封面
市场调查报告书
商品编码
1904655

2032年自动驾驶穿梭车市场预测:全球分析(按组件、自动驾驶等级、推进方式、应用、最终用户和地区划分)

Autonomous Shuttle Vehicles Market Forecasts to 2032 - Global Analysis By Component, Level of Autonomy, Propulsion, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的研究,预计到 2025 年,全球无人驾驶穿梭巴士市场规模将达到 1.774 亿美元,到 2032 年将达到 7.731 亿美元,预测期内复合年增长率为 20.2%。

自动驾驶穿梭巴士是专为都市区和校园环境中的短途共用出行而设计的自动驾驶电动交通工具。它们配备光达、雷达、摄影机和人工智慧导航系统,无需人类驾驶人即可提供安全、高效且环保的交通服务。这些穿梭巴士通常速度较慢,与智慧基础设施相连,并针对乘客的舒适度进行了最佳化。它们在智慧城市建设、最后一公里出行和缓解交通拥堵方面发挥关键作用,同时也支持永续且便利的公共交通模式。

最后一公里出行解决方案的需求

对高效「最后一公里」出行解决方案日益增长的需求是推动自动驾驶接驳车市场发展的主要动力。都市区拥挤、停车基础设施有限以及智慧城市建设的推进,正促使运输企业和私人业者采用自动驾驶接驳车进行短途出行。出于对经济高效且低排放交通方式的需求,这些车辆改善了交通枢纽与最终目的地之间的连结。它们在校园、机场和商业园区等场所的适用性,进一步推动了其普及性。

监管和安全核准障碍

监管和安全核准方面的障碍严重限制了市场成长,因为自动驾驶班车的部署需要遵守复杂的交通法规。由于缺乏统一的全球标准,各地核准不尽相同,这延缓了商业化进程。大量的测试、认证和安全检验增加了开发时间和成本。对于营运商而言,责任框架和保险要求的不确定性也带来了进一步的风险。这些因素共同导致大规模部署,尤其是在公共道路上的混合交通环境中,被推迟。

智慧校园与都市区部署

智慧校园和都市区部署为自动驾驶班车市场带来了强劲的成长机会。大学校园、工业园区、机场和智慧城区等可控环境是自动驾驶出行技术的理想测试地点。在数位化基础设施、物联网整合和永续性目标的推动下,这些场所的监管门槛较低,有利于科技的快速普及。在这些环境中成功的先导计画可以扩展到更广泛的城市网络,从而为製造商和出行服务供应商创造长期的商业机会。

公共接受度和问责制

公众接受度和责任问题对市场扩张构成重大威胁。自动驾驶班车高度依赖大众对其安全性和可靠性的信任,而事故或系统故障可能会破坏这种信任。人们对演算法决策以及发生事故时的责任归属的担忧可能会导致推广阻力。原始设备製造商 (OEM)、软体供应商和营运商之间责任分類的不确定性进一步加剧了推广的复杂性。负面的公众舆论可能会延迟监管核准,并导致投资决策的延迟。

新冠疫情的影响

新冠疫情对自动驾驶接驳车市场产生了复杂的影响。短期内,生产、测试和试验计画的中断减缓了其普及速度。然而,疫情也凸显了对非接触式和自动化出行解决方案的需求。疫情后,人们对自动驾驶班车的兴趣重燃,这得益于对驾驶人依赖性的降低以及对更安全出行方式的日益关注。智慧城市投资和出行创新项目的復苏正在推动市场復苏,儘管经历了暂时的挫折,但长期成长前景仍然强劲。

预计在预测期内,雷射雷达系统细分市场将占据最大的市场份额。

由于光达系统在感知和导航领域发挥关键作用,预计在预测期内,光达系统将占据最大的市场份额。光达能够实现高解析度三维地图绘製和精确的物体检测,从而确保在复杂环境中安全运行。固态光达技术的进步和感测器成本的下降正在推动其应用。光达在各种光照条件下的可靠性使其成为自动驾驶穿梭车平台不可或缺的一部分,进一步巩固了其在该领域的领先地位。

预计在预测期内,L4级自动驾驶细分市场将实现最高的复合年增长率。

由于人工智慧、感测器融合和车辆控制系统的进步,预计在预测期内,L4级自动驾驶领域将实现最高的成长率。 L4级自动驾驶车辆在规定的运行范围内运行,只需极少的人工干预,因此非常适合固定路线。商业性可行性和营运成本的降低正在推动营运商越来越多地采用L4级解决方案。检查区域法规的不断变化也进一步促进了该领域的快速成长。

比最大的地区

由于快速的都市化和对智慧运输的大力投资,亚太地区预计将在预测期内占据最大的市场份额。中国、日本和韩国等国家正积极推动智慧城市建设,并试行操作自动驾驶班车。在政府支持和先进製造业生态系统的助力下,该地区展现出巨大的市场接受潜力。密集的城市人口和对高效公共运输的需求进一步巩固了亚太地区的主导地位。

复合年均成长率最高的地区

在预测期内,北美预计将呈现最高的复合年增长率,这主要得益于其技术领先地位和自动驾驶出行解决方案的早期采用。主要自动驾驶汽车开发商的存在以及有利的监管政策正在推动该技术的快速普及。智慧基础设施和校园出行计画的投资持续成长,带动了市场需求的持续攀升。市政当局与技术提供者之间日益密切的合作也进一步推动了全部区域的市场成长。

免费客製化服务

购买此报告的客户可享有以下免费自订选项之一:

  • 公司概况
    • 最多三家新增市场参与企业进行全面分析
    • 主要参与企业(最多3家公司)的SWOT分析
  • 区域细分
    • 根据客户要求,对主要国家进行市场估算和预测,并计算复合年增长率(註:可行性需确认)。
  • 竞争标竿分析
    • 从产品系列、地域覆盖范围和策略联盟等方面对主要参与企业进行基准分析

目录

第一章执行摘要

第二章 前言

  • 摘要
  • 相关利益者
  • 调查范围
  • 调查方法
  • 研究材料

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球自动驾驶穿梭车市场(按组件划分)

  • 光达系统
  • 雷达感测器
  • 相机模组
  • 控制单元
  • 导航系统
  • 动力传动系统系统

6. 全球自动驾驶穿梭巴士市场(依自动驾驶等级划分)

  • 3级自动驾驶
  • 4级自动驾驶
  • 5级自动驾驶

7. 全球自动驾驶穿梭车市场(依推进类型划分)

  • 电池驱动
  • 油电混合

8. 全球自动驾驶穿梭车市场(按应用划分)

  • 机场交通
  • 在校园内活动
  • 城市公共运输
  • 工业设施运输

9. 全球自动驾驶穿梭车市场(依最终用户划分)

  • 地方政府
  • 私人运输业者
  • 机场管理局
  • 其他的

第十章 全球自动驾驶穿梭车市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 併购
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十二章:企业概况

  • Navya SA
  • EasyMile
  • Local Motors
  • 2getthere
  • ZF Friedrichshafen AG
  • Continental AG
  • Bosch Mobility Solutions
  • Hyundai Motor Company
  • Toyota Motor Corporation
  • Aptiv PLC
  • NVIDIA Corporation
  • Mobileye Global Inc.
  • May Mobility
  • Beep, Inc.
  • Yutong Group
Product Code: SMRC33077

According to Stratistics MRC, the Global Autonomous Shuttle Vehicles Market is accounted for $177.4 million in 2025 and is expected to reach $773.1 million by 2032 growing at a CAGR of 20.2% during the forecast period. Autonomous shuttle vehicles are self-driving, electric-powered transport units designed for short-distance, shared mobility in urban or campus environments. Equipped with LiDAR, radar, cameras, and AI navigation systems, they operate without human drivers, offering safe, efficient, and eco-friendly transport. These shuttles are typically low-speed, connected to smart infrastructure, and optimized for passenger convenience. They play a key role in smart city initiatives, last-mile connectivity, and reducing traffic congestion while supporting sustainable, accessible public transportation models.

Market Dynamics:

Driver:

Demand for last-mile mobility solutions

Rising demand for efficient last-mile mobility solutions is a key driver for the Autonomous Shuttle Vehicles market. Urban congestion, limited parking infrastructure, and growing smart city initiatives are pushing transit authorities and private operators toward autonomous shuttles for short-distance travel. Fueled by the need for cost-effective, low-emission transport, these vehicles improve connectivity between transit hubs and final destinations. Their suitability for campuses, airports, and business parks further strengthens adoption momentum.

Restraint:

Regulatory and safety approval hurdles

Regulatory and safety approval hurdles significantly restrain market growth, as autonomous shuttle deployment requires compliance with complex transportation laws. Influenced by the absence of unified global standards, approvals vary across regions and slow commercialization. Extensive testing, certification, and safety validation increase development timelines and costs. For operators, uncertainty around liability frameworks and insurance requirements adds further risk. These factors collectively delay large-scale rollouts, particularly in public road environments with mixed traffic conditions.

Opportunity:

Smart campuses and urban deployments

Smart campuses and urban deployments present a strong growth opportunity for the Autonomous Shuttle Vehicles market. Controlled environments such as university campuses, industrial parks, airports, and smart districts provide ideal testbeds for autonomous mobility. Propelled by digital infrastructure, IoT integration, and sustainability goals, these locations enable faster adoption with lower regulatory barriers. Successful pilot projects in such settings can be scaled to wider urban networks, creating long-term commercial opportunities for manufacturers and mobility service providers.

Threat:

Public acceptance and liability concerns

Public acceptance and liability concerns pose a critical threat to market expansion. Autonomous shuttles rely heavily on public trust in safety and reliability, which can be undermined by accidents or system failures. Fueled by concerns over algorithmic decision-making and responsibility in crash scenarios, adoption may face resistance. Unclear liability allocation among OEMs, software providers, and operators further complicates deployment. Negative public perception can slow regulatory approvals and delay investment decisions.

Covid-19 Impact:

The COVID-19 pandemic had a mixed impact on the Autonomous Shuttle Vehicles market. Short-term disruptions in manufacturing, testing, and pilot programs slowed deployments. However, the pandemic highlighted the need for contactless and automated mobility solutions. Motivated by reduced driver dependency and safer transit alternatives, interest in autonomous shuttles increased post-pandemic. Recovery has been supported by renewed smart city investments and mobility innovation programs, reinforcing long-term growth prospects despite temporary setbacks.

The LiDAR systems segment is expected to be the largest during the forecast period

The LiDAR systems segment is expected to account for the largest market share during the forecast period, resulting from its critical role in perception and navigation. LiDAR enables high-resolution 3D mapping and accurate object detection, ensuring safe operation in complex environments. Driven by advancements in solid-state LiDAR and declining sensor costs, adoption is increasing. Its reliability across varying lighting conditions makes LiDAR indispensable for autonomous shuttle platforms, reinforcing segment dominance.

The level 4 automation segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the level 4 automation segment is predicted to witness the highest growth rate, propelled by advancements in AI, sensor fusion, and vehicle control systems. Level 4 shuttles operate with minimal human intervention within defined operational domains, making them ideal for fixed routes. Spurred by commercial viability and reduced operational costs, operators are increasingly adopting level 4 solutions. Regulatory progress in pilot zones further accelerates rapid segment growth.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to rapid urbanization and strong smart mobility investments. Countries such as China, Japan, and South Korea are actively deploying autonomous shuttle pilots within smart city frameworks. Supported by government backing and advanced manufacturing ecosystems, the region demonstrates high adoption potential. Dense urban populations and demand for efficient public transport further strengthen Asia Pacific's leadership position.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with technological leadership and early adoption of autonomous mobility solutions. The presence of major autonomous vehicle developers and supportive pilot regulations drives rapid deployment. Fueled by investments in smart infrastructure and campus-based mobility programs, demand continues to rise. Growing collaboration between municipalities and technology providers further accelerates market growth across the region.

Key players in the market

Some of the key players in Autonomous Shuttle Vehicles Market include Navya SA, EasyMile, Local Motors, 2getthere, ZF Friedrichshafen AG, Continental AG, Bosch Mobility Solutions, Hyundai Motor Company, Toyota Motor Corporation, Aptiv PLC, NVIDIA Corporation, Mobileye Global Inc., May Mobility, Beep, Inc. and Yutong Group.

Key Developments:

In November 2025, Continental showcased its autonomous shuttle prototype featuring AI-powered perception systems, designed to enhance pedestrian safety and enable seamless integration into mixed traffic environments.

In November 2025, Local Motors expanded pilot programs of its Olli autonomous shuttle in U.S. universities, focusing on sustainable electric drivetrains and modular interiors for flexible passenger transport.

In October 2025, Navya successfully deployed its next-generation autonomous shuttles in Paris, integrating advanced LiDAR and AI systems to improve passenger safety and operational efficiency in urban mobility networks.

Components Covered:

  • LiDAR Systems
  • Radar Sensors
  • Camera Modules
  • Control Units
  • Navigation Systems
  • Powertrain Systems

Level of Autonomy Covered:

  • Level 3 Automation
  • Level 4 Automation
  • Level 5 Automation

Propulsions Covered:

  • Battery Electric
  • Hybrid Electric

Applications Covered:

  • Airport Transportation
  • Campus Mobility
  • Urban Public Transit
  • Industrial Site Transport

End Users Covered:

  • Municipal Authorities
  • Private Transport Operators
  • Airport Authorities
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Autonomous Shuttle Vehicles Market, By Component

  • 5.1 Introduction
  • 5.2 LiDAR Systems
  • 5.3 Radar Sensors
  • 5.4 Camera Modules
  • 5.5 Control Units
  • 5.6 Navigation Systems
  • 5.7 Powertrain Systems

6 Global Autonomous Shuttle Vehicles Market, By Level of Autonomy

  • 6.1 Introduction
  • 6.2 Level 3 Automation
  • 6.3 Level 4 Automation
  • 6.4 Level 5 Automation

7 Global Autonomous Shuttle Vehicles Market, By Propulsion

  • 7.1 Introduction
  • 7.2 Battery Electric
  • 7.3 Hybrid Electric

8 Global Autonomous Shuttle Vehicles Market, By Application

  • 8.1 Introduction
  • 8.2 Airport Transportation
  • 8.3 Campus Mobility
  • 8.4 Urban Public Transit
  • 8.5 Industrial Site Transport

9 Global Autonomous Shuttle Vehicles Market, By End User

  • 9.1 Introduction
  • 9.2 Municipal Authorities
  • 9.3 Private Transport Operators
  • 9.4 Airport Authorities
  • 9.5 Other End Users

10 Global Autonomous Shuttle Vehicles Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Navya SA
  • 12.2 EasyMile
  • 12.3 Local Motors
  • 12.4 2getthere
  • 12.5 ZF Friedrichshafen AG
  • 12.6 Continental AG
  • 12.7 Bosch Mobility Solutions
  • 12.8 Hyundai Motor Company
  • 12.9 Toyota Motor Corporation
  • 12.10 Aptiv PLC
  • 12.11 NVIDIA Corporation
  • 12.12 Mobileye Global Inc.
  • 12.13 May Mobility
  • 12.14 Beep, Inc.
  • 12.15 Yutong Group

List of Tables

  • Table 1 Global Autonomous Shuttle Vehicles Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Autonomous Shuttle Vehicles Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Autonomous Shuttle Vehicles Market Outlook, By LiDAR Systems (2024-2032) ($MN)
  • Table 4 Global Autonomous Shuttle Vehicles Market Outlook, By Radar Sensors (2024-2032) ($MN)
  • Table 5 Global Autonomous Shuttle Vehicles Market Outlook, By Camera Modules (2024-2032) ($MN)
  • Table 6 Global Autonomous Shuttle Vehicles Market Outlook, By Control Units (2024-2032) ($MN)
  • Table 7 Global Autonomous Shuttle Vehicles Market Outlook, By Navigation Systems (2024-2032) ($MN)
  • Table 8 Global Autonomous Shuttle Vehicles Market Outlook, By Powertrain Systems (2024-2032) ($MN)
  • Table 9 Global Autonomous Shuttle Vehicles Market Outlook, By Level of Autonomy (2024-2032) ($MN)
  • Table 10 Global Autonomous Shuttle Vehicles Market Outlook, By Level 3 Automation (2024-2032) ($MN)
  • Table 11 Global Autonomous Shuttle Vehicles Market Outlook, By Level 4 Automation (2024-2032) ($MN)
  • Table 12 Global Autonomous Shuttle Vehicles Market Outlook, By Level 5 Automation (2024-2032) ($MN)
  • Table 13 Global Autonomous Shuttle Vehicles Market Outlook, By Propulsion (2024-2032) ($MN)
  • Table 14 Global Autonomous Shuttle Vehicles Market Outlook, By Battery Electric (2024-2032) ($MN)
  • Table 15 Global Autonomous Shuttle Vehicles Market Outlook, By Hybrid Electric (2024-2032) ($MN)
  • Table 16 Global Autonomous Shuttle Vehicles Market Outlook, By Application (2024-2032) ($MN)
  • Table 17 Global Autonomous Shuttle Vehicles Market Outlook, By Airport Transportation (2024-2032) ($MN)
  • Table 18 Global Autonomous Shuttle Vehicles Market Outlook, By Campus Mobility (2024-2032) ($MN)
  • Table 19 Global Autonomous Shuttle Vehicles Market Outlook, By Urban Public Transit (2024-2032) ($MN)
  • Table 20 Global Autonomous Shuttle Vehicles Market Outlook, By Industrial Site Transport (2024-2032) ($MN)
  • Table 21 Global Autonomous Shuttle Vehicles Market Outlook, By End User (2024-2032) ($MN)
  • Table 22 Global Autonomous Shuttle Vehicles Market Outlook, By Municipal Authorities (2024-2032) ($MN)
  • Table 23 Global Autonomous Shuttle Vehicles Market Outlook, By Private Transport Operators (2024-2032) ($MN)
  • Table 24 Global Autonomous Shuttle Vehicles Market Outlook, By Airport Authorities (2024-2032) ($MN)
  • Table 25 Global Autonomous Shuttle Vehicles Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.