富勒烯市场 - 2018-2028 年全球行业规模、份额、趋势、机会和预测,按类型(C60、C70、C76 等)、最终用户(电气和电子、製药、医疗、能源等)细分,按地区和竞争
市场调查报告书
商品编码
1331189

富勒烯市场 - 2018-2028 年全球行业规模、份额、趋势、机会和预测,按类型(C60、C70、C76 等)、最终用户(电气和电子、製药、医疗、能源等)细分,按地区和竞争

Fullerene Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Type (C60, C70, C76, Others), By End User (Electrical and Electronics, Pharmaceuticals, Medical, Energy, and Others), By Region and Competition

出版日期: | 出版商: TechSci Research | 英文 116 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

由于对天然和可持续成分的需求不断增长,全球富勒烯市场预计到 2028 年将出现惊人增长。 2021年,约27%的美国受访者表示,他们购买环保或对社会负责的产品的主要原因是它们对地球和环境更好。

医疗保健电子产品的需求不断增长正在推动市场增长

电子行业是富勒烯的最大消费领域,占据近40%的市场份额。富勒烯在电子设备中用作硅的替代品,因为它们具有更好的导电性并且可以在更高的温度下工作。对智能手机、平板电脑和笔记本电脑等电子设备的需求不断增长,推动了对富勒烯的需求。

富勒烯被发现具有抗氧化特性,使其可用于治疗各种疾病。它们还被用作药物输送系统,因为它们独特的特性使它们能够靶向体内的特定细胞或组织。由于慢性病患病率不断上升以及对更有效治疗方法的需求,预计在预测期内,医疗保健行业对富勒烯的需求将大幅增长。

新兴经济体不断增长的需求正在推动市场增长

在不断增长的电子和医疗保健行业的推动下,富勒烯市场正在新兴经济体(尤其是亚太地区)不断扩大。对电子设备不断增长的需求以及对慢性疾病更有效治疗的需求正在推动对富勒烯的需求。

旨在发现富勒烯新应用的持续研究正在推动市场增长。具有改进性能的富勒烯基材料的开发也正在推动市场增长。公司正在投资研发以改进生产方法并降低成本。

富勒烯基材料具有优异的机械性能,使其适用于飞机、卫星和其他航天器。不断发展的航空航天业,特别是在亚太地区,正在推动对富勒烯的需求。

富勒烯市场面临的主要挑战

富勒烯市场面临的主要挑战之一是缺乏标准化的测试和表征方法。富勒烯是复杂的分子,有许多不同的尺寸、形状和配置,这使得开发准确可靠的测试方法变得困难。由于缺乏标准化,研究人员和行业专家很难比较不同的富勒烯并准确评估其特性。因此,富勒烯的许多潜在应用仍未得到探索,市场尚未充分发挥其潜力。

富勒烯市场面临的另一个重大挑战是生产成本高。目前富勒烯的生产方法有多种,包括激光汽化、电弧放电和化学合成。然而,所有这些方法都相对昂贵且耗时,这降低了富勒烯的可用性,并使它们对于许多应用而言过于昂贵。因此,富勒烯市场主要局限于研究和开发等利基应用,而不是大规模商业应用。

此外,富勒烯市场面临着重大的监管障碍。富勒烯是一类相对较新的分子,其对人类健康和环境的长期影响仍然未知。因此,许多监管机构对于批准它们在商业应用中的使用一直犹豫不决,这限制了它们的采用并减缓了市场增长。此外,缺乏明确的监管指南使得企业投资富勒烯研发麵临挑战,这进一步限制了市场的增长潜力。

富勒烯市场面临来自石墨烯和碳纳米管等其他先进材料的激烈竞争。这些材料具有许多与富勒烯相似的特性,而且它们通常更容易生产和使用。因此,许多公司选择投资这些材料而不是富勒烯,这限制了富勒烯研究和开发的可用资源和专业知识。

富勒烯面临着来自碳纳米管和石墨烯等其他材料的竞争,这些材料具有相似的特性,并且正在为类似的应用而开发。

最新趋势和发展

  • 改进生产方法:公司一直在投资研发以改进富勒烯的生产方法。其中一项进展是使用微波辅助加热来合成富勒烯,它比传统方法更快、更高效。这导致了生产成本的降低和富勒烯可用性的增加。
  • 新应用:研究发现了富勒烯的新应用。例如,富勒烯被发现可以有效提高用于电动汽车和可再生能源存储的锂离子电池的性能。富勒烯还被用于生物传感器的开发和癌症治疗。
  • 合作与伙伴关係:公司已建立合作与伙伴关係来开发富勒烯的新应用。例如,一家公司与一所大学合作开发一种可用于电子设备的富勒烯材料。另一家公司与一家研究机构合作开发了一种基于富勒烯的药物输送系统。
  • 专利申请:公司已为富勒烯的新应用申请了专利。例如,一家公司申请了使用富勒烯治疗阿尔茨海默病的专利。另一家公司申请了在高性能轮胎生产中使用富勒烯的专利。

可用的定制:

根据给定的市场数据,TechSci Research 可根据公司的具体需求提供定制服务。该报告可以使用以下自定义选项:

公司信息

  • 其他市场参与者(最多五个)的详细分析和概况分析。

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
    • 主要市场细分

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 主要行业合作伙伴
  • 主要协会和二手资料来源
  • 预测方法
  • 数据三角测量和验证
  • 假设和限制

第 3 章:执行摘要

  • 市场概况
  • 主要市场细分概述
  • 主要市场参与者概述
  • 重点地区/国家概况
  • 市场驱动因素、挑战和趋势概述

第 4 章:客户之声

第 5 章:全球富勒烯市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市场份额及预测
    • 按类型(C60、C70、C76 等)
    • 按最终用户(电气和电子、製药、医疗、能源等)
    • 按公司划分 (2022)
    • 按地区
  • 产品市场地图
  • 定价分析

第 6 章:北美富勒烯市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市场份额及预测
    • 按类型
    • 按最终用户
    • 按国家/地区
  • 定价分析
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第 7 章:欧洲富勒烯市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市场份额及预测
    • 按类型
    • 按最终用户
    • 按国家/地区
  • 定价分析
  • 欧洲:国家分析
    • 法国
    • 德国
    • 英国
    • 意大利
    • 西班牙

第 8 章:亚太地区富勒烯市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市场份额及预测
    • 按类型
    • 按最终用户
    • 按国家/地区
  • 定价分析
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 韩国
    • 日本
    • 澳大利亚

第 9 章:南美富勒烯市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市场份额及预测
    • 按类型
    • 按最终用户
    • 按国家/地区
  • 定价分析
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第 10 章:中东和非洲富勒烯市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市场份额及预测
    • 按类型
    • 按最终用户
    • 按国家/地区
  • 定价分析
  • MEA:国家分析
    • 南非富勒烯
    • 沙特阿拉伯富勒烯
    • 阿联酋富勒烯

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

  • 併购
  • 产品开发
  • 最近的发展

第 13 章:波特五力分析

  • 行业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第14章:竞争格局

  • 商业概览
  • 公司概况
  • 产品与服务
  • 财务(据报导)
  • 最近的发展
    • Nano-C
    • SES Research Inc.
    • Mitsubishi Chemical Corporation
    • Merck KGaA
    • MTR Ltd.
    • Nanostructured & Amorphous Materials, Inc.
    • Xiamen Funano Co., Ltd.
    • Tokyo Chemical Industry UK Ltd.
    • Sisco Research Laboratories Pvt. Ltd.
    • Otto Chemie Pvt Ltd

第 15 章:战略建议

第 16 章:关于我们和免责声明

简介目录
Product Code: 15118

Global Fullerene market is expected to grow impressively through 2028 due to the growing demand for natural and sustainable ingredients. In 2021, approximately 27% of respondents in the United States stated that their main reason for purchasing products that are environment-friendly or socially responsible is that they are better for the earth and the environment.

Fullerene is a fascinating class of carbon allotropes consisting of molecules composed entirely of carbon arranged in a closed cage-like structure with no internal bonds. These structures resemble soccer balls, consisting of 12 pentagons and varying numbers of hexagons, depending on the size of the molecule. Fullerene molecules come in various sizes and shapes, with the most common being C60, C70, and C84. The C60 molecule, also known as buckminsterfullerene or "buckyball," is the most famous of the fullerene molecules. It has a spherical shape and is composed of 60 carbon atoms arranged in a series of pentagons and hexagons. Fullerene molecules have a range of remarkable properties, making them useful in a wide range of applications. For example, they have excellent electronic properties, making them useful in electronics and nanotechnology. They also have unique optical properties, with the ability to absorb light in the ultraviolet and visible range, making them useful in solar cells and photovoltaic devices.

Fullerenes are also used in the development of new materials, particularly in the field of nanotechnology. They can be used as building blocks for nanomaterials, as well as templates for the synthesis of other materials. Fullerenes are also used in drug delivery systems, as their unique properties make them ideal for carrying drugs to specific cells or tissues. One of the most exciting applications of fullerenes is in the field of medicine. Research has shown that fullerene molecules have antioxidant properties, which suggests they can offset harmful free radicals in the body. This makes them potentially useful in the treatment of diseases such as cancer, Alzheimer's disease, and Parkinson's disease.

The fullerene market has been growing steadily over the past few years, driven by increased demand from various industries, including electronics, aerospace, and healthcare. Fullerene is a unique class of carbon allotropes with a wide range of properties that make them suitable for various applications.

Fullerenes are used in electronic devices as a replacement for silicon, as they have better electrical conductivity and can operate at higher temperatures. Fullerenes are also used as nanomaterials in semiconductors and solar cells, as their unique properties make them ideal for these applications. In the healthcare industry, fullerenes have been found to have antioxidant properties, making them useful for the treatment of various diseases. They are also used as drug delivery systems, as their unique properties allow them to be targeted to specific cells or tissues in the body. The demand for fullerenes in the healthcare industry is expected to grow significantly in the coming years, driven by the increasing prevalence of chronic diseases and the need for more effective treatments.

Increasing Demand from Healthcare Electronics is Driving Market Growth

The electronics industry is the largest consumer of fullerene, accounting for nearly 40% of the market share. Fullerenes are used in electronic devices as a replacement for silicon, as they have better electrical conductivity and can operate at higher temperatures. The growing demand for electronic devices, including smartphones, tablets, and laptops, is driving the demand for fullerene.

Fullerenes have been found to have antioxidant properties, making them useful in the treatment of various diseases. They are also used as drug delivery systems, as their unique properties allow them to be targeted to specific cells or tissues in the body. The demand for fullerenes in the healthcare industry is expected to grow significantly during the forecast period, driven by the increasing prevalence of chronic diseases and the need for more effective treatments.

Growing Demand from Emerging Economies is Driving Market Growth

The fullerene market is expanding in emerging economies, particularly in Asia-Pacific, driven by the growing electronics and healthcare industries. The increasing demand for electronic devices and the need for more effective treatments for chronic diseases are driving the demand for fullerene.

Ongoing research aimed at discovering new applications of fullerenes is driving the market growth. The development of fullerene-based materials with improved properties is also driving market growth. Companies are investing in research and development to improve production methods and reduce costs.

Fullerene-based materials have excellent mechanical properties, making them suitable for use in aircraft, satellites, and other space vehicles. The growing aerospace industry, particularly in Asia-Pacific, is driving the demand for fullerene.

Major Challenges Faced by Fullerene Market

One of the primary challenges facing the fullerene market is the lack of standardized testing and characterization methods. Fullerenes are complex molecules that come in many different sizes, shapes, and configurations, which makes it difficult to develop accurate and reliable testing methods. This lack of standardization has made it challenging for researchers and industry experts to compare different fullerenes and assess their properties accurately. As a result, many potential applications for fullerenes remain unexplored, and the market has not yet reached its full potential.

Another significant challenge facing the fullerene market is the high cost of production. Fullerenes are currently produced using a variety of methods, including laser vaporization, arc discharge, and chemical synthesis. However, all of these methods are relatively expensive and time consuming, which has reduced the availability of fullerenes and made them prohibitively expensive for many applications. As a result, the fullerene market has primarily been limited to niche applications such as research and development rather than large-scale commercial applications.

Moreover, the fullerene market faces significant regulatory hurdles. Fullerenes are a relatively new class of molecules, and their long-term effects on human health and the environment are still unknown. As a result, many regulatory agencies have been hesitant to approve their use in commercial applications, which has limited their adoption and slowed market growth. Furthermore, the lack of clear regulatory guidelines has made it challenging for companies to invest in fullerene research and development, which has further constrained the market's growth potential.

The fullerene market faces intense competition from other advanced materials, such as graphene and carbon nanotubes. These materials have many similar properties to fullerenes, and they are often more straightforward to produce and use. As a result, many companies have chosen to invest in these materials rather than fullerenes, which has limited the available resources and expertise for fullerene research and development.

Fullerenes face competition from other materials, such as carbon nanotubes and graphene, which have similar properties and are being developed for similar applications.

Recent Trends and Developments

  • Improved production methods: Companies have been investing in research and development to improve the production methods of fullerenes. One such development is the use of microwave-assisted heating for the synthesis of fullerenes, which is faster and more efficient than traditional methods. This has led to a reduction in production costs and increased availability of fullerenes.
  • New applications: Research has led to the discovery of new applications of fullerenes. For instance, fullerenes have been found to be effective in improving the performance of lithium-ion batteries, which are used in electric vehicles and renewable energy storage. Fullerenes have also been used in the development of biosensors and in cancer treatment.
  • Collaboration and partnerships: Companies have formed collaborations and partnerships to develop new applications of fullerenes. For example, a company partnered with a university to develop a fullerene-based material that can be used in electronic devices. Another company collaborated with a research institution to develop a fullerene-based drug delivery system.
  • Patent filings: Companies have filed patents for new applications of fullerenes. For example, a company filed a patent for the use of fullerenes in the treatment of Alzheimer's disease. Another company filed a patent for the use of fullerenes in the production of high-performance tires.

Market Segmentation

Global Fullerene Market is segmented based on type, end-user, and region. Based on type, the market is categorized into C60, C70, C76, and Others. Based on end-user, the market is further bifurcated into electrical and electronics, pharmaceuticals, medical, energy, and others. Based on region, the market is divided into North America, Europe, Asia Pacific, South America, Middle East & Africa.

Market Players

Nano-C, SES Research Inc, Mitsubishi Chemical Corporation, Merck KGaA, MTR Ltd., Nanostructured & Amorphous Materials, Inc., Xiamen Funano Co., Ltd., Tokyo Chemical Industry UK Ltd, Sisco Research Laboratories Pvt. Ltd., and Otto Chemie Pvt Ltd are some of the key players of the Global Fullerene Market.

Report Scope:

In this report, Global Fullerene market has been segmented into the following categories, in addition to the industry trends, which have also been detailed below:

Fullerene Market, By Type:

  • C60
  • C70
  • C76
  • Others

Fullerene Market, By End User:

  • Electrical and Electronics
  • Pharmaceuticals
  • Medical
  • Energy
  • Others

Fullerene Market, By Region:

  • North America
    • United States
    • Mexico
    • Canada
  • Europe
    • France
    • Germany
    • United Kingdom
    • Spain
    • Italy
  • Asia-Pacific
    • China
    • India
    • South Korea
    • Japan
    • Singapore
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive landscape

Company Profiles: Detailed analysis of the major companies present in Global Fullerene market.

Available Customizations:

With the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Fullerene Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value & Volume
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (C60, C70, C76, and Others)
    • 5.2.2. By End User (Electrical and Electronics, Pharmaceuticals, Medical, Energy, and Others)
    • 5.2.3. By Company (2022)
    • 5.2.4. By Region
  • 5.3. Product Market Map
  • 5.4. Pricing Analysis

6. North America Fullerene Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value & Volume
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By End User
    • 6.2.3. By Country
  • 6.3. Pricing Analysis
  • 6.4. North America: Country Analysis
    • 6.4.1. United States Fullerene Market Outlook
      • 6.4.1.1. Market Size & Forecast
        • 6.4.1.1.1. By Value & Volume
      • 6.4.1.2. Market Share & Forecast
        • 6.4.1.2.1. By Type
        • 6.4.1.2.2. By End User
    • 6.4.2. Mexico Fullerene Market Outlook
      • 6.4.2.1. Market Size & Forecast
        • 6.4.2.1.1. By Value & Volume
      • 6.4.2.2. Market Share & Forecast
        • 6.4.2.2.1. By Type
        • 6.4.2.2.2. By End User
    • 6.4.3. Canada Fullerene Market Outlook
      • 6.4.3.1. Market Size & Forecast
        • 6.4.3.1.1. By Value & Volume
      • 6.4.3.2. Market Share & Forecast
        • 6.4.3.2.1. By Type
        • 6.4.3.2.2. By End User

7. Europe Fullerene Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value & Volume
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By End User
    • 7.2.3. By Country
  • 7.3. Pricing Analysis
  • 7.4. Europe: Country Analysis
    • 7.4.1. France Fullerene Market Outlook
      • 7.4.1.1. Market Size & Forecast
        • 7.4.1.1.1. By Value & Volume
      • 7.4.1.2. Market Share & Forecast
        • 7.4.1.2.1. By Type
        • 7.4.1.2.2. By End User
    • 7.4.2. Germany Fullerene Market Outlook
      • 7.4.2.1. Market Size & Forecast
        • 7.4.2.1.1. By Value & Volume
      • 7.4.2.2. Market Share & Forecast
        • 7.4.2.2.1. By Type
        • 7.4.2.2.2. By End User
    • 7.4.3. United Kingdom Fullerene Market Outlook
      • 7.4.3.1. Market Size & Forecast
        • 7.4.3.1.1. By Value & Volume
      • 7.4.3.2. Market Share & Forecast
        • 7.4.3.2.1. By Type
        • 7.4.3.2.2. By End User
    • 7.4.4. Italy Fullerene Market Outlook
      • 7.4.4.1. Market Size & Forecast
        • 7.4.4.1.1. By Value & Volume
      • 7.4.4.2. Market Share & Forecast
        • 7.4.4.2.1. By Type
        • 7.4.4.2.2. By End User
    • 7.4.5. Spain Fullerene Market Outlook
      • 7.4.5.1. Market Size & Forecast
        • 7.4.5.1.1. By Value & Volume
      • 7.4.5.2. Market Share & Forecast
        • 7.4.5.2.1. By Type
        • 7.4.5.2.2. By End User

8. Asia-Pacific Fullerene Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value & Volume
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By End User
    • 8.2.3. By Country
  • 8.3. Pricing Analysis
  • 8.4. Asia-Pacific: Country Analysis
    • 8.4.1. China Fullerene Market Outlook
      • 8.4.1.1. Market Size & Forecast
        • 8.4.1.1.1. By Value & Volume
      • 8.4.1.2. Market Share & Forecast
        • 8.4.1.2.1. By Type
        • 8.4.1.2.2. By End User
    • 8.4.2. India Fullerene Market Outlook
      • 8.4.2.1. Market Size & Forecast
        • 8.4.2.1.1. By Value & Volume
      • 8.4.2.2. Market Share & Forecast
        • 8.4.2.2.1. By Type
        • 8.4.2.2.2. By End User
    • 8.4.3. South Korea Fullerene Market Outlook
      • 8.4.3.1. Market Size & Forecast
        • 8.4.3.1.1. By Value & Volume
      • 8.4.3.2. Market Share & Forecast
        • 8.4.3.2.1. By Type
        • 8.4.3.2.2. By End User
    • 8.4.4. Japan Fullerene Market Outlook
      • 8.4.4.1. Market Size & Forecast
        • 8.4.4.1.1. By Value & Volume
      • 8.4.4.2. Market Share & Forecast
        • 8.4.4.2.1. By Type
        • 8.4.4.2.2. By End User
    • 8.4.5. Australia Fullerene Market Outlook
      • 8.4.5.1. Market Size & Forecast
        • 8.4.5.1.1. By Value & Volume
      • 8.4.5.2. Market Share & Forecast
        • 8.4.5.2.1. By Type
        • 8.4.5.2.2. By End User

9. South America Fullerene Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value & Volume
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By End User
    • 9.2.3. By Country
  • 9.3. Pricing Analysis
  • 9.4. South America: Country Analysis
    • 9.4.1. Brazil Fullerene Market Outlook
      • 9.4.1.1. Market Size & Forecast
        • 9.4.1.1.1. By Value & Volume
      • 9.4.1.2. Market Share & Forecast
        • 9.4.1.2.1. By Type
        • 9.4.1.2.2. By End User
    • 9.4.2. Argentina Fullerene Market Outlook
      • 9.4.2.1. Market Size & Forecast
        • 9.4.2.1.1. By Value & Volume
      • 9.4.2.2. Market Share & Forecast
        • 9.4.2.2.1. By Type
        • 9.4.2.2.2. By End User
    • 9.4.3. Colombia Fullerene Market Outlook
      • 9.4.3.1. Market Size & Forecast
        • 9.4.3.1.1. By Value & Volume
      • 9.4.3.2. Market Share & Forecast
        • 9.4.3.2.1. By Type
        • 9.4.3.2.2. By End User

10. Middle East and Africa Fullerene Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value & Volume
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By End User
    • 10.2.3. By Country
  • 10.3. Pricing Analysis
  • 10.4. MEA: Country Analysis
    • 10.4.1. South Africa Fullerene Market Outlook
      • 10.4.1.1. Market Size & Forecast
        • 10.4.1.1.1. By Value & Volume
      • 10.4.1.2. Market Share & Forecast
        • 10.4.1.2.1. By Type
        • 10.4.1.2.2. By End User
    • 10.4.2. Saudi Arabia Fullerene Market Outlook
      • 10.4.2.1. Market Size & Forecast
        • 10.4.2.1.1. By Value & Volume
      • 10.4.2.2. Market Share & Forecast
        • 10.4.2.2.1. By Type
        • 10.4.2.2.2. By End User
    • 10.4.3. UAE Fullerene Market Outlook
      • 10.4.3.1. Market Size & Forecast
        • 10.4.3.1.1. By Value & Volume
      • 10.4.3.2. Market Share & Forecast
        • 10.4.3.2.1. By Type
        • 10.4.3.2.2. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition
  • 12.2. Product Development
  • 12.3. Recent Developments

13. Porters Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Business Overview
  • 14.2. Company Snapshot
  • 14.3. Products & Services
  • 14.4. Financials (As Reported)
  • 14.5. Recent Developments
    • 14.5.1. Nano-C
    • 14.5.2. SES Research Inc.
    • 14.5.3. Mitsubishi Chemical Corporation
    • 14.5.4. Merck KGaA
    • 14.5.5. MTR Ltd.
    • 14.5.6. Nanostructured & Amorphous Materials, Inc.
    • 14.5.7. Xiamen Funano Co., Ltd.
    • 14.5.8. Tokyo Chemical Industry UK Ltd.
    • 14.5.9. Sisco Research Laboratories Pvt. Ltd.
    • 14.5.10. Otto Chemie Pvt Ltd

15. Strategic Recommendations

16. About Us & Disclaimer