封面
市场调查报告书
商品编码
1370902

癌症疫苗市场 - 2018-2028 年全球产业规模、份额、趋势、机会和预测,按适应症类型、疫苗类型、技术类型、地区、竞争细分

Cancer Vaccine Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented by Indication Type, By Vaccine Type, By Technology Type, By Region, Competition

出版日期: | 出版商: TechSci Research | 英文 170 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2022年全球癌症疫苗市场估值为75.5亿美元,预计在预测期内将实现强劲增长,预计到2028年复合年增长率(CAGR)为8.87%,预计到2028年将达到124.6亿美元。癌症疫苗是一种免疫疗法,旨在激活免疫系统对癌细胞的识别和攻击。与预防传染病的传统疫苗不同,癌症疫苗旨在透过利用人体自身的免疫反应来治疗或预防癌症。癌症疫苗的基本概念涉及向免疫系统提供癌细胞表面存在的特定分子或抗原。这些抗原通常是癌细胞独有的,或与正常细胞相比,它们的含量更丰富。透过将这些抗原引入免疫系统,目的是刺激免疫细胞识别和消除癌细胞,同时保留健康细胞。

主要市场驱动因素

市场概况
预测期 2024-2028
2022 年市场规模 75.5亿美元
2028 年市场规模 124.6亿美元
2023-2028 年复合年增长率 8.87%
成长最快的细分市场 子宫颈癌
最大的市场 北美洲

对免疫检查点抑制剂的需求不断增长

免疫检查点抑制剂是一类癌症免疫治疗药物,改变了各种癌症类型的治疗模式。这些药物透过针对免疫细胞和癌细胞上的特定分子来发挥作用,以增强免疫系统检测和攻击癌细胞的能力。免疫检查点抑制剂的发现和进步标誌着肿瘤学的实质进展。免疫检查点是在免疫细胞和癌细胞表面发现的调节免疫反应的分子。它们在防止过度免疫活动和维持自我耐受性以防止自体免疫反应方面发挥着至关重要的作用。癌细胞可以利用这些免疫检查点来逃避免疫检测。透过与免疫检查点分子相互作用,癌细胞基本上可以使免疫反应失活,否则免疫反应会针对并消除它们。免疫检查点抑制剂旨在阻碍免疫检查点分子与其相应受体之间的相互作用。这「释放」了免疫系统,使其能够对癌细胞发动更强有力和更有效的攻击。免疫检查点抑制剂在治疗多种癌症方面取得了显着的成功,如黑色素瘤、肺癌、肾臟癌和膀胱癌。一些先前对常规治疗无反应的患者使用检查点抑制剂取得了持久的反应。虽然这些抑制剂非常有效,但由于免疫活性增强,它们也可能诱发免疫相关的不良事件。这些事件可能涉及皮肤、肺、肠道和内分泌腺等器官的发炎。确定哪些患者会对免疫检查点抑制剂产生反应仍然是一项挑战。肿瘤细胞上的 PD-L1 表达等生物标记可以提供一些指导,但研究仍在寻找更准确的反应预测因子。免疫检查点抑制剂经常与其他癌症疗法结合使用,例如化疗、放疗、标靶治疗和其他免疫疗法。这种组合旨在透过解决癌症生长和免疫抑制的各个方面来提高治疗效果。这一趋势将加速全球癌症疫苗市场的需求。

对预防疫苗的需求不断增加

癌症预防疫苗是一种旨在透过针对可能导致这些癌症发生的病毒或其他因素来预防特定癌症的免疫接种。这些疫苗的作用是刺激免疫系统识别与癌症形成相关的特定感染因子或抗原并对其做出反应。例如,人类乳突病毒 (HPV) 疫苗针对的是与癌症发展密切相关的某些病毒株,包括子宫颈癌、肛门癌、口腔癌和生殖器癌。在接触 HPV 之前接种 HPV 疫苗可以大大降低 HPV 相关癌症的风险。慢性B型肝炎病毒(HBV)感染是肝癌的重要危险因子。乙型肝炎疫苗有助于预防B型肝炎病毒感染,进而减少因慢性感染而罹患肝癌的机会。正在进行的研究旨在开发预防其他类型癌症的疫苗。例如,正在探索针对 Epstein-Barr 病毒 (EBV) 的疫苗作为特定淋巴瘤和与 EBV 相关的其他癌症的潜在预防措施。这一趋势将加快全球癌症疫苗市场的需求。

癌症疫苗技术的进步

癌症疫苗技术的进步极大地影响了癌症疫苗的开发、设计和功效。新抗原是由于突变而出现在癌细胞表面的独特蛋白质,代表着一项突破。先进的基因组和计算技术能够识别新抗原,促进这些独特标记物的个人化癌症疫苗的设计。以 COVID-19 疫苗为代表的 mRNA 疫苗技术的发展也影响了癌症疫苗的研究。 mRNA 疫苗可以被设计为编码特定的肿瘤抗原,使免疫系统能够识别和靶向癌细胞。这种方法为疫苗生产提供了一个快速且适应性强的平台。可以操纵腺病毒等病毒载体携带编码肿瘤抗原的遗传物质,从而促进针对錶达该抗原的癌细胞的免疫反应。肽疫苗由与特定肿瘤抗原相对应的短氨基酸序列组成。胜肽合成和递送技术的进步增强了这些疫苗的有效性。树突状细胞在启动免疫反应中发挥关键作用。树突状细胞疫苗涉及分离患者的树突状细胞,给它们装载肿瘤抗原,然后将它们重新引入患者体内。这使得免疫系统能够瞄准癌细胞。奈米颗粒可以作为疫苗成分的递送机制,增强稳定性、标靶性和免疫细胞摄取。奈米技术还具有增强免疫系统抗原呈现的潜力。一些癌症疫苗旨在重塑肿瘤微环境,使其更有利于有效的免疫反应。这可能需要标靶免疫抑制元件或刺激免疫细胞募集到肿瘤部位。佐剂是一种添加到疫苗中以增强免疫反应的物质,它已经发展成为更有效的配方,可以引发更强、更持久的免疫反应。这一趋势将有助于全球癌症疫苗市场的发展。

主要市场挑战

癌症免疫学的复杂性

癌症免疫学涉及癌细胞与免疫系统之间的复杂相互作用。为了治疗目的而掌握和操纵这种相互作用提出了巨大的挑战。癌症具有极大的异质性,这意味着它们由具有不同遗传和抗原特征的不同细胞群组成。确定疫苗所针对的正确抗原变得复杂,因为通用方法可能并不有效。癌细胞可以製定策略来逃避免疫检测和攻击。它们可以下调抗原、表达抑制分子或创建免疫抑制微环境。设计超越这些策略的疫苗是复杂的。选择最合适的标靶抗原具有挑战性,因为并非所有肿瘤抗原都同样擅长诱导强大的免疫反应。免疫耐受机制旨在防止对健康细胞的攻击。在不引发自体免疫反应的情况下克服这些机制是疫苗设计中的微妙平衡行为。确保疫苗本身俱有免疫原性并能够刺激有效的免疫反应至关重要。有些肿瘤可能会对免疫系统产生抑製作用,因此很难激发免疫系统的反应。识别一致的生物标记来预测对癌症疫苗的良好反应仍然是一个挑战。有反应者和无反应者可能表现出不同的免疫特征,使可靠的反应预测因子的识别变得复杂。免疫检查点抑制剂通常与其他癌症疗法结合使用,包括化疗、放疗、标靶治疗和其他免疫疗法。这些组合旨在透过解决癌症生长和免疫抑制的各个方面来提高治疗效果。这将加快全球癌症疫苗市场的需求。

确定适当的目标

癌症疫苗的功效取决于选择正确的抗原来诱导针对肿瘤的有效免疫反应,同时最大限度地减少脱靶效应。肿瘤特异性抗原是癌细胞独有的,正常细胞中不存在。鑑于患者和肿瘤类型之间存在很大差异,识别这些抗原可能具有挑战性。某些肿瘤抗原在癌细胞和正常细胞之间共享,儘管水平不同。免疫系统可能不会将这些抗原视为外来抗原,导致免疫反应微弱。肿瘤表现出遗传多样性,导致一系列可能适合靶向的抗原。选择在多种癌细胞中普遍存在的最合适的抗原是一个挑战。肿瘤通常由具有不同抗原谱的不同细胞群组成。识别这些人群中普遍存在的抗原非常复杂。由于肿瘤的进化,一些肿瘤抗原可能会随着时间的推移而发生变化,因此需要持续监测和调整疫苗标靶。选择能够引发针对癌细胞的强大免疫反应而不诱导针对正常组织的自身免疫反应的抗原至关重要。

主要市场趋势

合作与伙伴关係

癌症研究、疫苗开发和临床试验的复杂性经常需要多个利益相关者之间的合作,以加快进展、交流专业知识和汇集资源。设计有效的癌症疫苗需要跨越不同领域的专业知识,包括免疫学、肿瘤学、病毒学、遗传学等。合作促进了来自不同学科的专家的汇聚,以应对复杂的挑战。合作允许资源共享,包括研究设施、实验室、设备和试剂。这可以削减成本并加速研发工作。合作伙伴关係提供了个体实体可能缺乏的尖端技术和平台的机会。这可以简化疫苗开发并增强研究能力。对癌症生物学和免疫学的深刻理解需要获得大量资料。合作可以实现资料共享、分析和集成,从而促进对疫苗目标和机制的更深入了解。进行癌症疫苗的临床试验通常需要多个机构和医院之间的合作。合作伙伴关係可以简化患者招募、试验后勤和资料收集。合作可以吸引来自不同来源的资金,包括政府机构、私人投资者、慈善实体和创投公司。这种财政支持可以推动研究和发展计划。与製药公司的合作可以利用现有的分销网络、销售团队和行销资源,加速将癌症疫苗推向市场。

细分市场洞察

疫苗类型见解

2022年,预防性疫苗领域在癌症疫苗市场占据主导地位,占整体收入份额的53.88%。预计这一趋势在未来几年将继续扩大。预防性疫苗对于降低病毒感染引起的恶性肿瘤风险至关重要。例如,针对人类乳突病毒 (HPV) 和乙型肝炎病毒的疫苗与病毒相关癌症(如子宫颈癌和肝癌)的减少有关。这种影响的一个例子是 1 月报告的 20 至 24 岁女性子宫颈癌病例下降了 65%。

指示类型见解

2022年,子宫颈癌疫苗在癌症疫苗市场中占约29.79%的重要份额。预计这种主导地位将在未来几年持续存在。该细分市场的成长归因于子宫颈癌发生率的不断上升。根据世界卫生组织 (WHO) 的数据,子宫颈癌是女性第四大常见癌症,2020 年诊断出约 604,907 例。此外,人们对预防和根除子宫颈癌的认识不断提高,进一步有助于市场扩张。

技术类型见解

2022年,重组疫苗在癌症疫苗市场中占约56.48%的份额。该细分市场预计将继续其成长轨迹。主要产业参与者已经利用重组技术开发了疫苗。此外,病毒载体和 DNA 癌症疫苗领域预计在预测期内复合年增长率最快。这种增长可归因于病毒载体在疫苗开发中的广泛采用。

区域洞察

北美地区在全球癌症疫苗市场中确立了领先地位,2022年约占35.29%的份额。这一市场主导地位归因于该地区癌症负担的增加、医疗基础设施的扩大以及研发活动的蓬勃发展。根据美国疾病管制与预防中心 (CDC) 的数据,2020 年美国新增癌症病例 1,603,844 例,导致约 602,347 例癌症相关死亡。

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
    • 主要市场区隔

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 主要产业伙伴
  • 主要协会和二手资料来源
  • 预测方法
  • 数据三角测量与验证
  • 假设和限制

第 3 章:执行摘要

  • 市场概况
  • 主要市场细分概述
  • 主要市场参与者概述
  • 重点地区/国家概况
  • 市场驱动因素、挑战、趋势概述

第 4 章:客户之声

第 5 章:临床试验分析

  • 正在进行的临床试验
  • 已完成的临床试验
  • 终止的临床试验
  • 按开发阶段分類的管道细目
  • 管道细分(按状态)
  • 按研究类型分類的管道细目
  • 按地区分類的管道明细
  • 临床试验热图

第 6 章:全球癌症疫苗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依适应症类型(前列腺癌、黑色素瘤、膀胱癌、子宫颈癌)
    • 依疫苗类型(预防性癌症疫苗、治疗性癌症疫苗)
    • 依技术类型(重组癌症疫苗、全细胞癌症疫苗、病毒载体和 DNA 癌症疫苗)
    • 按公司划分 (2022)
    • 按地区
  • 市场地图

第 7 章:北美癌症疫苗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按指示类型
    • 按疫苗类型
    • 依技术类型
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第 8 章:欧洲癌症疫苗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按指示类型
    • 按疫苗类型
    • 依技术类型
    • 按国家/地区
  • 欧洲:国家分析
    • 法国
    • 德国
    • 英国
    • 义大利
    • 西班牙

第 9 章:亚太地区癌症疫苗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按指示类型
    • 按疫苗类型
    • 依技术类型
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 韩国
    • 日本
    • 澳洲

第 10 章:南美洲癌症疫苗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按指示类型
    • 按疫苗类型
    • 依技术类型
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第 11 章:中东和非洲癌症疫苗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按指示类型
    • 按疫苗类型
    • 依技术类型
    • 按国家/地区
  • MEA:国家分析
    • 南非癌症疫苗
    • 沙乌地阿拉伯癌症疫苗
    • 阿联酋癌症疫苗

第 12 章:市场动态

  • 司机
  • 挑战

第 13 章:市场趋势与发展

  • 最近的发展
  • 产品发布
  • 併购

第 14 章:大环境分析

第 15 章:波特的五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第16章:竞争格局

  • 商业概览
  • 公司概况
  • 产品与服务
  • 财务(上市公司)
  • 最近的发展
  • SWOT分析
    • Merck & Co., Inc.
    • GSK plc
    • Dendreon Pharmaceuticals LLC.
    • Dynavax Technologies.
    • Ferring BV
    • Amgen, Inc.
    • Moderna, Inc.
    • Sanofi SA
    • AstraZeneca Pharmaceuticals LP
    • Bristol-Myers Squibb Company

第 17 章:策略建议

简介目录
Product Code: 15887

The Global Cancer Vaccines Market was valued at USD 7.55 Billion in 2022 and is expected to experience robust growth during the forecast period, projecting a Compound Annual Growth Rate (CAGR) of 8.87% through 2028 and expected to reach USD 12.46 Billion in 2028. A cancer vaccine is a form of immunotherapy designed to activate the immune system's recognition and attack against cancer cells. Unlike conventional vaccines that prevent infectious diseases, cancer vaccines are aimed at treating or preventing cancer by leveraging the body's own immune response. The underlying concept of cancer vaccines involves presenting the immune system with specific molecules or antigens present on the surface of cancer cells. These antigens are often unique to cancer cells or are more abundant on them compared to normal cells. By introducing these antigens to the immune system, the objective is to stimulate immune cells to identify and eliminate cancer cells while preserving healthy cells.

The success of immunotherapies, including immune checkpoint inhibitors and CAR-T cell therapies, has generated interest and confidence in the potential of cancer vaccines. These breakthroughs have emphasized the immune system's role in targeting cancer cells, driving increased research and investment in cancer vaccine development. Progress in genomics, proteomics, and bioinformatics has provided a deeper understanding of tumor biology and facilitated the identification of potential vaccine targets. These technological advances have expedited the discovery and creation of cancer vaccines. The notion of combining different treatment modalities, such as vaccines with immune checkpoint inhibitors or chemotherapy, is gaining traction. Combining therapies has the potential to enhance treatment effectiveness and overcome resistance mechanisms. Various global health organizations and initiatives have underscored the significance of cancer prevention and treatment. These initiatives contribute to heightened awareness and funding for cancer vaccine research and development.

Key Market Drivers

Market Overview
Forecast Period2024-2028
Market Size 2022USD 7.55 Billion
Market Size 2028USD 12.46 Billion
CAGR 2023-20288.87%
Fastest Growing SegmentCervical Cancer
Largest MarketNorth America

Growing Demand for Immune Checkpoint Inhibitors

Immune checkpoint inhibitors, a category of cancer immunotherapy drugs, have transformed the treatment landscape for various cancer types. These drugs work by targeting specific molecules on immune and cancer cells to enhance the immune system's ability to detect and attack cancer cells. The discovery and advancement of immune checkpoint inhibitors mark a substantial progress in oncology. Immune checkpoints are molecules found on the surface of immune and cancer cells that regulate the immune response. They play a crucial role in preventing excessive immune activity and maintaining self-tolerance to prevent autoimmune reactions. Cancer cells can exploit these immune checkpoints to evade immune detection. By interacting with immune checkpoint molecules, cancer cells can essentially deactivate immune responses that would otherwise target and eliminate them. Immune checkpoint inhibitors are designed to hinder interactions between immune checkpoint molecules and their corresponding receptors. This "unleashes" the immune system, enabling it to mount a more potent and effective assault against cancer cells. Immune checkpoint inhibitors have demonstrated remarkable success in treating various cancers, such as melanoma, lung cancer, kidney cancer, and bladder cancer. Some patients previously unresponsive to conventional treatments have achieved enduring responses with checkpoint inhibitors. While these inhibitors can be highly efficacious, they may also induce immune-related adverse events due to heightened immune activity. These events can involve inflammation of organs like the skin, lungs, intestines, and endocrine glands. Identifying which patients will respond to immune checkpoint inhibitors remains a challenge. Biomarkers like PD-L1 expression on tumor cells can offer some guidance, but research persists in identifying more accurate response predictors. Immune checkpoint inhibitors are frequently used in conjunction with other cancer therapies, such as chemotherapy, radiation, targeted therapies, and other immunotherapies. Such combinations aim to enhance treatment outcomes by addressing diverse aspects of cancer growth and immune suppression. This trend will accelerate the demand for the Global Cancer Vaccines Market.

Increasing Demand for Preventive Vaccines

Cancer preventive vaccines are immunizations intended to safeguard against specific cancers by targeting the viruses or other factors that can lead to the development of those cancers. These vaccines function by stimulating the immune system to identify and react to particular infectious agents or antigens linked with cancer formation. Human Papillomavirus (HPV) Vaccine, for instance, targets certain virus strains strongly associated with cancer development, including cervical, anal, oral, and genital cancers. Administering the HPV vaccine to individuals before HPV exposure substantially reduces the risk of developing HPV-related cancers. Chronic infection with the hepatitis B virus (HBV) is a significant risk factor for liver cancer. The hepatitis B vaccine helps prevent HBV infection, thereby reducing the chances of developing liver cancer due to chronic infection. Ongoing research aims to develop vaccines that prevent other types of cancers. For instance, vaccines targeting the Epstein-Barr virus (EBV) are being explored as potential preventatives for specific lymphomas and other cancers linked to EBV. This trend will expedite the demand for the Global Cancer Vaccines Market.

Advancements in Cancer Vaccine Technology

Progress in cancer vaccine technology has significantly influenced the development, design, and efficacy of cancer vaccines. Neoantigens, which are unique proteins on the surface of cancer cells due to mutations, represent a breakthrough. Advanced genomic and computational technologies enable the identification of neoantigens, facilitating the design of personalized cancer vaccines targeting these distinct markers. The development of mRNA vaccine technology, as showcased by COVID-19 vaccines, has also impacted cancer vaccine research. mRNA vaccines can be engineered to encode specific tumor antigens, empowering the immune system to recognize and target cancer cells. This approach provides a swift and adaptable platform for vaccine creation. Viral vectors like adenoviruses can be manipulated to carry genetic material coding for tumor antigens, prompting an immune response against cancer cells expressing the antigen. Peptide vaccines consist of short amino acid sequences corresponding to specific tumor antigens. Advances in peptide synthesis and delivery techniques have enhanced the effectiveness of these vaccines. Dendritic cells play a pivotal role in initiating immune responses. Dendritic cell vaccines involve isolating a patient's dendritic cells, loading them with tumor antigens, and then reintroducing them to the patient. This primes the immune system to target cancer cells. Nanoparticles can serve as delivery mechanisms for vaccine components, enhancing stability, targeting, and immune cell uptake. Nanotechnology also offers the potential to enhance antigen presentation to the immune system. Some cancer vaccines are designed to reshape the tumor microenvironment to make it more conducive to an efficient immune response. This can entail targeting immunosuppressive elements or stimulating immune cell recruitment to the tumor site. Adjuvants, substances added to vaccines to boost immune responses, have evolved to create more effective formulations that trigger stronger and longer-lasting immune reactions. This trend will contribute to the development of the Global Cancer Vaccines Market.

Key Market Challenges

Complexity of Cancer Immunology

Cancer immunology entails the intricate interplay between cancer cells and the immune system. Grasping and manipulating this interaction for therapeutic purposes presents a substantial challenge. Cancers are profoundly heterogeneous, meaning they comprise diverse cell populations with distinct genetic and antigenic characteristics. Identifying the right antigens to target with a vaccine becomes intricate, as a universal approach may not be efficacious. Cancer cells can develop strategies to elude immune detection and attack. They can downregulate antigens, express inhibitory molecules, or create an immune-suppressing microenvironment. Designing vaccines that surmount these strategies is intricate. Selecting the most suitable antigens for targeting is challenging, as not all tumor antigens are equally adept at inducing a robust immune response. Immune tolerance mechanisms are designed to prevent attacks on healthy cells. Overcoming these mechanisms without triggering autoimmune reactions is a delicate balancing act in vaccine design. Ensuring that the vaccine itself is immunogenic and can stimulate a potent immune response is pivotal. Some tumors might exert a suppressive impact on the immune system, making it challenging to provoke a response. Identifying consistent biomarkers that predict favorable responses to a cancer vaccine remains a challenge. Responders and non-responders may exhibit distinct immune profiles, complicating the identification of reliable predictors of response. Immune checkpoint inhibitors are often combined with other cancer therapies, including chemotherapy, radiation, targeted therapies, and additional immunotherapies. These combinations aim to enhance treatment outcomes by addressing various aspects of cancer growth and immune suppression. This will expedite the demand for the Global Cancer Vaccines Market.

Identification of Appropriate Targets

The efficacy of a cancer vaccine hinges on selecting the right antigens to induce an effective immune response against the tumor while minimizing off-target effects. Tumor-specific antigens are exclusive to cancer cells and absent in normal cells. Identifying these antigens can be challenging, given the considerable variation among patients and tumor types. Certain tumor antigens are shared between cancer cells and normal cells, albeit at different levels. The immune system might not perceive these antigens as foreign, resulting in a feeble immune response. Tumors exhibit genetic diversity, leading to an array of antigens potentially eligible for targeting. Selecting the most suitable antigens prevalent across multiple cancer cells presents a challenge. Tumors often consist of diverse cell populations featuring varying antigen profiles. Identifying antigens universally present in these populations is complex. Some tumor antigens may change over time due to tumor evolution, necessitating ongoing monitoring and adjustment of vaccine targets. Selecting antigens that trigger a robust immune response against cancer cells without inducing autoimmune reactions against normal tissues is pivotal.

Key Market Trends

Collaborations and Partnerships

The intricate nature of cancer research, vaccine development, and clinical trials frequently calls for collaboration among multiple stakeholders to expedite progress, exchange expertise, and pool resources. Devising effective cancer vaccines demands expertise spanning diverse fields, including immunology, oncology, virology, genetics, and more. Collaborations facilitate the convergence of experts from various disciplines to tackle intricate challenges. Collaborations permit resource sharing, encompassing research facilities, laboratories, equipment, and reagents. This can curtail costs and accelerate research and development endeavors. Partnerships provide access to cutting-edge technologies and platforms that individual entities may lack. This can streamline vaccine development and enhance research capabilities. Profound comprehension of cancer biology and immunology requires access to substantial data. Collaborations enable data sharing, analysis, and integration, fostering deeper insights into vaccine targets and mechanisms. Executing clinical trials for cancer vaccines often necessitates cooperation among multiple institutions and hospitals. Partnerships can simplify patient recruitment, trial logistics, and data collection. Collaborations can attract funding from diverse sources, including governmental bodies, private investors, philanthropic entities, and venture capital firms. This financial support can drive research and development initiatives. Partnerships with pharmaceutical corporations can expedite the introduction of cancer vaccines to market, capitalizing on established distribution networks, sales teams, and marketing resources.

Segmental Insights

Vaccine Type Insights

In 2022, the preventive vaccine segment dominated the Cancer Vaccines market, accounting for an overall revenue share of 53.88%. This trend is anticipated to continue expanding in the upcoming years. Preventive vaccines are pivotal in reducing the risk of malignancies caused by viral infections. Vaccines targeting Human Papillomavirus (HPV) and Hepatitis B virus, for instance, have been linked to diminished instances of virus-associated cancers like cervical and liver cancer. An instance of this impact is the 65% decline in cervical cancer cases among women aged 20 to 24 reported in January.

Indication Type Insights

In 2022, the cervical cancer segment held a significant share of around 29.79% in the Cancer Vaccines market. This dominance is expected to persist over the upcoming years. The growth of this segment is attributed to the escalating incidence of cervical cancer. According to the World Health Organization (WHO), cervical cancer ranks as the 4th most common cancer among women, with approximately 604,907 cases diagnosed in 2020. Moreover, increasing awareness of cervical cancer prevention and eradication further contributes to market expansion.

Technology Type Insights

In 2022, the recombinant vaccine segment commanded a share of about 56.48% in the Cancer Vaccines market. This segment is projected to continue its growth trajectory. Major industry players have developed vaccines using recombinant technology. Additionally, the viral vector and DNA cancer vaccines segment is expected to register the fastest CAGR over the forecast period. This growth can be attributed to the widespread adoption of viral vectors in vaccine development.

Regional Insights

The North America region has established its leadership in the Global Cancer Vaccines Market, accounting for a share of approximately 35.29% in 2022. This market dominance is attributed to the increasing cancer burden, expanding healthcare infrastructure, and burgeoning research and development activities in the region. According to the Centers for Disease Control and Prevention (CDC), the United States witnessed 1,603,844 new cancer cases in 2020, resulting in around 602,347 cancer-related deaths.

Key Market Players

  • Merck & Co., Inc.
  • GSK plc
  • Dendreon Pharmaceuticals LLC.
  • Dynavax Technologies.
  • Ferring B.V.
  • Amgen, Inc.
  • Moderna, Inc.
  • Sanofi SA
  • AstraZeneca Pharmaceuticals LP
  • Bristol-Myers Squibb Company

Report Scope:

In this report, the Global Cancer Vaccine Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Cancer Vaccine Market, By Indication Type:

  • Prostate Cancer
  • Melanoma
  • Bladder Cancer
  • Cervical Cancer

Cancer Vaccine Market, By Vaccine Type:

  • Preventive Cancer Vaccines
  • Therapeutic Cancer Vaccines

Cancer Vaccine Market, By Technology Type:

  • Recombinant Cancer Vaccines
  • Whole-Cell Cancer Vaccines
  • Viral Vector and DNA Cancer Vaccines

Global Cancer Vaccine Market, By region:

  • North America
  • United States
  • Canada
  • Mexico
  • Asia-Pacific
  • China
  • India
  • South Korea
  • Australia
  • Japan
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Italy
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Cancer Vaccine Market.

Available Customizations:

  • Global Cancer Vaccine Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Clinical Trials Analysis

  • 5.1. Ongoing Clinical Trials
  • 5.2. Completed Clinical Trials
  • 5.3. Terminated Clinical Trials
  • 5.4. Breakdown of Pipeline, By Development Phase
  • 5.5. Breakdown of Pipeline, By Status
  • 5.6. Breakdown of Pipeline, By Study Type
  • 5.7. Breakdown of Pipeline, By Region
  • 5.8. Clinical Trials Heat Map

6. Global Cancer Vaccine Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Indication Type (Prostate Cancer, Melanoma, Bladder Cancer, Cervical Cancer
    • 6.2.2. By Vaccine Type (Preventive Cancer Vaccines, Therapeutic Cancer Vaccines)
    • 6.2.3. By Technology Type (Recombinant Cancer Vaccines, Whole-Cell Cancer Vaccines, Viral Vector and DNA Cancer Vaccines)
    • 6.2.4. By Company (2022)
    • 6.2.5. By Region
  • 6.3. Market Map

7. North America Cancer Vaccine Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Indication Type
    • 7.2.2. By Vaccine Type
    • 7.2.3. By Technology Type
    • 7.2.4. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Cancer Vaccine Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Indication Type
        • 7.3.1.2.2. By Vaccine Type
        • 7.3.1.2.3. By Technology Type
    • 7.3.2. Mexico Cancer Vaccine Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Indication Type
        • 7.3.2.2.2. By Vaccine Type
        • 7.3.2.2.3. By Technology Type
    • 7.3.3. Canada Cancer Vaccine Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Indication Type
        • 7.3.3.2.2. By Vaccine Type
        • 7.3.3.2.3. By Technology Type

8. Europe Cancer Vaccine Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Indication Type
    • 8.2.2. By Vaccine Type
    • 8.2.3. By Technology Type
    • 8.2.4. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. France Cancer Vaccine Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Indication Type
        • 8.3.1.2.2. By Vaccine Type
        • 8.3.1.2.3. By Technology Type
    • 8.3.2. Germany Cancer Vaccine Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Indication Type
        • 8.3.2.2.2. By Vaccine Type
        • 8.3.2.2.3. By Technology Type
    • 8.3.3. United Kingdom Cancer Vaccine Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Indication Type
        • 8.3.3.2.2. By Vaccine Type
        • 8.3.3.2.3. By Technology Type
    • 8.3.4. Italy Cancer Vaccine Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Indication Type
        • 8.3.4.2.2. By Vaccine Type
        • 8.3.4.2.3. By Technology Type
    • 8.3.5. Spain Cancer Vaccine Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Indication Type
        • 8.3.5.2.2. By Vaccine Type
        • 8.3.5.2.3. By Technology Type

9. Asia-Pacific Cancer Vaccine Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Indication Type
    • 9.2.2. By Vaccine Type
    • 9.2.3. By Technology Type
    • 9.2.4. By Country
  • 9.3. Asia-Pacific: Country Analysis
    • 9.3.1. China Cancer Vaccine Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Indication Type
        • 9.3.1.2.2. By Vaccine Type
        • 9.3.1.2.3. By Technology Type
    • 9.3.2. India Cancer Vaccine Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Indication Type
        • 9.3.2.2.2. By Vaccine Type
        • 9.3.2.2.3. By Technology Type
    • 9.3.3. South Korea Cancer Vaccine Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Indication Type
        • 9.3.3.2.2. By Vaccine Type
        • 9.3.3.2.3. By Technology Type
    • 9.3.4. Japan Cancer Vaccine Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Indication Type
        • 9.3.4.2.2. By Vaccine Type
        • 9.3.4.2.3. By Technology Type
    • 9.3.5. Australia Cancer Vaccine Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Indication Type
        • 9.3.5.2.2. By Vaccine Type
        • 9.3.5.2.3. By Technology Type

10. South America Cancer Vaccine Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Indication Type
    • 10.2.2. By Vaccine Type
    • 10.2.3. By Technology Type
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Cancer Vaccine Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Indication Type
        • 10.3.1.2.2. By Vaccine Type
        • 10.3.1.2.3. By Technology Type
    • 10.3.2. Argentina Cancer Vaccine Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Indication Type
        • 10.3.2.2.2. By Vaccine Type
        • 10.3.2.2.3. By Technology Type
    • 10.3.3. Colombia Cancer Vaccine Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Indication Type
        • 10.3.3.2.2. By Vaccine Type
        • 10.3.3.2.3. By Technology Type

11. Middle East and Africa Cancer Vaccine Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Indication Type
    • 11.2.2. By Vaccine Type
    • 11.2.3. By Technology Type
    • 11.2.4. By Country
  • 11.3. MEA: Country Analysis
    • 11.3.1. South Africa Cancer Vaccine Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Indication Type
        • 11.3.1.2.2. By Vaccine Type
        • 11.3.1.2.3. By Technology Type
    • 11.3.2. Saudi Arabia Cancer Vaccine Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Indication Type
        • 11.3.2.2.2. By Vaccine Type
        • 11.3.2.2.3. By Technology Type
    • 11.3.3. UAE Cancer Vaccine Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Indication Type
        • 11.3.3.2.2. By Vaccine Type
        • 11.3.3.2.3. By Technology Type

12. Market Dynamics

  • 12.1. Drivers
  • 12.2. Challenges

13. Market Trends & Developments

  • 13.1. Recent Developments
  • 13.2. Product Launches
  • 13.3. Mergers & Acquisitions

14. PESTLE Analysis

15. Porter's Five Forces Analysis

  • 15.1. Competition in the Industry
  • 15.2. Potential of New Entrants
  • 15.3. Power of Suppliers
  • 15.4. Power of Customers
  • 15.5. Threat of Substitute Product

16. Competitive Landscape

  • 16.1. Business Overview
  • 16.2. Company Snapshot
  • 16.3. Products & Services
  • 16.4. Financials (In case of listed companies)
  • 16.5. Recent Developments
  • 16.6. SWOT Analysis
    • 16.6.1. Merck & Co., Inc.
    • 16.6.2. GSK plc
    • 16.6.3. Dendreon Pharmaceuticals LLC.
    • 16.6.4. Dynavax Technologies.
    • 16.6.5. Ferring B.V.
    • 16.6.6. Amgen, Inc.
    • 16.6.7. Moderna, Inc.
    • 16.6.8. Sanofi SA
    • 16.6.9. AstraZeneca Pharmaceuticals LP
    • 16.6.10. Bristol-Myers Squibb Company

17. Strategic Recommendations