臟
  • 多重器官/晶片人体
  • 晶片上的大脑
  • 其他类型

6. 全球器官晶片市场(依产品/服务分类)

  • 产品
    • 单一器官晶片
    • 多重器官晶片
    • 辅助设备
  • 消耗品
    • 微流体材料
    • 细胞培养基和试剂
  • 软体
  • 服务
    • 客製化晶片开发
    • 合约研究和测试服务

7. 全球器官晶片市场(依技术划分)

  • PDMS
  • 3D生物列印
  • 热塑性塑料
  • 软光刻
  • 玻璃
  • 水凝胶
  • 微加工和微流体
  • 感测器整合技术

8. 全球器官晶片市场(依应用划分)

  • 药物发现与开发
  • 诊断开发
  • 毒理学研究
  • 再生医学
  • 疾病模型
  • 个人化医疗
  • 其他应用领域

9. 全球器官晶片市场(以最终用户划分)

  • 製药和生物技术公司
  • 学术和研究机构
  • 医院和临床研究中心
  • CRO(委外研发机构)
  • 诊断检查室

第十章 全球器官晶片市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章:主要趋势

  • 合约、商业伙伴关係和合资企业
  • 企业合併(M&A)
  • 新产品上市
  • 业务拓展
  • 其他关键策略

第十二章:企业概况

  • Emulate
  • Fluigent
  • MIMETAS
  • Organovo
  • CN Bio Innovations
  • SynVivo
  • TissUse
  • Kirkstall Ltd
  • Hesperos
  • AxoSim Technologies
  • InSphero
  • Nortis
  • AlveoliX
  • AIM Biotech
  • BiomimX
Product Code: SMRC32667

According to Stratistics MRC, the Global Organs-On-Chips Market is accounted for $99.21 million in 2025 and is expected to reach $534.55 million by 2032 growing at a CAGR of 27.2% during the forecast period. Organs-on-chips are miniature, cell-based platforms designed to simulate how human organs work. Built with microfluidic networks and human cells, they recreate activities like circulation, mechanical movement, and tissue interactions. These chips provide a realistic environment to examine illness mechanisms, evaluate medications, and understand human biology with greater precision than conventional lab techniques, serving as an advanced substitute for animal studies.

According to research, in the US, only 1 out of 1,000 potential drugs progresses to clinical trials post preclinical testing. Of these, 90% of the drugs fail during clinical trials, primarily due to the lack of efficacy or unforeseen toxicity.

Market Dynamics:

Driver:

Demand for personalized medicine

The platforms allow researchers to replicate patient-specific conditions, enabling tailored drug testing and therapeutic development. Unlike conventional models, organ-on-chip systems can mimic unique genetic and physiological variations, improving accuracy in predicting treatment outcomes. Advances in microfluidics and biomaterials are enhancing the precision of these devices. As precision medicine gains traction globally, pharmaceutical companies are increasingly adopting organ-on-chip solutions to reduce trial-and-error in drug discovery. This trend is expected to accelerate adoption across both developed and emerging healthcare markets.

Restraint:

Lack of standardization and reproducibility

Variations in design, fabrication methods, and biological inputs often lead to inconsistent results across laboratories. Regulatory agencies require validated and repeatable data, which slows down widespread acceptance. The absence of universally accepted protocols complicates collaboration between research institutions and industry players. High variability also raises concerns about scalability for commercial applications. Until harmonized standards are established, adoption may remain limited to specialized research environments.

Opportunity:

Development of multi-organ-on-chip systems

The systems integrate multiple organ models to simulate complex physiological interactions, offering a more holistic view of drug effects. Such innovations can revolutionize toxicology studies, disease modeling, and personalized treatment strategies. Emerging technologies in microengineering and stem cell biology are enabling more sophisticated designs. Collaborative projects between academia, biotech firms, and pharmaceutical companies are accelerating development. As demand for comprehensive preclinical models rises, multi-organ-on-chip systems are poised to become a cornerstone of advanced biomedical research.

Threat:

Competition from alternative advanced models

Organ-on-chip technologies face competition from other advanced models such as 3D bioprinting and organoids. These alternatives also provide physiologically relevant environments for drug testing and disease studies. Established players in these fields benefit from strong funding and growing adoption. Hybrid approaches that combine organoids with bioprinting further intensify competitive pressures. Without clear differentiation in cost-effectiveness and scalability, organ-on-chip developers may struggle to secure market share. The presence of multiple disruptive technologies underscores the need for strategic positioning and innovation.

Covid-19 Impact:

The COVID-19 pandemic disrupted supply chains and slowed non-essential laboratory research, impacting organ-on-chip development timelines. However, the crisis highlighted the importance of rapid and reliable preclinical models. Organ-on-chip systems gained attention for their ability to replicate viral infections and test potential therapeutics in controlled environments. Regulatory agencies introduced expedited pathways for innovative biomedical tools to support pandemic response. Post-pandemic strategies now emphasize resilience, digital integration, and distributed research models in the organ-on-chip ecosystem.

The lung-On-Chip segment is expected to be the largest during the forecast period

The lung-On-Chip segment is expected to account for the largest market share during the forecast period, due to its ability to replicate respiratory functions makes it highly relevant for studying pulmonary diseases and drug responses. Rising prevalence of asthma, COPD, and infectious respiratory conditions is driving demand for these models. Pharmaceutical companies are increasingly using lung-on-chip systems to evaluate inhaled therapies and vaccines. Advances in microfluidic design are improving accuracy in mimicking air-blood barrier interactions.

The personalized medicine segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the personalized medicine segment is predicted to witness the highest growth rate, due to these platforms enable patient-specific drug testing; reducing risks associated with generalized treatment approaches. Growing investments in precision medicine initiatives are accelerating adoption. Integration of patient-derived cells into organ-on-chip systems enhances predictive accuracy. Healthcare providers are increasingly recognizing the value of individualized therapeutic strategies.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, due to strong research infrastructure and advanced biotechnology capabilities support widespread adoption. The U.S. and Canada are leading in organ-on-chip innovations, backed by significant government and private funding. Regulatory frameworks in the region are supportive of novel biomedical technologies. Collaborations between universities, startups, and pharmaceutical giants are accelerating commercialization.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, owing to expanding healthcare infrastructure and rising investments in biomedical research. Countries such as China, Japan, and India are actively promoting innovation in life sciences. Government initiatives and public-private partnerships are fostering technology transfer and accessibility. Growing awareness of precision medicine is encouraging adoption of advanced preclinical models. As regional economies modernize, Asia Pacific is expected to emerge as the fastest-growing market for organ-on-chip technologies.

Key players in the market

Some of the key players in Organs-On-Chips Market include Emulate, Fluigent, MIMETAS, Organovo, CN Bio Inn, SynVivo, TissUse, Kirkstall Li, Hesperos, AxoSim Te, InSphero, Nortis, Alveolix, AIM Biote, and Biomimx.

Key Developments:

In June 2025, Emulate has launched the AVA Emulation System, a self-contained instrument that cultures, incubates, and images up to 96 independent organ-chip samples in a single run. The company says that AVA delivers an unprecedented magnitude of in vivo-level insights faster than animal models while cutting consumable costs four-fold and in-lab labour by half compared to current generation technologies.

In July 2023, AxoSim, Inc. and Vyant Bio, Inc. announced that they have entered into a definitive agreement under which AxoSim will acquire the microBrain(TM)-associated assets of Vyant Bio's StemoniX subsidiary. The all-cash transaction is expected to close in the next several months, subject to approval by Vyant Bio's shareholders. The companies also announced that effective immediately, AxoSim will have exclusive and sole distribution rights to market the StemoniX microBrain technology platform to pharmaceutical and biotechnology customers.

Organ Types Covered:

  • Liver-on-Chip
  • Tumor/Cancer-on-Chip
  • Lung-on-Chip
  • Skin-on-Chip
  • Heart/Cardiac-on-Chip
  • Intestine-on-Chip
  • Kidney-on-Chip
  • Multi-organ / Body-on-Chip
  • Brain-on-Chip
  • Other Types

Offerings Covered:

  • Products
  • Consumables
  • Software
  • Services

Technologies Covered:

  • PDMS
  • 3D Bioprinting
  • Thermoplastics
  • Soft lithography
  • Glass
  • Hydrogels
  • Microfabrication & Microfluidics
  • Sensor Integration Technologies

Applications Covered:

  • Drug Discovery & Development
  • Diagnostic Development
  • Toxicology Studies
  • Regenerative Medicine
  • Disease Modeling
  • Personalized Medicine
  • Other Applications

End Users Covered:

  • Pharmaceutical & Biotechnology Companies
  • Academic & Research Institutes
  • Hospitals & Clinical Research Centers
  • Contract Research Organizations (CROs)
  • Diagnostic Laboratories

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Organs-On-Chips Market, By Organ Type

  • 5.1 Introduction
  • 5.2 Liver-on-Chip
  • 5.3 Tumor/Cancer-on-Chip
  • 5.4 Lung-on-Chip
  • 5.5 Skin-on-Chip
  • 5.6 Heart/Cardiac-on-Chip
  • 5.7 Intestine-on-Chip
  • 5.8 Kidney-on-Chip
  • 5.9 Multi-organ / Body-on-Chip
  • 5.10 Brain-on-Chip
  • 5.11 Other Types

6 Global Organs-On-Chips Market, By Offering

  • 6.1 Introduction
  • 6.2 Products
    • 6.2.1 Single-Organ Chips
    • 6.2.2 Multi-Organ Chips
    • 6.2.3 Supporting Instruments
  • 6.3 Consumables
    • 6.3.1 Microfluidic Materials
    • 6.3.2 Cell culture Media & Reagents
  • 6.4 Software
  • 6.5 Services
    • 6.5.1 Custom Chip Development
    • 6.5.2 Contract Research & Testing Services

7 Global Organs-On-Chips Market, By Technology

  • 7.1 Introduction
  • 7.2 PDMS
  • 7.3 3D Bioprinting
  • 7.4 Thermoplastics
  • 7.5 Soft lithography
  • 7.6 Glass
  • 7.7 Hydrogels
  • 7.8 Microfabrication & Microfluidics
  • 7.9 Sensor Integration Technologies

8 Global Organs-On-Chips Market, By Application

  • 8.1 Introduction
  • 8.2 Drug Discovery & Development
  • 8.3 Diagnostic Development
  • 8.4 Toxicology Studies
  • 8.5 Regenerative Medicine
  • 8.6 Disease Modeling
  • 8.7 Personalized Medicine
  • 8.8 Other Applications

9 Global Organs-On-Chips Market, By End User

  • 9.1 Introduction
  • 9.2 Pharmaceutical & Biotechnology Companies
  • 9.3 Academic & Research Institutes
  • 9.4 Hospitals & Clinical Research Centers
  • 9.5 Contract Research Organizations (CROs)
  • 9.6 Diagnostic Laboratories

10 Global Organs-On-Chips Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Emulate
  • 12.2 Fluigent
  • 12.3 MIMETAS
  • 12.4 Organovo
  • 12.5 CN Bio Innovations
  • 12.6 SynVivo
  • 12.7 TissUse
  • 12.8 Kirkstall Ltd
  • 12.9 Hesperos
  • 12.10 AxoSim Technologies
  • 12.11 InSphero
  • 12.12 Nortis
  • 12.13 AlveoliX
  • 12.14 AIM Biotech
  • 12.15 BiomimX

List of Tables

  • Table 1 Global Organs-On-Chips Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Organs-On-Chips Market Outlook, By Organ Type (2024-2032) ($MN)
  • Table 3 Global Organs-On-Chips Market Outlook, By Liver-on-Chip (2024-2032) ($MN)
  • Table 4 Global Organs-On-Chips Market Outlook, By Tumor/Cancer-on-Chip (2024-2032) ($MN)
  • Table 5 Global Organs-On-Chips Market Outlook, By Lung-on-Chip (2024-2032) ($MN)
  • Table 6 Global Organs-On-Chips Market Outlook, By Skin-on-Chip (2024-2032) ($MN)
  • Table 7 Global Organs-On-Chips Market Outlook, By Heart/Cardiac-on-Chip (2024-2032) ($MN)
  • Table 8 Global Organs-On-Chips Market Outlook, By Intestine-on-Chip (2024-2032) ($MN)
  • Table 9 Global Organs-On-Chips Market Outlook, By Kidney-on-Chip (2024-2032) ($MN)
  • Table 10 Global Organs-On-Chips Market Outlook, By Multi-organ / Body-on-Chip (2024-2032) ($MN)
  • Table 11 Global Organs-On-Chips Market Outlook, By Brain-on-Chip (2024-2032) ($MN)
  • Table 12 Global Organs-On-Chips Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 13 Global Organs-On-Chips Market Outlook, By Offering (2024-2032) ($MN)
  • Table 14 Global Organs-On-Chips Market Outlook, By Products (2024-2032) ($MN)
  • Table 15 Global Organs-On-Chips Market Outlook, By Single-Organ Chips (2024-2032) ($MN)
  • Table 16 Global Organs-On-Chips Market Outlook, By Multi-Organ Chips (2024-2032) ($MN)
  • Table 17 Global Organs-On-Chips Market Outlook, By Supporting Instruments (2024-2032) ($MN)
  • Table 18 Global Organs-On-Chips Market Outlook, By Consumables (2024-2032) ($MN)
  • Table 19 Global Organs-On-Chips Market Outlook, By Microfluidic Materials (2024-2032) ($MN)
  • Table 20 Global Organs-On-Chips Market Outlook, By Cell culture Media & Reagents (2024-2032) ($MN)
  • Table 21 Global Organs-On-Chips Market Outlook, By Software (2024-2032) ($MN)
  • Table 22 Global Organs-On-Chips Market Outlook, By Services (2024-2032) ($MN)
  • Table 23 Global Organs-On-Chips Market Outlook, By Custom Chip Development (2024-2032) ($MN)
  • Table 24 Global Organs-On-Chips Market Outlook, By Contract Research & Testing Services (2024-2032) ($MN)
  • Table 25 Global Organs-On-Chips Market Outlook, By Technology (2024-2032) ($MN)
  • Table 26 Global Organs-On-Chips Market Outlook, By PDMS (2024-2032) ($MN)
  • Table 27 Global Organs-On-Chips Market Outlook, By 3D Bioprinting (2024-2032) ($MN)
  • Table 28 Global Organs-On-Chips Market Outlook, By Thermoplastics (2024-2032) ($MN)
  • Table 29 Global Organs-On-Chips Market Outlook, By Soft lithography (2024-2032) ($MN)
  • Table 30 Global Organs-On-Chips Market Outlook, By Glass (2024-2032) ($MN)
  • Table 31 Global Organs-On-Chips Market Outlook, By Hydrogels (2024-2032) ($MN)
  • Table 32 Global Organs-On-Chips Market Outlook, By Microfabrication & Microfluidics (2024-2032) ($MN)
  • Table 33 Global Organs-On-Chips Market Outlook, By Sensor Integration Technologies (2024-2032) ($MN)
  • Table 34 Global Organs-On-Chips Market Outlook, By Application (2024-2032) ($MN)
  • Table 35 Global Organs-On-Chips Market Outlook, By Drug Discovery & Development (2024-2032) ($MN)
  • Table 36 Global Organs-On-Chips Market Outlook, By Diagnostic Development (2024-2032) ($MN)
  • Table 37 Global Organs-On-Chips Market Outlook, By Toxicology Studies (2024-2032) ($MN)
  • Table 38 Global Organs-On-Chips Market Outlook, By Regenerative Medicine (2024-2032) ($MN)
  • Table 39 Global Organs-On-Chips Market Outlook, By Disease Modeling (2024-2032) ($MN)
  • Table 40 Global Organs-On-Chips Market Outlook, By Personalized Medicine (2024-2032) ($MN)
  • Table 41 Global Organs-On-Chips Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 42 Global Organs-On-Chips Market Outlook, By End User (2024-2032) ($MN)
  • Table 43 Global Organs-On-Chips Market Outlook, By Pharmaceutical & Biotechnology Companies (2024-2032) ($MN)
  • Table 44 Global Organs-On-Chips Market Outlook, By Academic & Research Institutes (2024-2032) ($MN)
  • Table 45 Global Organs-On-Chips Market Outlook, By Hospitals & Clinical Research Centers (2024-2032) ($MN)
  • Table 46 Global Organs-On-Chips Market Outlook, By Contract Research Organizations (CROs) (2024-2032) ($MN)
  • Table 47 Global Organs-On-Chips Market Outlook, By Diagnostic Laboratories (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.