封面
市场调查报告书
商品编码
1916797

导热界面材料市场预测至2032年:按产品类型、填充材、导热係数、应用和地区分類的全球分析

Thermally Conductive Interface Materials Market Forecasts to 2032 - Global Analysis By Product Type, Filler Material, Thermal Conductivity, Application, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球导热界面材料市场价值将达到 46 亿美元,到 2032 年将达到 103 亿美元。

预计在预测期内,该市场将以12.3%的复合年增长率成长。导热界面材料包括化合物、垫片、胶带、凝胶等,它们能够提高电子元件与冷却系统之间的热传递效率。这些材料广泛应用于家用电子电器、电动汽车电池、电力电子产品和通讯设备等领域。推动这一成长的因素包括:装置小型化程度的不断提高、电子产品性能的不断增强、电动汽车的兴起、5G的部署以及先进电子系统对高效温度控管日益增长的需求。

根据 ASTM 标准和材料科学文献,导热界面材料的导热係数为 1 至 15 W/m·K 或更高,这在电子设备和电力系统中极为重要。

电子设备功率密度的增加和小型化会导致发热量增加。

随着智慧型手机、穿戴式装置和伺服器处理器等设备尺寸的不断缩小,这些组件内部的功率密度却急剧增加,导致局部热通量显着升高。这种现象使得使用先进的导热界面材料(TIM)来弥合热源和冷却方案之间的热差距变得特别必要。此外,积体电路日益复杂,也使得传统的冷却方法难以满足需求。因此,各行各业对高效材料的需求持续成长。

高导热性先进热界面材料高成本。

液态金属、特殊相变材料和碳基复合材料等尖端材料通常需要昂贵的原料和复杂的製造流程。此外,精确分配和应用这些材料所需的专用设备也增加了原始设备製造商 (OEM) 的整体拥有成本。这种经济负担迫使对价格敏感的细分市场的製造商选择性能较差的传统替代方案。

开发新型高性能填料

对氮化硼、氮化铝和石墨烯基填料的研究正在推动新型导热界面材料(TIM)的开发,这些材料在提供卓越导热性能的同时,仍能保持良好的电绝缘性。这些新型填料能够製造出符合新兴技术(例如5G基地台和电动车逆变器)严苛要求的复合材料。此外,结合不同颗粒形状的混合填料的开发有助于优化导热路径。这些进展也使製造商能够为特定的先进温度控管应用打造客製化解决方案。

设计转型为整合式冷却解决方案

设计理念向整合冷却方向转变,例如将微流体通道直接嵌入半导体封装或采用先进的浸没式冷却技术,可望减少对传统分离式介面材料的依赖。这些系统级冷却策略旨在彻底消除与多种材料界面相关的热阻。此外,随着晶片製造商向3D IC堆迭技术发展,内部散热需求可能会优先考虑结构改进而非表面涂覆型导热界面材料(TIM)。另外,主动冷却技术效率的提升可能会限制标准TIM产品的销售成长。

新冠疫情的感染疾病:

新冠疫情初期扰乱了全球供应链,导致製造业暂时停工,原料经销也出现延误。然而,随后远端办公和数位转型的激增加速了对笔记型电脑、资料中心基础设施和通讯设备的需求。这一转变在很大程度上抵消了疫情初期的下滑,因为对电脑硬体强大温度控管的需求成为重中之重。此外,疫情后的復苏也促使人们重新关注弹性供应链和国内製造业。疫情也凸显了导热界面材料(TIM)在诊断和医疗用电子设备领域的重要性。

预计在预测期内,润滑脂和膏状物细分市场将占据最大的市场份额。

预计在预测期内,润滑脂和膏状产品将占据最大的市场份额。这项优势主要归功于其多功能性以及对不规则表面的黏附能力,从而确保最大的接触面积和最小的热阻。这些材料经济高效,广泛应用于家用电子电器和汽车组装等大规模生产领域。此外,硅酮和非硅酮配方的进步提高了其长期稳定性,并使其更易于在自动化涂覆系统中应用。同时,其可返工性也使其成为注重可维护性和可修復性的製造商的首选。

预计高导电性细分市场在预测期内将呈现最高的复合年增长率。

预计在预测期内,高导热材料领域将呈现最高的成长率。这一趋势主要受5G和电动车日益增长的需求驱动,因为标准材料往往无法提供足够的散热性能。随着功率模组和通讯晶片的动作温度不断升高,对导热係数高于5 W/m·K的材料的需求也随之激增。此外,液态金属和奈米碳管导热界面材料(TIM)在高效能运算(HPC)产业的应用也日益广泛。

占比最大的地区:

预计亚太地区将在预测期内占据最大的市场份额。中国、台湾、日本和韩国等国家和地区大规模的电子製造业生态系统巩固了这一地位。该地区是全球智慧型手机、半导体和汽车製造中心,对导热介面材料的需求持续强劲。此外,政府的利好政策和对5G基础设施的大量投资也推动了区域市场的成长。

年复合成长率最高的地区:

预计亚太地区在预测期内将实现最高的复合年增长率。中国电动车市场的快速扩张和印度工业自动化产业的蓬勃发展是推动这一加速成长的主要因素。随着这些国家向高科技製造业转型,先进温度控管解决方案的应用呈指数级增长。此外,不断壮大的中产阶级及其对先进家用电器的需求也推动了市场发展。

免费客製化服务:

购买此报告的客户可以选择以下免费自订选项之一:

  • 公司概况
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 主要企业SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户要求,提供主要国家的市场估算和预测以及复合年增长率(註:可行性需确认)。
  • 竞争标竿分析
    • 根据主要企业的产品系列、地理覆盖范围和策略联盟进行基准分析

目录

第一章执行摘要

第二章 前言

  • 概括
  • 相关利益者
  • 调查范围
  • 调查方法
  • 研究材料

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 产品分析
  • 应用分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球导热界面材料市场(依产品类型划分)

  • 油脂和膏体
  • 录影带和胶片
  • 缝隙填充物和垫片
  • 相变材料(PCM)
  • 液态间隙填充剂(LGP)和封装
  • 金属基导热界面材料(TIM)
  • 产品类型

6. 全球导热界面材料市场(依填充材)

  • 硅基
  • 不含硅
    • 环氧树脂基

7. 全球导热界面材料市场(依导热係数划分)

  • 低导热係数
  • 中等导热係数
  • 高导热性

8. 全球导热界面材料市场(按应用划分)

  • 电脑和伺服器
  • 通讯及网路设备
  • 家用电子产品
  • 汽车电子
  • 医疗用电子设备
  • 工业机械和电力电子
  • LED照明和显示器
  • 可再生能源系统
  • 航太/国防

9. 全球导热界面材料市场(按地区划分)

  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十章:重大进展

  • 协议、伙伴关係、合作和合资企业
  • 併购
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十一章 企业概况

  • 3M Company
  • Henkel AG &Co. KGaA
  • Dow Inc.
  • Honeywell International Inc.
  • Indium Corporation
  • Parker-Hannifin Corporation
  • Momentive Performance Materials Inc.
  • DuPont de Nemours, Inc.
  • Shin-Etsu Chemical Co., Ltd.
  • Fujipoly America Corporation
  • Boyd Corporation
  • Wacker Chemie AG
Product Code: SMRC33372

According to Stratistics MRC, the Global Thermally Conductive Interface Materials Market is accounted for $4.6 billion in 2025 and is expected to reach $10.3 billion by 2032, growing at a CAGR of 12.3% during the forecast period. The thermally conductive interface materials consist of compounds, pads, tapes, and gels that help transfer heat better between electronic parts and cooling systems. It supports applications in consumer electronics, EV batteries, power electronics, and telecom equipment. The growth is fueled by smaller devices, more powerful electronics, the rise of electric vehicles, the rollout of 5G, and the increasing need for effective heat management in advanced electronic systems.

According to ASTM standards and materials science literature, thermally conductive interface materials have thermal conductivities ranging 1-15 W/m*K+, critical for electronics and power systems.

Market Dynamics:

Driver:

Increasing power density and miniaturization of electronics generating more heat

As devices like smartphones, wearables, and server processors shrink in size, the power density within these components increases significantly, leading to higher localized heat flux. This phenomenon necessitates the use of advanced TIMs to bridge the thermal gap between heat sources and cooling solutions. Furthermore, the rising complexity of integrated circuits means that traditional cooling methods are no longer sufficient on their own. Consequently, the demand for high-efficiency materials continues to grow across all sectors.

Restraint:

High cost of advanced TIMs with high thermal conductivity

Advanced materials, such as liquid metals, specialized phase-change materials, and carbon-based composites, often involve expensive raw materials and intricate manufacturing processes. Additionally, the specialized equipment required for the precise dispensing and application of these materials adds to the total cost of ownership for OEMs. This financial burden often forces manufacturers in price-sensitive segments to opt for lower-performing, traditional alternatives.

Opportunity:

Development of novel, high-performance fillers

Research into boron nitride, aluminum nitride, and graphene-based fillers is paving the way for TIMs that offer exceptional thermal conductivity without compromising electrical insulation. These novel fillers allow for the creation of composites that can meet the rigorous demands of emerging technologies like 5G base stations and electric vehicle inverters. Additionally, the development of hybrid fillers that combine different particle geometries helps in optimizing the thermal path. Furthermore, these advancements enable manufacturers to create tailored solutions for specific high-heat applications.

Threat:

Design shifts towards integrated cooling solutions

Design shifts toward integrated cooling, such as microfluidic channels embedded directly into semiconductor packaging or advanced immersion cooling, may reduce the traditional reliance on discrete interface materials. These system-level cooling strategies aim to eliminate the thermal resistance associated with multiple material interfaces entirely. Furthermore, as chip manufacturers move toward 3D IC stacking, the internal heat dissipation requirements might favor structural changes over topical TIM applications. Additionally, the increasing efficiency of active cooling technologies could potentially limit the volume growth of standard TIM products.

Covid-19 Impact:

The COVID-19 pandemic initially disrupted the global supply chain, leading to temporary manufacturing halts and logistical delays for raw materials. However, the subsequent surge in remote work and digital transformation accelerated the demand for laptops, data center infrastructure, and telecommunications equipment. This shift largely offset the initial downturn, as the need for robust thermal management in computing hardware became paramount. Furthermore, the recovery phase saw a renewed focus on resilient supply chains and domestic manufacturing. The pandemic also brought attention to how important TIMs are to diagnostic and medical electronics.

The greases & pastes segment is expected to be the largest during the forecast period

The greases & pastes segment is expected to account for the largest market share during the forecast period. This dominance is primarily attributed to their versatility and ability to conform to irregular surfaces, ensuring maximum contact and minimal thermal resistance. These materials are cost-effective and widely used in high-volume applications such as consumer electronics and automotive assemblies. Furthermore, advancements in silicone and non-silicone formulations have improved their long-term stability and ease of application via automated dispensing systems. Additionally, their ability to be reworked makes them a preferred choice for manufacturers focusing on maintenance and repairability.

The high conductivity segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the high conductivity segment is predicted to witness the highest growth rate. The escalating requirements of the 5G and electric vehicle sectors fuel this trend, as standard materials often fail to provide sufficient heat dissipation. As power modules and telecommunications chips reach higher operating temperatures, the demand for materials with conductivity levels exceeding 5 W/m.k is surging. Furthermore, the adoption of liquid metal and carbon-nanotube-based TIMs is gaining momentum in the high-performance computing (HPC) industry.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share. The presence of a massive electronics manufacturing ecosystem in countries like China, Taiwan, Japan, and South Korea solidifies this position. The region serves as the global hub for smartphone, semiconductor, and automotive production, creating a constant and high-volume demand for thermal interface materials. Furthermore, favorable government policies and significant investments in 5G infrastructure are bolstering the regional market.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. The rapid expansion of the electric vehicle market in China and the burgeoning industrial automation sector in India are key drivers of this accelerated growth. As these nations transition toward high-tech manufacturing, the adoption of advanced thermal management solutions is increasing exponentially. Furthermore, the rising middle-class population and the subsequent demand for sophisticated consumer electronics are fueling market dynamism.

Key players in the market

Some of the key players in Thermally Conductive Interface Materials Market include 3M Company, Henkel AG & Co. KGaA, Dow Inc., Honeywell International Inc., Indium Corporation, Parker-Hannifin Corporation, Momentive Performance Materials Inc., DuPont de Nemours, Inc., Shin-Etsu Chemical Co., Ltd., Fujipoly America Corporation, Boyd Corporation, and Wacker Chemie AG.

Key Developments:

In December 2025, 3M introduced the Thermally Conductive Acrylic Interface Pad 5571, a UL94 V 0 listed, silicone free TIM designed for electronics cooling with improved conformability.

In December 2025, Indium launched m2TIM(TM) hybrid metal TIMs, combining liquid metal with solid solder preforms to deliver ultra reliable conductivity and eliminate pump out risks.

In November 2025, Boyd announced the sale of its Thermal business to Eaton for $9.5 billion, positioning its TIM portfolio under Eaton's power management expansion.

In October 2025, Henkel launched Loctite TCF 14001, 14.5 W/m K silicone liquid gap filler for AI data center optical transceivers, enabling robust heat management in 800G and 1.6T modules.

Product Types Covered:

  • Greases & Pastes
  • Tapes & Films
  • Gap Fillers & Pads
  • Phase Change Materials (PCMs)
  • Liquid Gap Fillers (LGPs) & Encapsulants
  • Metal-Based TIMs
  • Product Types

Filler Materials Covered:

  • Silicone-Based
  • Non-Silicone Based

Thermal Conductivities Covered:

  • Low Conductivity
  • Medium Conductivity
  • High Conductivity

Applications Covered:

  • Computers & Servers
  • Telecom & Networking Equipment
  • Consumer Electronics
  • Automotive Electronics
  • Medical Electronics
  • Industrial Machinery & Power Electronics
  • LED Lighting & Displays
  • Renewable Energy Systems
  • Aerospace & Defense

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Thermally Conductive Interface Materials Market, By Product Type

  • 5.1 Introduction
  • 5.2 Greases & Pastes
  • 5.3 Tapes & Films
  • 5.4 Gap Fillers & Pads
  • 5.5 Phase Change Materials (PCMs)
  • 5.6 Liquid Gap Fillers (LGPs) & Encapsulants
  • 5.7 Metal-Based TIMs
  • 5.8 Product Types

6 Global Thermally Conductive Interface Materials Market, By Filler Material

  • 6.1 Introduction
  • 6.2 Silicone-Based
  • 6.3 Non-Silicone Based
    • 6.3.1 Hydrocarbon-Based
    • 6.3.2 Epoxy-Based

7 Global Thermally Conductive Interface Materials Market, By Thermal Conductivity

  • 7.1 Introduction
  • 7.2 Low Conductivity
  • 7.3 Medium Conductivity
  • 7.4 High Conductivity

8 Global Thermally Conductive Interface Materials Market, By Application

  • 8.1 Introduction
  • 8.2 Computers & Servers
  • 8.3 Telecom & Networking Equipment
  • 8.4 Consumer Electronics
  • 8.5 Automotive Electronics
  • 8.6 Medical Electronics
  • 8.7 Industrial Machinery & Power Electronics
  • 8.8 LED Lighting & Displays
  • 8.9 Renewable Energy Systems
  • 8.10 Aerospace & Defense

9 Global Thermally Conductive Interface Materials Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 3M Company
  • 11.2 Henkel AG & Co. KGaA
  • 11.3 Dow Inc.
  • 11.4 Honeywell International Inc.
  • 11.5 Indium Corporation
  • 11.6 Parker-Hannifin Corporation
  • 11.7 Momentive Performance Materials Inc.
  • 11.8 DuPont de Nemours, Inc.
  • 11.9 Shin-Etsu Chemical Co., Ltd.
  • 11.10 Fujipoly America Corporation
  • 11.11 Boyd Corporation
  • 11.12 Wacker Chemie AG

List of Tables

  • Table 1 Global Thermally Conductive Interface Materials Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Thermally Conductive Interface Materials Market Outlook, By Product Type (2024-2032) ($MN)
  • Table 3 Global Thermally Conductive Interface Materials Market Outlook, By Greases & Pastes (2024-2032) ($MN)
  • Table 4 Global Thermally Conductive Interface Materials Market Outlook, By Tapes & Films (2024-2032) ($MN)
  • Table 5 Global Thermally Conductive Interface Materials Market Outlook, By Gap Fillers & Pads (2024-2032) ($MN)
  • Table 6 Global Thermally Conductive Interface Materials Market Outlook, By Phase Change Materials (2024-2032) ($MN)
  • Table 7 Global Thermally Conductive Interface Materials Market Outlook, By Liquid Gap Fillers & Encapsulants (2024-2032) ($MN)
  • Table 8 Global Thermally Conductive Interface Materials Market Outlook, By Metal-Based TIMs (2024-2032) ($MN)
  • Table 9 Global Thermally Conductive Interface Materials Market Outlook, By Filler Material (2024-2032) ($MN)
  • Table 10 Global Thermally Conductive Interface Materials Market Outlook, By Silicone-Based (2024-2032) ($MN)
  • Table 11 Global Thermally Conductive Interface Materials Market Outlook, By Non-Silicone Based (2024-2032) ($MN)
  • Table 12 Global Thermally Conductive Interface Materials Market Outlook, By Hydrocarbon-Based (2024-2032) ($MN)
  • Table 13 Global Thermally Conductive Interface Materials Market Outlook, By Epoxy-Based (2024-2032) ($MN)
  • Table 14 Global Thermally Conductive Interface Materials Market Outlook, By Thermal Conductivity (2024-2032) ($MN)
  • Table 15 Global Thermally Conductive Interface Materials Market Outlook, By Low Conductivity (2024-2032) ($MN)
  • Table 16 Global Thermally Conductive Interface Materials Market Outlook, By Medium Conductivity (2024-2032) ($MN)
  • Table 17 Global Thermally Conductive Interface Materials Market Outlook, By High Conductivity (2024-2032) ($MN)
  • Table 18 Global Thermally Conductive Interface Materials Market Outlook, By Application (2024-2032) ($MN)
  • Table 19 Global Thermally Conductive Interface Materials Market Outlook, By Computers & Servers (2024-2032) ($MN)
  • Table 20 Global Thermally Conductive Interface Materials Market Outlook, By Telecom Equipment (2024-2032) ($MN)
  • Table 21 Global Thermally Conductive Interface Materials Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 22 Global Thermally Conductive Interface Materials Market Outlook, By Automotive Electronics (2024-2032) ($MN)
  • Table 23 Global Thermally Conductive Interface Materials Market Outlook, By Medical Electronics (2024-2032) ($MN)
  • Table 24 Global Thermally Conductive Interface Materials Market Outlook, By Industrial Machinery (2024-2032) ($MN)
  • Table 25 Global Thermally Conductive Interface Materials Market Outlook, By LED Lighting (2024-2032) ($MN)
  • Table 26 Global Thermally Conductive Interface Materials Market Outlook, By Renewable Energy (2024-2032) ($MN)
  • Table 27 Global Thermally Conductive Interface Materials Market Outlook, By Aerospace & Defense (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.