下一代电池锂金属负极材料技术发展现况及市场预测(2024年)
市场调查报告书
商品编码
1403147

下一代电池锂金属负极材料技术发展现况及市场预测(2024年)

<2024> Technology Development Status and Market Forecast of Lithium Metal Anode Materials for Next-Gen Batteries

出版日期: | 出版商: SNE Research | 英文 271 Pages | 商品交期: 请询问到货日

价格
简介目录

随着21世纪气候变迁变得更加严重,开发再生和清洁能源技术的需求日益增加。 随着各种法规的到位,并积极努力保护环境,透过环境法规实现永续发展的社会,二次电池产业正在引领环保能源产业的发展方向。 随着交通从内燃机转向电动车,各种锂离子二次电池的研究正在积极进行。

自1990年代投入实际应用以来,锂离子二次电池作为各种电子设备和电动车的电源取得了巨大成功。 然而,由于负极的理论容量较低(~372mAh/g)和单位体积容量较低(~735mAh/cm3),使用石墨负极的传统锂离子电池在实现高能量密度方面受到限制。 为了满足对锂二次电池不断增长的需求,有必要开发超越传统锂离子电池的新电池技术。

锂金属具有最高的理论容量(~3,860 mAh/g)、最低的电化学势(-3.04 V vs. SHE)和最低的密度(0.53 g/cm3)。 由于这些特性,锂金属被认为是实现单位重量和单位体积的高能量和功率密度的最有前途的材料。

此外,正在积极研究使用不含锂或仅含有少量锂的材料作为阳极的无阳极技术。 负极材料会影响电池的充电速度和寿命,因此消除或减少负极材料有利于提高电池的能量密度并延长其寿命。

本报告对锂金属负极市场进行了调查,提供了锂金属技术、无负极技术以及锂金属相关企业和研究机构的技术和发展现状等资讯。 它也预测了到2030年锂金属负极材料市场的需求和规模。

目录

第一章简介

第二章负极材料技术及发展现况

  • 锂离子二次电池负极材料概述
  • 锂离子二次电池负极材料的发展趋势
    • 负极材料(锂金属负极)的未来发展
    • 负极材料(非负极)的未来发展

第三章金属锂製造技术及供应状况

  • 锂生产供应状况
    • 世界锂储量
    • 世界锂产量
    • 锂资源:矿物
    • 锂资源:矿石
    • 锂资源:盐水
    • 锂材料供应结构
    • 锂需求前景
  • 锂金属製造技术
    • 锂材料技术
    • 锂薄膜技术
  • 锂薄膜技术
    • 锂减薄製程的局限性
    • 成本结构高

第四章锂金属负极研究发展趋势及主要问题

  • 锂金属负极的发展历史
    • 发展史概述
    • 锂金属电池 (LMB) 的历史
    • 锂金属电池(LMB)的初步开发
    • 锂离子电池的发展及市场垄断
    • 锂金属电池 (LMB) 的需求不断增加
  • 锂金属负极的主要问题
    • 锂枝晶生长
    • SEI层问题
  • 锂金属负极的研发趋势
    • 人工SEI
    • 全新结构设计
    • 电解质改性
    • 负极设计

第五章锂金属负极发展现况:依企业划分

  • 摘要
  • 亚洲公司
    • Samsung SDI
    • LGES
    • SK on
    • CATL
    • EVE
    • Prologium
    • Qingtao Energy
    • Welion
    • Hyundai Motors
    • POSCO
    • Neba Corporation
    • Ulvac Inc
    • Santoku
    • Honjo metal
    • Wuxi Sunenergy Lithium Industrial
    • China Energy Lithium
    • Ganfeng Lithium
    • Tianqi Lithium
    • Montavista
    • Shenzen Inx Technology
    • BTR
    • SoftBank Next-Generation Battery Lab
    • National Institute of Advanced Industrial Science and Technology (AIST)
    • National Institute for Materials Science-ALCA SPRING
  • 欧洲公司
    • Blue Solutions
    • Volkswagen
    • Mercedes-Benz
    • SIDRABE
    • IMEC
  • 北美公司
    • SES
    • QuantumScape
    • Solid Power
    • Factorial Energy
    • Soelect
    • TeraWatt
    • Hydro Quebec
    • Brightvolt
    • Sion Power
    • SEEO
    • Cuberg
    • Enpower Greentech
    • PolyPlus
    • Sepion Technologies Inc
    • Ion Storage Systems
    • Sakuu
    • GM
    • Ford
    • Li Metal Corp
    • Ionic Materials
    • Albemarle
    • SQM
    • Livent Corp
    • Pure Lithium Corp
  • 主要公司摘要

第六章锂金属负极市场展望

  • 锂金属负极市场前景概述
    • 锂金属负极电池的种类及成本结构
    • 采用锂金属负极的路线图
    • 锂金属负极电池商业化场景
  • 锂金属负极市场展望
    • 锂金属负极需求预测
    • 锂金属负极价格展望
    • 锂金属负极价格预测基础
    • 锂金属电池 (SLMB) 市场规模预测
    • 预测锂金属电池 (SLMB) 的采用
    • 锂金属电池(SLMB)的使用前景
简介目录
Product Code: 213

With the growing seriousness of climate change in the 21st century, the need for renewable and clean energy technology development has become increasingly urgent. Amidst various regulations and active efforts to achieve environmental protection and a sustainable society through environmental regulations, the secondary battery industry is a leading eco-friendly energy industry. As transportation shifts from internal combustion engines to electric vehicles, research on various types of lithium-ion batteries is actively underway.

Since their commercialization in the 1990s, lithium-ion batteries have been highly successful in powering various electronic devices and electric vehicles. However, conventional lithium-ion batteries with graphite anodes have limitations in achieving high energy density due to the low theoretical capacity (~372 mAh/g) and volumetric capacity (~735 mAh/cm3) of the anode. Meeting the growing demand for lithium secondary batteries requires the development of new battery technologies beyond conventional lithium-ion batteries.

Lithium metal has a very high theoretical capacity (~3860 mAh/g), the lowest electrochemical potential (-3.04 V vs. SHE), and the lowest density (0.53 g/cm3). Due to these characteristics, lithium metal is considered the most promising material for achieving high energy and power density per unit weight and volume.

In addition, anode-less/anode-free technologies, which use lithium-free materials for the anode or apply only a small amount of lithium, are also being actively researched. Since the anode material affects the charging speed and lifespan of the battery, eliminating or reducing it has the advantage of increasing the energy density of the battery and increasing its lifespan.

This report covers the latest trends centered on lithium metal and anode-free technologies, which are considered promising anode materials for the future. It also examined the technology and development status of more than 50 lithium metal-related companies and research institutes in Korea, China, Japan, North America, and Europe. Lastly, the market analysis section predicts the demand and size of the lithium metal anode material market by 2030, taking into account the utilization in xEVs and other emerging applications within the next-generation battery market landscape.

Strong Points of this report:

  • 1. Li metal manufacturing technologies and issues
  • 2. Understanding the overall R&D trends of Li metal anode and anodeless
  • 3.Technology trends and strategies of major players related to Li metal anodes

Table of Contents

1. Introduction

  • 1.1. Required Characteristics of Li-Ion Secondary Batteries
  • 1.2. Development Trends of Li-Ion Secondary Batteries

2. Anode Material Technology and Development Status

  • 2.1. Overview of Li-Ion Secondary Battery Anode Materials
  • 2.2. Development Trends in Li-Ion Secondary Battery Anode Materials
    • 2.2.1. Future Developments in Anode Materials (Li-metal anode)
    • 2.2.2. Future Developments in Anode Materials (Anodeless)

3. Li Metal Manufacturing Technology and Supply Status

  • 3.1. Lithium Production and Supply Status
    • 3.1.1. Global Li reserves
    • 3.1.2. Global Li production
    • 3.1.3. Li resources: Mineral
    • 3.1.5. Li resources: Ores
    • 3.1.6. Li resources: Brines
    • 3.1.7. Lithium Material Supply Structure
    • 3.1.8. Li Demand Outlook
  • 3.2. Li Metal Manufacturing Technology
    • 3.2.1. Li Material Technology
    • 3.2.2. Li Thin-Film Technology
  • 3.3. Li Thin-Film Technology
    • 3.3.1. Li Thinning Process Limitations
    • 3.3.2. High-Cost Structure

4. Li Metal Anode R&D Trend and Main Issue

  • 4.1. Li Metal Anode Development History
    • 4.1.1. Development History Overview
    • 4.1.2. Li metal battery(LMB) History
    • 4.1.3. Initial Development of the Li Metal Battery (LMB)
    • 4.1.4. Li Ion Battery Development and Market Dominance
    • 4.1.5. Growing Need for Lithium Metal Batteries (LMBs)
  • 4.2. Li Metal Anode Main Issue
    • 4.2.1. Li Dendritic Growth
    • 4.2.2. SEI Layer issue
  • 4.3. Li Metal Anode R&D Trends
    • 4.3.1. Artificial SEI
    • 4.3.2. New structure design
    • 4.3.3. Electrolyte modification
    • 4.3.4. Anodeless design

5. Development Status of Li Metal Anode by Company

  • 5.1. Overview
  • 5.2. Asian Companies
    • 5.2.1. Samsung SDI
    • 5.2.2. LGES
    • 5.2.3. SK on
    • 5.2.4. CATL
    • 5.2.5. EVE
    • 5.2.6. Prologium
    • 5.2.7. Qingtao Energy
    • 5.2.8. Welion
    • 5.2.9. Hyundai Motors
    • 5.2.10. POSCO
    • 5.2.11. Neba Corporation
    • 5.2.12. Ulvac Inc
    • 5.2.13. Santoku
    • 5.2.14. Honjo metal
    • 5.2.15. Wuxi Sunenergy Lithium Industrial
    • 5.2.16. China Energy Lithium
    • 5.2.17. Ganfeng Lithium
    • 5.2.18. Tianqi Lithium
    • 5.2.19. Montavista
    • 5.2.20. Shenzen Inx Technology
    • 5.2.21. BTR
    • 5.2.22. SoftBank Next-Generation Battery Lab
    • 5.2.23. National Institute of Advanced Industrial Science and Technology (AIST)
    • 5.2.24. National Institute for Materials Science-ALCA SPRING
  • 5.3. European Companies
    • 5.3.1. Blue Solutions
    • 5.3.2. Volkswagen
    • 5.3.3. Mercedes-Benz
    • 5.3.4. SIDRABE
    • 5.3.5. IMEC
  • 5.4. North American Companies
    • 5.4.1. SES
    • 5.4.2. QuantumScape
    • 5.4.3. Solid Power
    • 5.4.4. Factorial Energy
    • 5.4.5. Soelect
    • 5.4.6. TeraWatt
    • 5.4.7. Hydro Quebec
    • 5.4.8. Brightvolt
    • 5.4.9. Sion Power
    • 5.4.10. SEEO
    • 5.4.11. Cuberg
    • 5.4.12. Enpower Greentech
    • 5.4.13. PolyPlus
    • 5.4.14. Sepion Technologies Inc
    • 5.4.15. Ion Storage Systems
    • 5.4.16. Sakuu
    • 5.4.17. GM
    • 5.4.18. Ford
    • 5.4.19. Li Metal Corp
    • 5.4.20. Ionic Materials
    • 5.4.21. Albemarle
    • 5.4.22. SQM
    • 5.4.23. Livent Corp
    • 5.4.24. Pure Lithium Corp
  • 5.5. Summary of Key Companies

6. Li Metal Anode Market Outlook

  • 6.1. Overview of Li Metal Anode Market Outlook
    • 6.1.1. Li Metal Anode Battery Types and Cost Structure
    • 6.1.2. Li Metal Anode Adoption Roadmap
    • 6.1.3. Commercialization Scenarios of Li Metal Anode Battery
  • 6.2. Li Metal Anode Market Outlook
    • 6.2.1. Li Metal Anode Demand Outlook
    • 6.2.2. Li Metal Anode Price Outlook
    • 6.2.3. Li Metal Anode Price Forecast Rationale
    • 6.2.4. Li Metal Battery (SLMB) Market Size Forecast
    • 6.2.5. Forecast of Li Metal Battery (SLMB) Adoption
    • 6.2.6. Outlook by Li Metal Battery (SLMB) Application