聚乳酸市场 - 2018-2028F 全球产业规模、份额、趋势、机会和预测,按原材料、按应用、最终用途行业、等级、地区和竞争细分
市场调查报告书
商品编码
1355185

聚乳酸市场 - 2018-2028F 全球产业规模、份额、趋势、机会和预测,按原材料、按应用、最终用途行业、等级、地区和竞争细分

Polylactic Acid Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028F Segmented By Raw Material, By Application, By End-Use Industry, By Grade, By Region and Competition

出版日期: | 出版商: TechSci Research | 英文 175 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2022 年全球聚乳酸市场价值为 6.9234 亿美元,预计在预测期内将强劲增长,到 2028 年复合年增长率为 11.53%。聚乳酸 (PLA) 聚合物不同于常见的热塑性聚合物。它主要由甘蔗等可再生资源组成。 PLA 是一种流行的材料,因为与其他可生物降解的聚合物相比,它相对便宜且具有各种有益的机械性能。 PLA 主要来自植物来源,包括甘蔗、木薯、玉米和马铃薯。农业副产品、纤维素材料和温室气体等替代原料也得到了探索。然而,该过程仍在开发中,预计在可预见的未来,农产品仍将是淀粉混合物和 PLA 的主要来源。 PLA 市场的成长主要是由纺织、包装和农业等最终用途领域不断增长的需求所推动的。此外,与传统聚合物相比,聚乳酸的碳排放量较低,有助于满足全球需求。此外,对软包装产品不断增长的需求进一步推动了市场的成长。由于对包装食品、零食、即食 (RTE) 食品和其他消费品的需求不断增长,包装行业正在经历激增。因此,由于包装行业的快速扩张,预计在预测期内对 PLA 的需求将会上升。

主要市场驱动因素

汽车产业对聚乳酸的需求不断增长

市场概况
预测期 2024-2028
2022 年市场规模 6.9234亿美元
2028 年市场规模 128625万美元
2023-2028 年复合年增长率 11.53%
成长最快的细分市场 包装
最大的市场 亚太地区

聚乳酸是一种可生物降解的生物基聚合物,源自于玉米淀粉或甘蔗等可再生资源,是汽车行业传统石油基塑胶的引人注目的替代品。 PLA 相对较低的密度使其成为轻型车辆的理想材料。随着汽车製造商努力提高燃油效率和减少排放,在内饰板和非结构部件等部件中使用 PLA 有助于实现这些目标。 PLA 的柔韧性以及与不同着色专家的相似性使製造商能够製造出适应性强且美观的零件。这对于增加整体驾驶体验的内部设计部件和非主要部件至关重要。 PLA 用于製造车门板、仪表板装饰和中控台零件等内装零件。这些组件受益于 PLA 的轻盈特性、可自订的设计和可持续的吸引力。

包装产业对聚乳酸的需求不断增加

随着消费者需要更环保、更负责任的包装解决方案,该产业被迫采用符合永续发展目标的材料。 PLA 源自可再生资源并具有生物降解性,已成为满足日益增长的环保包装需求的引人注目的选择。随着消费者对环境议题的认知不断提高,购买行为明显转向采用环保材料包装的产品。将 PLA 包装融入其产品中的品牌将透过吸引有意识的消费者来获得竞争优势。 PLA 的可堆肥性在循环经济模式中发挥着至关重要的作用。随着堆肥基础设施的改善,PLA 包装可以被收集、加工并返回地球,从而完成可持续的材料循环。从食品容器到包装材料和薄膜,PLA 由于适合直接接触可食用物品,因此在食品行业中越来越受欢迎。它可以保持易腐烂商品的新鲜度,同时提供传统塑胶的更环保替代品。此外,化妆品行业的品牌正在将乳霜、乳液和洗髮精等产品转向使用 PLA 包装。 PLA 的美学吸引力和可自订性与这些产品的视觉和品牌要求非常吻合。

电子产业对聚乳酸的需求不断成长

聚乳酸 (PLA) 是一种可生物降解的生物基聚合物,已成为此动态领域的关键参与者。 PLA 在电子产业中的日益普及不仅重塑了该产业,而且成为全球 PLA 市场的强大推动力。 PLA 的主要属性之一是其轻量性,使其成为电子商务的最佳决策。重量的减轻不仅增加了设备的紧凑性和舒适度,而且还有助于减少运输排放。此外,PLA 的强度和机械性能正在解决,以製造能够承受电子产品日常使用的痛苦的零件。 PLA 的多功能性在这一领域大放异彩,因为它可以模製成各种形式,为设备提供客製化的配合。 PLA 的热性能使其适用于元件产生热量的应用,例如印刷电路板 (PCB)。电子产业利用 PLA 承受更高温度的能力,使其与 5G 网路和物联网 (IoT) 等新兴技术和趋势相容。

技术进步的成长

技术的进步与 PLA 共混物的进步以及不同添加物质的融合相结合,以调整其性能以适应特定的应用。透过将 PLA 与不同的聚合物或添加物质(如线材、奈米颗粒或阻燃剂)混合,生产商可以製造具有各种性能的材料。这些进展将PLA的应用扩展到了电子、汽车、医疗器材等变化广泛的领域,展现了其灵活性和适应性。 3D 列印,也称为积层製造,彻底改变了各行业的製造流程。 PLA 的生物降解性和易于加工性使其成为 3D 列印应用的理想材料。此技术可实现复杂的客製化设计,实现快速原型设计、产品个人化并减少材料浪费。传统的塑胶回收设施不具备处理 PLA 的能力,处理不当会阻碍其生物降解过程。技术进步正在透过开发专门的 PLA 回收和堆肥设施来应对这项挑战。

主要市场挑战

缺乏堆肥基础设施

丢进传统废物流的 PLA 产品通常最终会进入垃圾掩埋场或焚化炉,在那里它们的分解速度比工业堆肥设施中的分解速度慢得多。这违背了使用可生物降解材料的目的,因为预期的环境效益并没有实现。当 PLA 产品进入回收流程时,它们可能会污染传统的塑胶回收流程,导致回收问题并加剧塑胶污染问题。将 PLA 从传统塑胶中分离出来具有挑战性,而且消费者缺乏正确处置的意识,使问题变得更加严重。此外,由于缺乏易于使用的堆肥设施,消费者不愿意选择 PLA 产品,因为他们不确定如何负责任地处理这些产品。这限制了市场的成长潜力,并抑制了 PLA 对环境的正面影响。

生产流程复杂

PLA 的原料主要是玉米和甘蔗,与食品和能源等其他重要产业存在竞争。随着全球人口的成长,对粮食作物和生物燃料的需求增加,可能导致资源竞争。平衡对 PLA 等生物基材料的需求与粮食安全和能源生产是一项重大挑战,需要仔细的资源管理和永续的农业实践。 PLA 生产需要大量资源,包括水、能源和土地。将原料转化为乳酸并最终转化为 PLA 的过程涉及各种能源密集步骤,例如发酵、蒸馏和聚合。 PLA 的生产涉及复杂的化学反应、反应条件的精确控制以及专用设备的使用。开发和维护这些技术需要大量的研发投资。

主要市场趋势

生物塑胶的不断发展

PLA 由植物原料製成,与石油基塑胶相比,由于其可生物降解性和碳足迹减少而受到广泛关注。循环经济的概念,即材料在闭环中使用、再利用和回收,与 PLA 的生物降解性无缝契合。 PLA 在受控条件下堆肥的能力支持了以丰富而不是污染的方式将材料送回环境的概念。随着循环经济倡议受到关注,PLA 有望在创建永续材料生态系统方面发挥关键作用。

细分市场洞察

最终用途行业洞察

2022年,聚乳酸市场以包装为主,预计未来几年将持续扩大。这可以归因于聚乳酸 (PLA) 广泛用于生产罐子、容器和瓶子以及新鲜食品包装。全球消费者对永续和环保包装的偏好迫使製造商在包装中使用 PLA。包装是PLA在食品包装产业的突出应用。 PLA 基底塑胶瓶是一次性的、耐用的,并具有光泽和透明度等特性。此外,台湾、英国、辛巴威、纽西兰和美国各州(包括纽约、夏威夷和加州)等国家对一次性塑胶的严格规定也显着推动了包装中对 PLA 的需求部门。

应用洞察

2022 年,聚乳酸市场将由薄膜和片材领域主导,预计未来几年将继续扩大。 PLA 薄膜可客製化以提供特定的阻隔性能,例如防潮性和透气性,使其适合包装易腐烂的物品。这些薄膜有助于延长产品的保质期、减少食物浪费并增强供应链的整体永续性。向永续包装材料的转变推动了对 PLA 薄膜的需求,因为它们提供了传统石油基塑胶的环保替代品。消费者对环境影响较小的产品的偏好推动了 PLA 薄膜在食品包装、饮料容器和各种消费品中的采用。随着时间的推移,玉米和甘蔗等 PLA 原料的供应链变得更加成熟和有效率。这有助于为 PLA 薄膜生产提供更一致且可靠的原料供应。

区域洞察

亚太地区已成为全球聚乳酸市场的领导者。这可以归因于主要市场参与者扩大创新工作以及对该地区生物塑胶的利用扩大关注。同样,当地政府正在为生产可生物降解的产品提供帮助,以减少对环境的担忧,这是有望推动亚太地区国家目标业务发展的另一个因素。

主要市场参与者

  • 科比恩公司
  • 银河SA
  • 河南金丹乳酸有限公司
  • 荣邦兹劳尔股份公司
  • 武藏野化学研究所
  • 巴斯夫公司
  • 自然工厂
  • 河南金丹乳酸科技
  • 三菱化学控股公司
  • Synbra 技术有限公司

可用的客製化:

全球聚乳酸市场报告根据给定的市场资料,技术科学研究根据公司的具体需求提供客製化服务。该报告可以使用以下自订选项:

公司资讯

  • 其他市场参与者(最多五个)的详细分析和概况分析。

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
    • 主要市场区隔

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 主要产业伙伴
  • 主要协会和二手资料来源
  • 预测方法
  • 数据三角测量与验证
  • 假设和限制

第 3 章:执行摘要

  • 市场概况
  • 主要市场细分概述
  • 主要市场参与者概述
  • 重点地区/国家概况
  • 市场驱动因素、挑战、趋势概述

第 4 章:客户之声

第 5 章:全球聚乳酸市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市占率及预测
    • 依原料分类(玉米、木薯、甘蔗、甜菜、其他)
    • 按应用(硬质热成型件、薄膜和片材、瓶子、其他)
    • 依最终用途产业(包装、消费品、农业、纺织、生物医学、其他)
    • 依等级(热成型、注塑成型、挤出成型、吹塑成型、其他)
    • 按地区
    • 按公司划分 (2022)
  • 市场地图

第 6 章:北美聚乳酸市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市占率及预测
    • 按原料分类
    • 按应用
    • 按最终用途行业
    • 按年级
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第 7 章:欧洲聚乳酸市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市占率及预测
    • 按原料分类
    • 按应用
    • 按最终用途行业
    • 按年级
    • 按国家/地区
  • 欧洲:国家分析
    • 法国
    • 德国
    • 英国
    • 义大利
    • 西班牙

第 8 章:亚太地区聚乳酸市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市占率及预测
    • 按原料分类
    • 按应用
    • 按最终用途行业
    • 按年级
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 韩国
    • 日本
    • 澳洲

第 9 章:南美洲聚乳酸市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市占率及预测
    • 按原料分类
    • 按应用
    • 按最终用途行业
    • 按年级
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第10章:中东和非洲聚乳酸市场展望

  • 市场规模及预测
    • 按价值和数量
  • 市占率及预测
    • 按原料分类
    • 按应用
    • 按最终用途行业
    • 按年级
    • 按国家/地区
  • MEA:国家分析
    • 南非聚乳酸
    • 沙乌地阿拉伯聚乳酸
    • 阿联酋聚乳酸

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

第 13 章:杵分析

第 14 章:波特的五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第15章:竞争格局

  • 商业概览
  • 公司概况
  • 产品与服务
  • 财务(上市公司)
  • 最近的发展
  • SWOT分析
    • Corbion NV
    • Galactic SA
    • Henan Jindan Lactic Acid Co., Ltd.
    • Jungbunzlauer AG
    • Musashino Chemical Laboratory, Ltd.
    • BASF SE
    • NatureWorks
    • Henan Jindan Lactic Acid Technology
    • Mitsubishi Chemical Holdings Corporation
    • Synbra Technology BV

第 16 章:策略建议

简介目录
Product Code: 4333

The Global Polylactic Acid Market was valued at USD 692.34 million in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 11.53% through 2028. The polymer of polylactic acid (PLA) differs from the commonly available thermoplastic polymers. It is predominantly composed of renewable resources such as sugarcane. PLA is a popular material because it is relatively inexpensive and possesses various beneficial mechanical properties compared to other biodegradable polymers. PLA is primarily derived from plant-based sources, including sugarcane, cassava, corn, and potato. Alternative feedstocks such as agricultural by-products, cellulosic materials, and greenhouse gases have also been explored. However, the process is still under development, and agricultural products are expected to remain the primary source for starch blends and PLA in the foreseeable future. The growth of the PLA market is primarily driven by the increasing demand in end-use sectors such as textiles, packaging, and agriculture. Additionally, the lower carbon emissions associated with polylactic acid compared to traditional polymers contribute to global demand. Moreover, the rising demand for flexible packaging products further fuels market growth. The packaging industry is experiencing a surge due to the growing demand for packaged foods, snacks, ready-to-eat (RTE) meals, and other consumer goods. Consequently, the demand for PLA is expected to rise in the forecast period due to the rapid expansion of the packaging industry.

Key Market Drivers

Growing Demand for Polylactic Acid in the Automotive Industry

Market Overview
Forecast Period2024-2028
Market Size 2022USD 692.34 million
Market Size 2028USD 1286.25 million
CAGR 2023-202811.53%
Fastest Growing SegmentPackaging
Largest MarketAsia Pacific

Polylactic Acid, a biodegradable and bio-based polymer derived from renewable resources like corn starch or sugarcane, presents a compelling alternative to conventional petroleum-based plastics in the automotive industry. PLA's relatively low density makes it an ideal material for light-weighting vehicles. As automakers strive to improve fuel efficiency and reduce emissions, the use of PLA in components like interior panels and non-structural parts contributes to achieving these goals. PLA's pliability and similarity with different shading specialists permit makers to make adaptable and aesthetically satisfying parts. This is critical for inside plan components and non-primary parts that add to the general driving experience. PLA is used to create interior components such as door panels, dashboard trims, and center console parts. These components benefit from PLA's lightweight nature, customizable design, and sustainable appeal.

Increasing Demand for Polylactic Acid in the Packaging Industry

As consumers demand greener and more responsible packaging solutions, the industry is being compelled to embrace materials that align with sustainability goals. PLA, derived from renewable resources and offering biodegradability, has emerged as a compelling option that caters to this growing demand for eco-friendly packaging. As consumer awareness about environmental issues escalates, there's a notable shift in purchasing behavior towards products packaged in environmentally responsible materials. Brands that incorporate PLA packaging into their offerings stand to gain a competitive edge by appealing to conscious consumers. PLA's compostability plays a vital role in the circular economy model. As composting infrastructure improves, PLA packaging can be collected, processed, and returned to the earth, completing a sustainable materials cycle. From food containers to wraps and films, PLA is gaining traction in the food industry due to its suitability for direct contact with edible items. It maintains the freshness of perishable goods while offering a greener alternative to traditional plastics. Moreover, brands in the cosmetics industry are transitioning to PLA packaging for products like creams, lotions, and shampoos. PLA's aesthetic appeal and customizable nature align well with the visual and branding requirements of these products.

Growing Demand for Polylactic Acid in the Electronic Industry

Polylactic Acid (PLA) is a biodegradable and bio-based polymer that has emerged as a key player in this dynamic landscape. The growing adoption of PLA in the electronic industry is not only reshaping the sector but also serving as a potent driver of the global PLA market. One of PLA's leading attributes is its lightweight nature, making it an optimal decision for the electronic business. The decreased weight not only adds to the compactness and comfort of gadgets but also assumes a part in diminishing transportation discharges. Besides, PLA's strength and mechanical properties are being tackled to make parts that can endure the afflictions of the day-to-day use of electronic gadgets. PLA's versatility shines in this domain as it can be molded into various forms, providing a custom fit for devices. PLA's thermal properties make it suitable for applications in which components generate heat, such as printed circuit boards (PCBs). The electronics industry leverages PLA's ability to withstand higher temperatures, making it compatible with emerging technologies and trends like 5G networks and the Internet of Things (IoT).

Growth in Technological Advancements

Technological progressions have worked with the advancement of PLA blends and the fuse of different added substances to tailor its properties to explicit applications. By mixing PLA with different polymers or added substances like strands, nanoparticles, or fire retardants, producers can make materials with an assorted scope of properties. These developments have extended PLA's applications to regions as changed as gadgets, auto, and clinical gadgets, exhibiting its flexibility and adaptability. 3D printing, also known as additive manufacturing, has revolutionized manufacturing processes across industries. PLA's biodegradability and ease of processing make it an ideal material for 3D printing applications. The technology allows for intricate and customized designs, enabling rapid prototyping, product personalization, and reducing material waste. Traditional plastic recycling facilities are not equipped to handle PLA, and improper disposal can hinder its biodegradation process. Technological advancements are addressing this challenge through the development of specialized PLA recycling and composting facilities.

Key Market Challenges

Lack of Composting Infrastructure

PLA products tossed into conventional waste streams often end up in landfills or incinerators, where they decompose at a much slower rate than they would in an industrial composting facility. This defeats the purpose of using a biodegradable material, as the intended environmental benefits are not realized. When PLA products enter recycling streams, they can contaminate conventional plastic recycling processes, leading to issues with recycling and exacerbating the plastic pollution problem. Sorting PLA from traditional plastics is challenging, and the lack of awareness among consumers about proper disposal worsens the problem. Moreover, the absence of easily accessible composting facilities discourages consumers from choosing PLA products, as they are uncertain about how to dispose of them responsibly. This limits the market's growth potential and inhibits the positive environmental impact that PLA can have.

Complex Production Process

PLA's feedstock, primarily corn and sugarcane, competes with other essential industries such as food and energy. As global populations rise, the demand for food crops and biofuels increases, potentially leading to competition for resources. Balancing the need for bio-based materials like PLA with food security and energy production is a significant challenge that requires careful resource management and sustainable agricultural practices. PLA production requires significant amounts of resources, including water, energy, and land. The process of converting feedstocks into lactic acid and, eventually, PLA involves various energy-intensive steps such as fermentation, distillation, and polymerization. The production of PLA involves intricate chemical reactions, precise control of reaction conditions, and the use of specialized equipment. Developing and maintaining these technologies requires a substantial investment in research and development.

Key Market Trends

Growing Evolution of Bioplastics

PLA is made from plant-based feedstocks and has garnered significant attention due to its biodegradability and reduced carbon footprint compared to petroleum-based plastics. The concept of a circular economy, where materials are used, reused, and recycled in a closed loop, aligns seamlessly with PLA's biodegradability. PLA's ability to compost under controlled conditions supports the concept of returning materials to the environment in a way that enriches rather than pollutes. As circular economy initiatives gain traction, PLA is poised to play a pivotal role in creating a sustainable materials ecosystem.

Segmental Insights

End-Use Industry Insights

In 2022, the polylactic acid market was dominated by packaging and is predicted to continue expanding over the coming years. This can be attributed to the widespread use of polylactic acid (PLA) for producing jars, containers, and bottles, as well as for fresh food packaging. The global consumer preference for sustainable and environmentally friendly packaging is compelling manufacturers to utilize PLA in packaging. Packaging is a prominent application of PLA in the food packaging industry. PLA-based plastic bottles are disposable, long-lasting, and possess characteristics such as shine and clarity. Additionally, strict regulations on single-use plastics in countries like Taiwan, the United Kingdom, Zimbabwe, New Zealand, and various states in the United States (including New York, Hawaii, and California) are significantly driving the demand for PLA in the packaging sector.

Application Insights

In 2022, the polylactic acid market was dominated by the films & sheets segment and is predicted to continue expanding over the coming years. PLA films can be tailored to provide specific barrier properties, such as moisture resistance and gas permeability, making them suitable for packaging perishable items. These films help extend the shelf life of products, reducing food waste and enhancing the overall sustainability of the supply chain. The shift towards sustainable packaging materials has driven the demand for PLA films, as they offer an eco-friendly alternative to traditional petroleum-based plastics. Consumer preferences for products with reduced environmental impact have propelled the adoption of PLA films in food packaging, beverage containers, and various consumer goods. The supply chain for PLA feedstocks, such as corn and sugarcane, has become more established and efficient over time. This has contributed to a more consistent and reliable supply of raw materials for PLA film production.

Regional Insights

The Asia Pacific region has established itself as the leader in the Global Polylactic Acid Market. This can be attributed to expanding innovative work ventures by key market players and expanding mindfulness with respect to the utilization of bioplastics in the area. Likewise, governments in the locale are offering auxiliaries for the creation of biodegradable items to decrease natural worries, which is one more component expected to push the development of the objective business in the nations of the Asia Pacific district.

Key Market Players

  • Corbion N.V.
  • Galactic S.A.
  • Henan Jindan Lactic Acid Co., Ltd.
  • Jungbunzlauer AG
  • Musashino Chemical Laboratory, Ltd.
  • BASF SE
  • NatureWorks
  • Henan Jindan Lactic Acid Technology
  • Mitsubishi Chemical Holdings Corporation
  • Synbra Technology B.V.

Report Scope:

In this report, the Global Polylactic Acid Market has been segmented into the following categories, in addition to the industry trends, which have also been detailed below:

Polylactic Acid Market, By Raw Material:

  • Corn
  • Cassava
  • Sugarcane
  • Sugar Beet
  • Others

Polylactic Acid Market, By Application:

  • Rigid Thermoforms
  • Films & Sheets
  • Bottles
  • Others

Polylactic Acid Market, By End-Use Industry:

  • Packaging
  • Consumer Goods
  • Agriculture
  • Textile
  • Bio-Medical
  • Others

Polylactic Acid Market, By Grade:

  • Thermoforming
  • Injection Molding
  • Extrusion
  • Blow Molding
  • Others

Polylactic Acid Market, By Region:

  • Asia Pacific
  • North America
  • Europe
  • Middle East & Africa
  • South America

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Polylactic Acid Market.

Available Customizations:

Global Polylactic Acid Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Polylactic Acid Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value & Volume
  • 5.2. Market Share & Forecast
    • 5.2.1. By Raw Material (Corn, Cassava, Sugarcane, Sugar Beet, Others)
    • 5.2.2. By Application (Rigid Thermoforms, Films & Sheets, Bottles, Others)
    • 5.2.3. By End-Use Industry (Packaging, Consumer Goods, Agriculture, Textile, Bio-Medical, Others)
    • 5.2.4. By Grade (Thermoforming, Injection Molding, Extrusion, Blow Molding, Others)
    • 5.2.5. By Region
    • 5.2.6. By Company (2022)
  • 5.3. Market Map

6. North America Polylactic Acid Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value & Volume
  • 6.2. Market Share & Forecast
    • 6.2.1. By Raw Material
    • 6.2.2. By Application
    • 6.2.3. By End-Use Industry
    • 6.2.4. By Grade
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Polylactic Acid Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value & Volume
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Raw Material
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End-Use Industry
        • 6.3.1.2.4. By Grade
    • 6.3.2. Mexico Polylactic Acid Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value & Volume
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Raw Material
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End-Use Industry
        • 6.3.2.2.4. By Grade
    • 6.3.3. Canada Polylactic Acid Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value & Volume
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Raw Material
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End-Use Industry
        • 6.3.3.2.4. By Grade

7. Europe Polylactic Acid Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value & Volume
  • 7.2. Market Share & Forecast
    • 7.2.1. By Raw Material
    • 7.2.2. By Application
    • 7.2.3. By End-Use Industry
    • 7.2.4. By Grade
    • 7.2.5. By Country
  • 7.3 Europe: Country Analysis
    • 7.3.1. France Polylactic Acid Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value & Volume
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Raw Material
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End-Use Industry
        • 7.3.1.2.4. By Grade
    • 7.3.2. Germany Polylactic Acid Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value & Volume
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Raw Material
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End-Use Industry
        • 7.3.2.2.4. By Grade
    • 7.3.3. United Kingdom Polylactic Acid Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value & Volume
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Raw Material
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End-User Industry
        • 7.3.3.2.4. By Grade
    • 7.3.4. Italy Polylactic Acid Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value & Volume
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Raw Material
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By End-Use Industry
        • 7.3.4.2.4. By Grade
    • 7.3.5. Spain Polylactic Acid Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value & Volume
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Raw Material
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By End-Use Industry
        • 7.3.5.2.4. By Grade

8. Asia-Pacific Polylactic Acid Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value & Volume
  • 8.2. Market Share & Forecast
    • 8.2.1. By Raw Material
    • 8.2.2. By Application
    • 8.2.3. By End-Use Industry
    • 8.2.4. By Grade
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Polylactic Acid Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value & Volume
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Raw Material
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End-Use Industry
        • 8.3.1.2.4. By Grade
    • 8.3.2. India Polylactic Acid Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value & Volume
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Raw Material
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End-Use Industry
        • 8.3.2.2.4. By Grade
    • 8.3.3. South Korea Polylactic Acid Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value & Volume
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Raw Material
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End-Use Industry
        • 8.3.3.2.4. By Grade
    • 8.3.4. Japan Polylactic Acid Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value & Volume
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Raw Material
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By End-Use Industry
        • 8.3.4.2.4. By Grade
    • 8.3.5. Australia Polylactic Acid Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value & Volume
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Raw Material
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By End-Use Industry
        • 8.3.5.2.4. By Grade

9. South America Polylactic Acid Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value & Volume
  • 9.2. Market Share & Forecast
    • 9.2.1. By Raw Material
    • 9.2.2. By Application
    • 9.2.3. By End-Use Industry
    • 9.2.4. By Grade
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Polylactic Acid Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value & Volume
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Raw Material
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End-Use Industry
        • 9.3.1.2.4. By Grade
    • 9.3.2. Argentina Polylactic Acid Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value & Volume
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Raw Material
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End-Use Industry
        • 9.3.2.2.4. By Grade
    • 9.3.3. Colombia Polylactic Acid Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value & Volume
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Raw Material
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End-Use Industry
        • 9.3.3.2.4. By Grade

10. Middle East and Africa Polylactic Acid Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value & Volume
  • 10.2. Market Share & Forecast
    • 10.2.1. By Raw Material
    • 10.2.2. By Application
    • 10.2.3. By End-Use Industry
    • 10.2.4. By Grade
    • 10.2.5. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Polylactic Acid Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value & Volume
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Raw Material
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By End-Use Industry
        • 10.3.1.2.4. By Grade
    • 10.3.2. Saudi Arabia Polylactic Acid Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value & Volume
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Raw Material
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By End-Use Industry
        • 10.3.2.2.4. By Grade
    • 10.3.3. UAE Polylactic Acid Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value & Volume
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Raw Material
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By End-Use Industry
        • 10.3.3.2.4. By Grade

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

13. PESTLE Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. Competitive Landscape

  • 15.1. Business Overview
  • 15.2. Company Snapshot
  • 15.3. Products & Services
  • 15.4. Financials (In case of listed companies)
  • 15.5. Recent Developments
  • 15.6. SWOT Analysis
    • 15.6.1. Corbion N.V.
    • 15.6.2. Galactic S.A.
    • 15.6.3. Henan Jindan Lactic Acid Co., Ltd.
    • 15.6.4. Jungbunzlauer AG
    • 15.6.5. Musashino Chemical Laboratory, Ltd.
    • 15.6.6. BASF SE
    • 15.6.7. NatureWorks
    • 15.6.8. Henan Jindan Lactic Acid Technology
    • 15.6.9. Mitsubishi Chemical Holdings Corporation
    • 15.6.10. Synbra Technology BV

16. Strategic Recommendations