锂离子二次电池正极材料技术趋势及市场展望(至2035年)
市场调查报告书
商品编码
1565777

锂离子二次电池正极材料技术趋势及市场展望(至2035年)

<2024> Technology Trend and Market Outlook for Cathode Materials of Lithium-ion Secondary Batteries (~2035)

出版日期: | 出版商: SNE Research | 英文 618 Pages | 商品交期: 请询问到货日

价格
简介目录

锂离子二次电池市场正在从小型 IT 应用转向更加关注电动车 (EV) 和储能系统 (ESS) 市场。电动车中安装的锂离子二次电池的需求正在迅速增加,推动了该应用中使用的正极材料市场的成长。

在锂离子二次电池中发挥重要供锂作用的正极材料包括LiCoO2 (LCO)、LiO2 (NCM)、Li(Ni1-x+yCoxAly)O2 (NCA)、尖晶石结构LiMn2O4 (LMO)和其他层状结构材料。近年来,在中国电动车市场规模扩大的推动下,磷酸铁锂(LFP)正极材料因其成本效益而受到青睐,也引起了业界的广泛关注。

LCO因其优异的物理和电化学性能以及高能量密度而常被用作移动IT设备中的正极材料,但钴的高成本是其主要缺点。另一方面,LMOs具有成本效益且具有良好的热稳定性,但它们具有可逆容量低和高温下寿命短等限制。

NCM可达到高放电容量,镍含量为80%以上,放电容量可达约200mAh/g。韩国正极材料製造商近十年来积极研究高容量镍基正极材料,NCM、NCMA等先进衍生性商品已成为市场主流。

LFP 具有价格实惠的铁基成分,使其具有成本效益和竞争力。近年来随着钴、镍等三元材料原料价格的上涨,磷酸铁锂的成本优势更为明显。 LMFP(锰掺杂磷酸铁锂)新技术解决了磷酸铁锂的局限性,并已被CATL、比亚迪、国轩等中国主要製造商采用并商业化。自2020年9月以来,磷酸铁锂电池在中国电动车市场的占有率已超过NCM(镍钴锰)和NCA(镍钴铝)三元电池,从2020年的17%增长到2022年的36 %。特斯拉、大众、福特和 Stellantis 等全球汽车製造商也正在探索磷酸铁锂电池的潜力。

高压中镍 (HV Mid-Ni) NCM 最初由 Umicore 商业化,但由于材料破裂和电池寿命缩短等问题,随着高镍替代品的兴起而不再受欢迎。然而,随着单晶负极材料的进步和电池技术的改进,高压中镍三元材料重新成为磷酸铁锂的有力竞争对手。使用高镍材料的韩国企业正在考虑扩大在该领域的投资。

正极材料是锂离子二次电池四大主要零件(正极、负极、电解液、隔膜)之一,约占总成本的30%~40%。因此,为了实现大规模锂离子二次电池的商业化,必须在提高正极性能的同时降低成本。全球范围内,有超过200家正极材料製造商,约有100至150家公司正在积极生产正极材料。日本约20~30家企业,韩国约15~30家企业,中国等地区约100~150家企业。比利时跨国公司优美科 (Umicore) 在这一领域也很引人注目。此外,全球约有150家公司供应正极材料的原料和前驱物。

本报告针对全球锂离子二次电池正极材料市场进行调查分析,提供各类正极材料的最新技术趋势,并着重于富镍三元材料。

目录

第1章正极材料技术现况及发展趋势

第 1 节简介

  • 正极材料发展现状
  • 设计标准
    • 离子键与共价键
    • Mott-Hubbard 型与电荷转移型
    • 固相3D转变中电荷转移反应的概念
    • 固相扩散与两相共存反应的概念
  • 正极材料所需的特性

第2节正极材料种类

  • 层状复合材料
    • 钴酸锂
    • 镍酸锂
    • LiMO2(M = Fe、Mn)
    • 镍锰系列
    • Ni-Co-Mn三组分体系
    • 富锂层状化合物
  • 尖晶石复合材料
    • 锰酸锂
    • LiMxMn2-xO4
  • 橄榄石复合材料
    • 磷酸锂
    • LiMPO4
    • CTP(电池到电池组)技术
  • 低成本电极材料
    • NMX:无钴正极材料

第3节其他正极材料

  • 氟基复合材料

第2章富镍NCM技术

第 1 节简介

第2节富镍NCM的课题

  • 阳离子混合物
  • H2-H3相
  • 残留锂化合物

第3节富镍NCM问题的解

  • 过渡金属掺杂
  • 表面改性
  • 浓度梯度结构
  • 单晶法:单粒子带来长寿命特性

第3章HV(高压)正极技术

第1节高压正极现况

  • 中国现状
  • 韩国现状
  • 日本现状

第2节高压正极活性物质

  • LMFP(Li(M)FePO4)
  • LNMO:LNMO
  • LCO (LiCoO2)
  • 锂富锰NMC
  • HLM:LMNCO

第 3 节高压正极活性材料问题

  • 表面劣化
  • 气体释放
  • 相变
  • 微裂纹
  • LCO 体积和界面退化
  • CEI的形成与演化机制
  • LCO 中的寄生氧化反应
  • 过渡金属在 LNMO 中的溶解
  • 表面裂纹和相变
  • 富锂锰NMC正极的劣化

第 4 节高压正极活性材料解

  • 元素掺杂
  • 表面涂层
  • 单晶 (SC) 生产
  • 结构设计(连接坡度)
  • 多功能电解质添加剂

第4章正极材料的製造流程

第1节正极材料(NCM)的製造製程

  • 混合物
  • 开火
  • 粉碎
  • 定序
  • 磁选

第2部分正极材料(LFP)的製造流程

  • 固相合成法
  • 液相合成法
  • 前驱方法

第 3 节前驱製造过程

  • 镍基NCM製造流程
  • LFP(固态法)製造流程
  • LFP(液相法)製造流程
  • 反应器后/反应器工艺

第4节正极材料性能评估

  • 化学成分分析
  • 比表面积的测量
  • 粒度测量
  • 振实密度测量
  • 水分含量的测量
  • 残留碳酸锂的测量
  • 热分析
  • 颗粒强度

第5节正极板製造製程

第5章全球锂离子电池市场展望(截至2035年)

  • 1. 全球二次电池安装前景
  • 2. 全球二次电池出货量展望
  • 3. 全球二次电池产量展望
  • 4. 全球二次电池生产展望:依供应商划分
  • 5. 全球二次电池生产M/S展望:依供应商划分
  • 6. 世界二次电池产量:依阴极化学分类
  • 7. 世界二次电池产量M/S:按正极化学

第6章全球正极材料供应现况及市场展望

  • 1. 需求预测:依阴极应用(2021-2035)
  • 2. 需求预测:依阴极化学(2021-2035)
  • 3. 需求 M/S 展望:依阴极化学(2021-2035 年)
  • 4. 电动车需求预测:依阴极化学(2021-2035 年)
  • 5. ESS 需求预测:依阴极化学(2021-2035 年)
  • 6.二次电池正极出货量详情(2021-2024年)
  • 7. 二次电池正极出货量详情:依国家分类(2021-2024)
  • 8. 镍基CAM出货(供应)数量:依供应商划分(2021-2024年)
  • 9. 镍基 CAM 出货量:依供应商划分(2021-2024 年)
  • 10. LFP正极出货(供应)数量:依供应商划分(2021-2024年)
  • 11.磷酸铁锂正极出货量:依供应商划分(2021-2024)
  • 12. CAM供应商状况综合分析(截至2023年)
  • 13. LFP CAM供应商状况综合分析(截至2023年)
  • 14.多元正极材料供应商产能扩张计画及供需展望(2021-2030年)
  • 15.磷酸铁锂正极材料供应商产能扩充计画及供需展望(2021-2030年)
  • 16. 正极材料价格展望:依材料分类(2021-2030 年)
  • 17. CAM 市场规模展望(2021-2030 年)

第7章正极需求状况:以锂离子电池製造商划分

  • 1. CAM 需求:按应用和化学分类(2021-2024 年)
  • 2. CAM 需求:依 LIB 製造商划分(2021-2024 年)
  • 3. LIB 製造商的 CAM 需求:依化学分类(2021-2024 年)
  • 4. 主要LIB製造商的CAM需求和供应商现状及前景
    • CATL/LGES/比亚迪/SDI/SK On/松下/中航锂电/国轩/EVE/R□□EPT
  • 5. 主要企业供需概况

第8章正极材料厂商现况

第1节韩国正极材料製造商

  • Ecopro
  • L&F
  • Posco Future M
  • Umicore Korea
  • LG Chem
  • SDI (STM)
  • Cosmo AM&T
  • SM Lab
  • Top Materials

第2节 日本正极材料製造商

  • Nichia
  • Sumitomo Metal Mining
  • Toda Kogyo
  • Mitsui Kinzoku
  • Nippon Denko

第3节 中国正极材料製造商

  • Ronbay
  • B&M
  • XTC
  • Reshine
  • Easpring
  • CY Lico
  • ShanShan
  • ZEC
  • BTR
  • Brunp
  • LIBODE
  • Hunan Yuneng
  • Dynanonic
  • Hubei Wanrun
  • Lopal Technology
  • Rongtong Hi-TechV
  • Guoxuan (Gotion)
  • Youshan
  • Hunan Shenghua
  • Anda
  • Jintang Shidai
  • Shengfan
  • Pulead
  • Terui

第4节 其他地域正极材料製造商

第9章 索引

简介目录
Product Code: 239

The lithium-ion secondary battery market is shifting from small IT applications toward a more substantial focus on electric vehicle (EV) and energy storage system (ESS) markets. Demand for lithium-ion batteries in EVs is rapidly increasing, driving growth in the market for cathode materials used in these applications.

Cathode materials, which play a crucial role in supplying lithium in lithium-ion secondary batteries, include layered structure materials such as LiCoO2 (LCO), Li(Ni1-x+yCoxMny)O2 (NCM), Li(Ni1-x+yCoxAly)O2 (NCA), and spinel-structured LiMn2O4 (LMO). Recently, LiFePO4 (LFP) cathode materials, favored for their cost efficiency and driven by China's EV market expansion, have also gained substantial industry attention.

Due to its superior physical and electrochemical properties and high energy density, LCO is often used as a cathode material for mobile IT devices, though the high cost of cobalt is a significant drawback. LMO, on the other hand, is cost-effective and has excellent thermal stability, though it has limitations such as lower reversible capacity and reduced lifespan at high temperatures.

NCM, which enables high discharge capacity, can reach approximately 200 mAh/g with nickel content over 80%. South Korean cathode material companies have been actively researching high-capacity Ni-based cathode materials over the past decade, making NCM and advanced derivatives like NCMA mainstream in the market.

LFP, with its affordable iron-based composition, has gained a competitive edge in cost-efficiency. With the recent surge in prices of raw materials like cobalt and nickel for ternary materials, LFP's cost advantage has become more pronounced. A novel technology, LMFP (LFP with added manganese), addresses the limitations of LFP and has been adopted by major Chinese manufacturers like CATL, BYD, and Gotion for commercialization. LFP batteries surpassed the share of NCM (nickel, cobalt, manganese) and NCA (nickel, cobalt, aluminum) ternary batteries in China's EV market after September 2020, growing from 17% in 2020 to 36% in 2022. Global automakers such as Tesla, Volkswagen, Ford, and Stellantis are also exploring the potential of LFP batteries.

High Voltage Mid-Nickel (HV Mid-Ni) NCM, initially commercialized by Umicore, fell out of favor with the rise of high-nickel alternatives due to issues such as material cracking and reduced battery life. However, with advancements in single-crystal anode materials and improved battery technologies, HV Mid-Ni NCM is re-emerging as a viable competitor to LFP. South Korean companies that use high-nickel materials are considering expanding their investment in this area.

Cathode materials, one of the four primary components (cathode, anode, electrolyte, separator) of lithium-ion secondary batteries, account for approximately 30-40% of the overall cost. Thus, to commercialize large-scale lithium-ion batteries, improving cathode performance while reducing costs is essential. Globally, there are over 200 cathode material manufacturers, with around 100 to 150 actively engaged in production. Japan has around 20-30 companies, Korea around 15-30, and China and other regions around 100-150. Umicore, a multinational company in Belgium, is also notable in the sector. Additionally, there are approximately 150 companies worldwide that supply raw materials and precursors for cathode materials.

The global cathode materials market is dominated by companies in China, Japan, and Korea. Chinese companies have emerged as leaders, leveraging domestic demand and the growth of major Chinese battery makers, while Japanese firms rely on advanced precursor technologies to compete. Korean companies face intense price competition from Chinese suppliers and technological competition with Japanese firms.

This report provides insights into the latest technical trends across various cathode material types, with a focus on Ni-rich NCM. It also explores cobalt-free cathode technologies and single-particle cathode developments. Additionally, chapters are dedicated to emerging technologies for LFP and LMFP cathodes, high-voltage cathode technologies, and their manufacturing processes.

In-Depth Report Highlights:

  • Gain insights into the latest technologies for high-interest LFP and high-voltage (HV) cathode materials.
  • Understand the advancements in Ni-rich NCM cathode materials.
  • Explore new developments in cobalt-free and single-particle cathode materials.
  • Obtain data on production, demand, and capacity expansion plans for cathode materials by major producers and cell manufacturers.
  • Access comprehensive information on major cathode producers in China, Korea, and Japan.
  • Discover detailed information on the manufacturing processes of ternary and LFP cathodes.
  • Analyze supply and demand forecasts for cathode active materials (CAM) by major battery manufacturers, and gain market outlook insights.
  • Track the evolution of cathode material trends over the past 3-5 years.

Table of Contents

Chapter 1. Status of Cathode Material Technology & Development Trend

1. Introduction

  • 1.1. Status of Cathode Material Development
  • 1.2. Design Criteria
    • 1.2.1. Ionic Bonding and Covalent Bonding
    • 1.2.2. Mott-Hubbard Type and Charge Transfer Type
    • 1.2.3. Concept of Charge transfer Reaction in 3d Transition in Solid Phase
    • 1.2.4. Concept of Diffusion in Solid Phase and Two-Phase Coexistence Reaction
  • 1.3. Characteristics required in Cathode Materials

2. Types of Cathode Material

  • 2.1. Layered Composites
    • 2.1.1. LiCoO2
    • 2.1.2. LiNiO2
    • 2.1.3. LiMO2 (M = Fe, Mn)
    • 2.1.4. Ni-Mn Based
    • 2.1.5. Ni-Co-Mn 3-Component System
    • 2.1.6. Li-rich layered compounds
  • 2.2. Spinel based Composites
    • 2.2.1. LiMn2O4
    • 2.2.2. LiMxMn2-xO4
  • 2.3. Olivine based Composites
    • 2.3.1. LiFePO4
    • 2.3.2. LiMPO4 (M = Mn, Co, Ni)
    • 2.3.3. CTP (Cell-to-Pack) Technology
  • 2.4. Low-cost electrode materials
    • 2.4.1. NMX: Co-free Cathode materials

3. Other cathode material

  • 3.1. Fluoride based composites

Chapter 2. Ni-Rich NCM Technology

1. Introduction

2. Issues of Ni-Rich NCM

  • 2.1. Cation mixing
  • 2.2. H2-H3 Phase
  • 2.3. Residual lithium compounds

3. Solution to Ni-Rich NCM Issues

  • 3.1. Transition metal doping
  • 3.2. Surface modification
  • 3.3. Concentration gradient structure
  • 3.4. Single crystal approach: Long-Life Characteristics through Single Particles

Chapter 3. HV (High Voltage) Cathode Technology

1. HV Cathode Current state

  • 1.1. Current status in China
  • 1.2. Current status in Korea
  • 1.3. Current status in Japan

2. HV Cathode Active Material

  • 2.1. LMFP (Li(M)FePO4)
  • 2.2. LNMO : LNMO(LINI0.5MN1.5O4)
  • 2.3. LCO (LiCoO2)
  • 2.4. Li rich Manganese NMC(L1.2Mn0.54N0.13C0.13O2)
  • 2.5. HLM : LMNCO (L1.2Mn0.54N0.13C0.13O2)

3. Issues of HV Cathode Active Material

  • 3.1. Surface degradation
  • 3.2. Gas release
  • 3.3. Phase transformation
  • 3.4. Microcracks
  • 3.5. Degradation of LCO bulk & interface
  • 3.6. Formation & Evolution Mechanism of CEI
  • 3.7. Parasitic Oxidation Reaction at LCO
  • 3.8. Transition Metal Dissolution at LNMO
  • 3.9. Surface Cracks and Phase Changes
  • 3.10. Degradation of Li-rich Manganese NMC cathode

4. Solutions to HV Cathode Active Material

  • 4.1. Element Doping
  • 4.2. Surface Coating
  • 4.3. Single Crystal (SC) Favbrication
  • 4.4. Structural Design (Connection Gradient)
  • 4.5. Multifunctional Electrolyte Additives

Chapter 4. Manufacturing Process of Cathode Materials

1. Manufacturing Process of Cathode Materials (NCM)

  • 1.1. Mixing
  • 1.2. Calcination
  • 1.3. Crushing
  • 1.4. Sieving
  • 1.5. Magnetic Separation

2. Manufacturing Process of Cathode Materials ((LFP)

  • 2.1. Solid-state Synthesis Method
  • 2.2. Liquid-phase Synthesis Method
  • 2.3. Precursor Method

3. Manufacturing Process of Precursor

  • 3.1. Production Flow of Ni-based NCM
  • 3.2. Production Flow of LFP (Solid-state Method)
  • 3.3. Production Flow of LFP (Liquid-phase Method)
  • 3.4. Post Reactor/Reactor Process

4. Evaluation of Cathode Material Characteristics

  • 4.1. Chemical Composition Analysis
  • 4.2. Measurement of Specific Surface Area
  • 4.3. Particle Size Measurement
  • 4.4. Tap Density Measurement
  • 4.5. Measurement of Moisture Content
  • 4.6. Measurement of Residual lithium Carbonate
  • 4.7. Thermal Analysis
  • 4.8. Particle Strength

5. Manufacturing Process of Cathode Plate

Chapter 5. Outlook for Global LIB Market (~2035)

  • 1. Global Secondary Battery Installation Outlook
  • 2. Global Secondary Battery Shipment Outlook
  • 3. Global Secondary Battery Production Outlook
  • 4. Global Secondary Battery Production Outlook by Suppliers
  • 5. Global Secondary Battery Production M/S Outlook by Suppliers
  • 6. Global Secondary Battery Production by Cathode Chemistry
  • 7. Global Secondary Battery Production M/S by Cathode Chemistry

Chapter 6. Global Cathode Supply Status and Market Outlook

  • 1. Demand Outlook by Cathode Application ('21~'35)
  • 2. Demand Outlook by Cathode Chemistry ('21~'35)
  • 3. Demand M/S Outlook by Cathode Chemistry ('21~'35)
  • 4. Demand Outlook by Cathode Chemistry for EVs ('21~'35)
  • 5. Demand Outlook by Cathode Chemistry for ESS ('21~35)
  • 6. Secondary Battery Cathode Shipment Details ('21~24)
  • 7. Secondary Battery Cathode Shipment Details by Country (2021~2024)
  • 8. Shipment (Supply) Volume by Ni-based CAM Supplier ('21~'24)
  • 9. Shipment M/S by Ni-based CAM Supplier ('21~'24)
  • 10. Shipment (Supply) Volume by LFP Cathode Supplier ('21~'24)
  • 11. Shipment M/S by LFP Cathode Supplier ('21~'24)
  • 12. Comprehensive Analysis of CAM Supplier Status (as of 2023)
  • 13. Comprehensive Analysis of LFP CAM Supplier Status (as of 2023)
  • 14. Capa. Expansion Plan & Supply Demand Outlook of Multi-Component Cathode Material Supplier ('21~'30)
  • 15. Capa. Expansion Plan & Supply Demand Outlook of LFP Cathode Material Supplier ('21~'30)
  • 16. Price Outlook by Cathode Material ('21~'30)
  • 17. CAM Market Size Outlook ('21~'30)

Chapter 7. Cathode Demand Status by LIB Maker

  • 1. CAM Demand by Application and Chemistry ('21~'24)
  • 2. CAM Demand by LIB Maker ('21~'24)
  • 3. Demand for CAM by Chemistry from LIB Maker ('21~'24)
  • 4. CAM Demand and Supplier Status and Outlook for Major LIB Makers
    • CATL / LGES / BYD / SDI / SK On / Panasonic / CALB / Guoxuan / EVE / REPT
  • 5. Supply-Demand Overview Among Key Players

Chapter 8. Status of Cathode Material Manufacturers

1. Korean Cathode Material Manufacturers

  • 1.1. Ecopro
  • 1.2. L&F
  • 1.3. Posco Future M
  • 1.4. Umicore Korea
  • 1.5. LG Chem
  • 1.6. SDI(STM)
  • 1.7. Cosmo AM&T
  • 1.8. SM Lab
  • 1.9. Top Materials

2. Japanese Cathode Material Manufacturers

  • 2.1. Nichia
  • 2.2. Sumitomo Metal Mining
  • 2.3. Toda Kogyo
  • 2.4. Mitsui Kinzoku
  • 2.5. Nippon Denko

3. Chinese Cathode Material Manufacturers

  • 3.1. Ronbay
  • 3.2. B&M
  • 3.3. XTC
  • 3.4. Reshine
  • 3.5. Easpring
  • 3.6. CY Lico
  • 3.7. ShanShan
  • 3.8. ZEC
  • 3.9. BTR
  • 3.10. Brunp
  • 3.11. LIBODE
  • 3.12. Hunan Yuneng
  • 3.13. Dynanonic
  • 3.14. Hubei Wanrun
  • 3.15. Lopal Technology
  • 3.16. Rongtong Hi-TechV
  • 3.17. Guoxuan(Gotion)
  • 3.18. Youshan
  • 3.19. Hunan Shenghua
  • 3.20. Anda
  • 3.21. Jintang Shidai
  • 3.22. Shengfan
  • 3.23. Pulead
  • 3.24. Terui

4. Cathode Material Manufacturers in Other Regions

Chapter 9. Index