封面
市场调查报告书
商品编码
1904706

食品科技与人工智慧驱动的产品创新市场预测至2032年:按解决方案类型、部署模式、技术、应用、最终用户和地区分類的全球分析

FoodTech & AI-Driven Product Innovation Market Forecasts to 2032 - Global Analysis By Solution Type (Software Solutions and Hardware Solutions), Deployment Mode, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,全球食品科技和人工智慧驱动的产品创新市场预计在 2025 年达到 22.4 亿美元,预计到 2032 年将达到 158.5 亿美元,在预测期内的复合年增长率为 32.2%。

食品科技和人工智慧驱动的产品创新是指利用人工智慧、机器学习、自动化和巨量资料等先进技术来革新食品设计和生产流程。这些技术支援更智慧的原料选择、更快的产品开发、更佳的口感和营养价值,以及更强的永续性。透过数据驱动的洞察、预测工具和智慧处理系统,这种方法能够提高效率、客製化程度和产品质量,使食品製造商能够快速回应不断变化的消费者需求和市场趋势。

对高度个人化的需求

人工智慧演算法使企业能够分析基因数据、饮食习惯、微生物组资讯和生活方式模式,从而提供个人化的食品解决方案。人们对预防医学和个人化健康理念的日益重视,正推动品牌转向数据驱动的产品开发。食品科技平台正越来越多地利用机器学习来预测消费者偏好并即时优化配方。零售和餐饮通路对客製化饮食计划、功能性配料和自适应食品的需求都在不断增长。云端运算和物联网设备的进步进一步增强了个人化能力。这种以消费者为中心的创新趋势正在加速全球人工智慧食品科技解决方案的普及。

高昂的初始投资成本

开发人工智慧驱动系统涉及数据采集、云端运算、网路安全和高技能人才等方面的巨额支出。由于投资回报的不确定性,中小型食品製造商往往难以证明这些支出的合理性。将人工智慧整合到现有食品生产系统中会进一步增加实施的复杂性。持续的模型训练和系统升级会增加长期营运成本。监管合规和资料管治要求也会增加实施成本。这些财务障碍会减缓人工智慧的普及,尤其是在对价格敏感的新兴市场。

精准发酵和替代蛋白

人工智慧工具正被越来越多地用于优化微生物菌株、发酵条件和蛋白质产量效率。这些技术可支援开发永续、扩充性且经济高效的替代蛋白。人们对环境影响和食品安全的日益关注正在加速对下一代蛋白质解决方案的投资。人工智慧驱动的预测模型缩短了开发时间并提高了产品的一致性。食品公司正与生技Start-Ups合作,以加速新型成分的商业化。人工智慧与生物技术的融合正在重塑全球蛋白质生产的未来。

网路安全与资料外洩

网路安全风险和资料污染威胁对人工智慧驱动的食品科技生态系统构成严峻挑战。人工智慧模型高度依赖高品质资料集,因此极易受到恶意资料篡改。消费者营养管理平台一旦遭到入侵,敏感的健康和饮食资讯就可能面临风险。食品供应链中日益增强的互联互通扩大了网路威胁的攻击面。资料完整性问题可能导致错误的产品推荐和配方错误。企业被迫在安全架构和风险缓解策略方面投入大量资金。

新冠疫情的影响:

新冠疫情显着加速了食品科技和人工智慧驱动创新领域的数位转型。供应链中断迫使企业采用基于人工智慧的需求预测和库存优化工具。疫情封锁期间,消费者对数位化营养平台和直接面向消费者的食品服务的依赖急剧上升。随着健康和免疫力成为首要关注点,人工智慧驱动的个人化服务获得了广泛应用。然而,疫情初期的一些限制措施延缓了部分地区的先导计画和资本投资。疫情后的復苏战略强调自动化、韧性和分散式生产模式。整体而言,新冠疫情已成为食品科技领域长期应用人工智慧的催化剂。

预计在预测期内,软体解决方案领域将占据最大的市场份额。

预计在预测期内,软体解决方案领域将占据最大的市场份额。人工智慧驱动的分析平台在产品开发、消费者洞察和流程优化中发挥关键作用。基于云端的软体能够实现研发、製造和分销阶段的即时数据整合。企业越来越依赖数位双胞胎和预测建模来加速创新週期。与硬体密集系统相比,软体解决方案具有扩充性和柔软性。演算法的持续改进提高了决策的准确性和营运效率。

预计在预测期内,营养与健康平台细分市场将实现最高的复合年增长率。

预计在预测期内,营养与健康平台领域将达到最高成长率。消费者对个人化健康管理的日益关注正在推动人工智慧营养应用的普及。这些平台整合了生物标记、饮食数据和生活方式追踪讯息,从而提供个人化建议。穿戴式装置和互联健康生态系统也进一步促进了这一成长。订阅经营模式提高了平台提供者的收入可预测性。食品品牌正在扩大与健康平台的合作,以增强消费者参与。

占比最大的地区:

预计北美将在预测期内占据最大的市场份额。该地区受益于成熟的数位基础设施以及食品饮料公司对人工智慧的高度采用。活跃的创业投资活动支持着持续创新和Start-Ups的发展。主要企业正大力投资于数据驱动的产品开发和智慧製造。美国和加拿大的消费者对机能性食品食品和个人化食品的需求尤其突出。法规结构也日益支持数位健康和​​食品创新措施。

复合年增长率最高的地区:

预计亚太地区在预测期内将实现最高的复合年增长率。快速的都市化和不断增长的可支配收入正在推动对智慧食品解决方案的需求。中国、印度和日本等国家正迅速采用人工智慧驱动的营养管理平台。政府支持农业技术、食品科技Start-Ups和数位转型的措施正在促进市场扩张。该地区庞大的人口规模为人工智慧驱动的个人化提供了大量数据。当地企业正在利用人工智慧来满足不同的饮食习惯和地理偏好。

免费客製化服务:

购买此报告的客户可享有以下免费自订选项之一:

  • 公司概况
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户要求,提供主要国家的市场估算和预测以及复合年增长率(註:可行性需确认)。
  • 竞争标竿分析
    • 根据主要企业的产品系列、地理覆盖范围和策略联盟进行基准分析

目录

第一章执行摘要

第二章 前言

  • 摘要
  • 相关利益者
  • 调查范围
  • 调查方法
  • 研究材料

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球食品科技和人工智慧驱动的产品创新市场(按解决方案类型划分)

  • 软体解决方案
    • 人工智慧驱动平台
    • 资料管理工具
  • 硬体解决方案
    • 智慧感测器
    • 自动化机器人系统

6. 全球食品科技和人工智慧驱动的产品创新市场(按实施类型划分)

  • 本地部署
    • 公共云端
    • 私有云端
    • 混合云端

7. 全球食品科技和人工智慧驱动的产品创新市场(按技术划分)

  • 人工智慧(AI)
    • 机器学习
    • 深度学习
    • 自然语言处理
  • 机器人与自动化
  • 物联网 (IoT)
  • 区块链
  • 巨量资料与分析

8. 全球食品科技和人工智慧驱动的产品创新市场(按应用领域划分)

  • 产品创新与研发
  • 供应链管理
  • 品管和安全措施
  • 个人化营养
  • 销售和行销优化
  • 消费者体验平台
  • 其他应用

9. 全球食品科技和人工智慧驱动的产品创新市场(按最终用户划分)

  • 食品製造商
  • 餐厅和快餐连锁店
  • 食品零售商与电子商务
  • 物流和低温运输营运商
  • 营养与健康平台
  • 其他最终用户

第十章 由全球食品科技与人工智慧驱动的产品创新市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 併购
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十二章:企业概况

  • IBM Corporation
  • FoodLogiQ
  • Microsoft Corporation
  • Brightseed
  • Oracle Corporation
  • Afresh Technologies
  • SAP SE
  • FoodPairing
  • NVIDIA Corporation
  • Rebel Foods
  • TOMRA Systems ASA
  • NotCo Ltd.
  • Blue Yonder Group, Inc.
  • Zebra Technologies Corporation
  • Agilent Technologies, Inc.
Product Code: SMRC33149

According to Stratistics MRC, the Global FoodTech & AI-Driven Product Innovation Market is accounted for $2.24 billion in 2025 and is expected to reach $15.85 billion by 2032 growing at a CAGR of 32.2% during the forecast period. FoodTech & AI-Driven Product Innovation involves the use of cutting-edge technologies such as artificial intelligence, machine learning, automation, and big data to modernize how food products are designed and produced. These tools support smarter ingredient selection, faster product development, improved taste and nutrition, and greater sustainability. Through data-driven insights, predictive tools, and intelligent processing systems, this approach enhances efficiency, customization, and quality, enabling food manufacturers to respond quickly to evolving consumer demands and market trends.

Market Dynamics:

Driver:

Hyper-personalization demand

AI algorithms enable companies to analyze genetic data, dietary habits, microbiome insights, and lifestyle patterns to deliver tailored food solutions. Rising awareness around preventive health and individualized wellness is pushing brands toward data-driven product development. FoodTech platforms increasingly leverage machine learning to predict consumer preferences and optimize formulations in real time. The demand for customized meal plans, functional ingredients, and adaptive food products is expanding across both retail and foodservice channels. Advances in cloud computing and IoT devices are further strengthening personalization capabilities. This shift toward consumer-centric innovation is accelerating adoption of AI-powered FoodTech solutions globally.

Restraint:

High initial capital expenditure

Developing AI-driven systems involves substantial costs related to data acquisition, cloud computing, cybersecurity, and skilled talent. Small and mid-sized food manufacturers often struggle to justify these expenditures due to uncertain return on investment. Integration of AI with legacy food production systems further increases implementation complexity. Continuous model training and system upgrades add to long-term operational expenses. Regulatory compliance and data governance requirements also increase deployment costs. These financial barriers can slow adoption, particularly in price-sensitive and emerging markets.

Opportunity:

Precision fermentation & alt-proteins

AI tools are increasingly used to optimize microbial strains, fermentation conditions, and protein yield efficiency. These technologies support the development of sustainable, scalable, and cost-effective protein alternatives. Growing concerns around environmental impact and food security are accelerating investment in next-generation protein solutions. AI-enabled predictive modeling reduces development timelines and improves product consistency. Food companies are partnering with biotech startups to commercialize novel ingredients faster. This convergence of AI and biotechnology is reshaping the future of global protein production.

Threat:

Cybersecurity & data poisoning

Cybersecurity risks and data poisoning threats pose serious challenges to AI-enabled FoodTech ecosystems. AI models depend heavily on high-quality datasets, making them vulnerable to malicious data manipulation. Breaches in consumer nutrition platforms can compromise sensitive health and dietary information. Increasing connectivity across food supply chains expands the attack surface for cyber threats. Data integrity issues can lead to flawed product recommendations and formulation errors. Companies are being forced to invest heavily in secure architectures and risk mitigation strategies.

Covid-19 Impact:

The COVID-19 pandemic significantly accelerated digital transformation across the FoodTech and AI-driven innovation landscape. Supply chain disruptions pushed companies to adopt AI-based demand forecasting and inventory optimization tools. Consumer reliance on digital nutrition platforms and direct-to-consumer food services increased sharply during lockdowns. AI-powered personalization gained traction as health and immunity became top priorities. However, early pandemic restrictions delayed pilot projects and capital investments in some regions. Post-pandemic recovery strategies emphasize automation, resilience, and decentralized production models. Overall, COVID-19 acted as a catalyst for long-term AI adoption in FoodTech.

The software solutions segment is expected to be the largest during the forecast period

The software solutions segment is expected to account for the largest market share during the forecast period. AI-powered analytics platforms play a critical role in product formulation, consumer insights, and process optimization. Cloud-based software enables real-time data integration across R&D, manufacturing, and distribution stages. Companies increasingly rely on digital twins and predictive modeling to accelerate innovation cycles. Software solutions offer scalability and flexibility compared to hardware-intensive systems. Continuous algorithm improvements enhance decision-making accuracy and operational efficiency.

The nutrition & wellness platforms segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the nutrition & wellness platforms segment is predicted to witness the highest growth rate. Rising consumer focus on personalized health management is driving adoption of AI-enabled nutrition applications. These platforms integrate biomarkers, dietary data, and lifestyle tracking to deliver customized recommendations. Growth is further supported by wearable devices and connected health ecosystems. Subscription-based business models are improving revenue predictability for platform providers. Food brands are increasingly collaborating with wellness platforms to enhance consumer engagement.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. The region benefits from a mature digital infrastructure and high AI adoption across food and beverage companies. Strong venture capital activity supports continuous innovation and startup growth. Major players are investing heavily in data-driven product development and smart manufacturing. Consumer demand for functional and personalized foods is particularly strong in the U.S. and Canada. Regulatory frameworks increasingly support digital health and food innovation initiatives.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. Rapid urbanization and rising disposable incomes are increasing demand for smart food solutions. Countries such as China, India, and Japan are witnessing fast adoption of AI-enabled nutrition platforms. Government initiatives supporting agri-tech, FoodTech startups, and digital transformation are boosting market expansion. The region's large population base provides extensive data for AI-driven personalization. Local companies are leveraging AI to address dietary diversity and regional taste preferences.

Key players in the market

Some of the key players in FoodTech & AI-Driven Product Innovation Market include IBM Corporation, FoodLogiQ, Microsoft, Brightseed, Oracle Corporation, Afresh Technologies, SAP SE, FoodPairing, NVIDIA Corporation, Rebel Foods, TOMRA Systems, NotCo Ltd, Blue Yonder, Zebra Technologies, and Agilent Technologies.

Key Developments:

In December 2025, IBM and Pearson announced a global partnership to build new personalized learning products powered by AI for businesses, public organizations, and educational institutions. IBM and Pearson aim to address these needs with AI-powered learning tools, built using watsonx Orchestrate and watsonx Governance, which will be available globally.

In December 2025, NVIDIA announced it has acquired SchedMD, an open-source workload management system for high-performance computing (HPC) and AI, to help strengthen the open-source software ecosystem and drive AI innovation for researchers, developers and enterprises. NVIDIA will continue to develop and distribute Slurm as open-source, vendor-neutral software, making it widely available to and supported by the broader HPC and AI community across diverse hardware and software environments.

Solution Types Covered:

  • Software Solutions
  • Hardware Solutions

Deployment Modes Covered:

  • On-Premise
  • Cloud

Technologies Covered:

  • Artificial Intelligence (AI)
  • Robotics & Automation
  • Internet of Things (IoT)
  • Blockchain
  • Big Data & Analytics

Applications Covered:

  • Product Innovation & R&D
  • Supply Chain Management
  • Quality Control & Safety
  • Personalized Nutrition
  • Sales & Marketing Optimization
  • Consumer Experience Platforms
  • Other Applications

End Users Covered:

  • Food Manufacturers
  • Restaurants & QSR Chains
  • Food Retailers & E-Commerce
  • Logistics & Cold Chain Providers
  • Nutrition & Wellness Platforms
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global FoodTech & AI-Driven Product Innovation Market, By Solution Type

  • 5.1 Introduction
  • 5.2 Software Solutions
    • 5.2.1 AI Enabled Platforms
    • 5.2.2 Data Management Tools
  • 5.3 Hardware Solutions
    • 5.3.1 Smart Sensors
    • 5.3.2 Automated Robotics Systems

6 Global FoodTech & AI-Driven Product Innovation Market, By Deployment Mode

  • 6.1 Introduction
  • 6.2 On Premise
  • 6.3 Cloud
    • 6.3.1 Public Cloud
    • 6.3.2 Private Cloud
    • 6.3.3 Hybrid Cloud

7 Global FoodTech & AI-Driven Product Innovation Market, By Technology

  • 7.1 Introduction
  • 7.2 Artificial Intelligence (AI)
    • 7.2.1 Machine Learning
    • 7.2.2 Deep Learning
    • 7.2.3 Natural Language Processing
  • 7.3 Robotics & Automation
  • 7.4 Internet of Things (IoT)
  • 7.5 Blockchain
  • 7.6 Big Data & Analytics

8 Global FoodTech & AI-Driven Product Innovation Market, By Application

  • 8.1 Introduction
  • 8.2 Product Innovation & R&D
  • 8.3 Supply Chain Management
  • 8.4 Quality Control & Safety
  • 8.5 Personalized Nutrition
  • 8.6 Sales & Marketing Optimization
  • 8.7 Consumer Experience Platforms
  • 8.8 Other Applications

9 Global FoodTech & AI-Driven Product Innovation Market, By End User

  • 9.1 Introduction
  • 9.2 Food Manufacturers
  • 9.3 Restaurants & QSR Chains
  • 9.4 Food Retailers & E Commerce
  • 9.5 Logistics & Cold Chain Providers
  • 9.6 Nutrition & Wellness Platforms
  • 9.7 Other End Users

10 Global FoodTech & AI-Driven Product Innovation Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 IBM Corporation
  • 12.2 FoodLogiQ
  • 12.3 Microsoft Corporation
  • 12.4 Brightseed
  • 12.5 Oracle Corporation
  • 12.6 Afresh Technologies
  • 12.7 SAP SE
  • 12.8 FoodPairing
  • 12.9 NVIDIA Corporation
  • 12.10 Rebel Foods
  • 12.11 TOMRA Systems ASA
  • 12.12 NotCo Ltd.
  • 12.13 Blue Yonder Group, Inc.
  • 12.14 Zebra Technologies Corporation
  • 12.15 Agilent Technologies, Inc.

List of Tables

  • Table 1 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Solution Type (2024-2032) ($MN)
  • Table 3 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Software Solutions (2024-2032) ($MN)
  • Table 4 Global FoodTech & AI-Driven Product Innovation Market Outlook, By AI Enabled Platforms (2024-2032) ($MN)
  • Table 5 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Data Management Tools (2024-2032) ($MN)
  • Table 6 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Hardware Solutions (2024-2032) ($MN)
  • Table 7 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Smart Sensors (2024-2032) ($MN)
  • Table 8 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Automated Robotics Systems (2024-2032) ($MN)
  • Table 9 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 10 Global FoodTech & AI-Driven Product Innovation Market Outlook, By On Premise (2024-2032) ($MN)
  • Table 11 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Cloud (2024-2032) ($MN)
  • Table 12 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Public Cloud (2024-2032) ($MN)
  • Table 13 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Private Cloud (2024-2032) ($MN)
  • Table 14 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Hybrid Cloud (2024-2032) ($MN)
  • Table 15 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Technology (2024-2032) ($MN)
  • Table 16 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Artificial Intelligence (AI) (2024-2032) ($MN)
  • Table 17 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Machine Learning (2024-2032) ($MN)
  • Table 18 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Deep Learning (2024-2032) ($MN)
  • Table 19 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Natural Language Processing (2024-2032) ($MN)
  • Table 20 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Robotics & Automation (2024-2032) ($MN)
  • Table 21 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Internet of Things (IoT) (2024-2032) ($MN)
  • Table 22 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Blockchain (2024-2032) ($MN)
  • Table 23 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Big Data & Analytics (2024-2032) ($MN)
  • Table 24 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Application (2024-2032) ($MN)
  • Table 25 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Product Innovation & R&D (2024-2032) ($MN)
  • Table 26 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Supply Chain Management (2024-2032) ($MN)
  • Table 27 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Quality Control & Safety (2024-2032) ($MN)
  • Table 28 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Personalized Nutrition (2024-2032) ($MN)
  • Table 29 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Sales & Marketing Optimization (2024-2032) ($MN)
  • Table 30 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Consumer Experience Platforms (2024-2032) ($MN)
  • Table 31 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 32 Global FoodTech & AI-Driven Product Innovation Market Outlook, By End User (2024-2032) ($MN)
  • Table 33 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Food Manufacturers (2024-2032) ($MN)
  • Table 34 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Restaurants & QSR Chains (2024-2032) ($MN)
  • Table 35 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Food Retailers & E Commerce (2024-2032) ($MN)
  • Table 36 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Logistics & Cold Chain Providers (2024-2032) ($MN)
  • Table 37 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Nutrition & Wellness Platforms (2024-2032) ($MN)
  • Table 38 Global FoodTech & AI-Driven Product Innovation Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.