封面
市场调查报告书
商品编码
1383661

核子医学治疗市场 - 2018-2028 年产业规模、份额、趋势、机会和预测,按类型、应用、地区和竞争细分

Nuclear Medicine Therapeutics Market - Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented by Type, by Application, By Region, and Competition

出版日期: | 出版商: TechSci Research | 英文 190 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2022 年,全球核医治疗市场价值为 9.858 亿美元,预计在预测期内将出现令人印象深刻的增长,到 2028 年复合CAGR为9.60%。核医学治疗,也称为放射治疗或放射性核素治疗,是核子医学治疗的一个分支核子医学涉及使用放射性材料(放射性药物)来治疗各种疾病,特别是癌症。与使用高能量 X 射线或在患者体外产生的其他形式的辐射的传统外束放射治疗不同,核医学疗法使用在体内给药并针对体内特定疾病部位的放射性药物。接受核子医学治疗的患者在治疗期间和治疗后都会仔细监测,以评估治疗反应并管理潜在的副作用。可以进行后续影像和测试来追踪治疗进展和患者状况。核子医学治疗可以根据疾病的类型和阶段、患者的整体健康状况以及对治疗的反应等因素,为个别患者量身定制。这种个人化方法旨在最大限度地提高治疗效果,同时最大限度地减少副作用。

全球癌症盛行率持续增加,推动了对有效诊断和治疗工具的需求。核子医学在癌症诊断和治疗中发挥着至关重要的作用,使其成为癌症护理的重要组成部分。 PET-CT和SPECT-CT等影像技术的进步提高了诊断和治疗计划的准确性。此外,更高效、更紧凑的影像设备的开发提高了核医学的可及性。正在进行的临床试验和研究有助于扩大核子医学应用。积极的试验结果可以导致核医学疗法在常规临床实践中的采用。全球人口老化更容易患慢性疾病,包括癌症和心血管疾病,这些疾病通常使用核医学技术进行诊断和治疗。

主要市场驱动因素

市场概况
预测期 2024-2028
2022 年市场规模 98580万美元
2028 年市场规模 170474万美元
2023-2028 年CAGR 9.60%
成长最快的细分市场 肿瘤学
最大的市场 北美洲

技术进步

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
    • 主要市场区隔

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 主要产业伙伴
  • 主要协会和二手资料来源
  • 预测方法
  • 数据三角测量与验证
  • 假设和限制

第 3 章:执行摘要

  • 市场概况
  • 主要市场细分概述
  • 主要市场参与者概述
  • 重点地区/国家概况
  • 市场驱动因素、挑战、趋势概述

第 4 章:客户之声

第 5 章:全球核子医学治疗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型(α 发射器、β 发射器和近距离放射治疗)
    • 按应用(肿瘤学、心臟病学、甲状腺和其他应用)
    • 按地区
    • 按公司划分 (2022)
  • 市场地图

第 6 章:亚太地区核子医学治疗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按应用
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国核子医学治疗
    • 印度核医学治疗
    • 澳洲核子医学治疗公司
    • 日本核子医学疗法
    • 韩国核子医学治疗

第 7 章:欧洲核子医学治疗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按应用
    • 按国家/地区
  • 欧洲:国家分析
    • 法国
    • 德国
    • 西班牙
    • 义大利
    • 英国

第 8 章:北美核子医学治疗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按应用
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第 9 章:南美洲核子医学治疗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按应用
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第 10 章:中东和非洲核子医学治疗市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按应用
    • 按国家/地区
  • MEA:国家分析
    • 南非核子医学治疗
    • 沙乌地阿拉伯核子医学疗法
    • 阿联酋核子医学治疗

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

  • 最近的发展
  • 产品发布
  • 併购

第 13 章:全球核子医学治疗市场:SWOT 分析

第 14 章:波特的五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第 15 章:大环境分析

第16章:竞争格局

  • 锕製药公司
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • 阿尔法头医疗有限公司
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • 拜耳公司
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • 融合製药公司
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • IBA 放射性药物解决方案
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • 无线电医学公司
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • 泰利克斯製药股份有限公司
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • NTP放射性同位素有限公司
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • 布拉科公司
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • 康德乐健康公司
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • Nordion Inc.(Sotera 健康公司)
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis
  • Triad Isotopes Inc.(欢欣鼓舞的生命科学)
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Financials (In case of listed companies)
    • Recent Developments
    • SWOT Analysis

第 17 章:策略建议

第 18 章:关于我们与免责声明

简介目录
Product Code: 18747

Global Nuclear Medicine Therapeutics Market has valued at USD 985.80 million in 2022 and is anticipated to witness an impressive growth in the forecast period with a CAGR of 9.60% through 2028. Nuclear medicine therapeutics, also known as radiotherapy or radionuclide therapy, is a branch of nuclear medicine that involves the use of radioactive materials (radiopharmaceuticals) to treat various medical conditions, particularly cancer. Unlike conventional external beam radiation therapy, which uses high-energy X-rays or other forms of radiation generated outside the patient's body, nuclear medicine therapeutics uses radiopharmaceuticals that are administered internally and target specific disease sites within the body. Patients receiving nuclear medicine therapies are carefully monitored during and after treatment to assess treatment response and manage potential side effects. Follow-up imaging and tests may be performed to track the progress of the therapy and the patient's condition. Nuclear medicine therapeutics can be tailored to individual patients based on factors such as the type and stage of disease, the patient's overall health, and the response to treatment. This personalized approach aims to maximize treatment efficacy while minimizing side effects.

The global prevalence of cancer continues to increase, driving the demand for effective diagnostic and therapeutic tools. Nuclear medicine plays a crucial role in both cancer diagnosis and treatment, making it a critical component of cancer care. Advances in imaging technologies, such as PET-CT and SPECT-CT, have improved the accuracy of diagnosis and treatment planning. Additionally, the development of more efficient and compact imaging devices has enhanced the accessibility of nuclear medicine. Ongoing clinical trials and research studies have contributed to the expansion of nuclear medicine applications. Positive trial outcomes can lead to the adoption of nuclear medicine therapies in routine clinical practice. The aging global population is more susceptible to chronic diseases, including cancer and cardiovascular conditions, which are often diagnosed and treated using nuclear medicine techniques.

Key Market Drivers

Market Overview
Forecast Period2024-2028
Market Size 2022USD 985.80 Million
Market Size 2028USD 1704.74 Million
CAGR 2023-20289.60%
Fastest Growing SegmentOncology
Largest MarketNorth America

Advancements in Technology

Technological advancements in nuclear medicine therapeutics have been instrumental in improving the accuracy, effectiveness, and safety of diagnostic and treatment procedures. These advancements have expanded the applications of nuclear medicine and enhanced patient care. Hybrid imaging systems, such as PET-CT (Positron Emission Tomography-Computed Tomography) and SPECT-CT (Single-Photon Emission Computed Tomography-Computed Tomography), have become standard in nuclear medicine. These systems combine functional imaging (PET or SPECT) with anatomical imaging (CT) to provide detailed information about both structure and function in a single scan. This allows for more accurate localization of abnormalities and better treatment planning. PET-MRI combines the functional imaging capabilities of PET with the excellent soft tissue contrast of MRI. This technology is particularly valuable in brain imaging and certain oncology applications, offering improved diagnostic accuracy. Research and development efforts have led to the creation of more targeted and effective radiopharmaceuticals. These radiopharmaceuticals can specifically bind to disease markers or receptors, allowing for more precise diagnosis and targeted therapy. Radioligand therapies involve the use of radiopharmaceuticals that target specific receptors on cancer cells. This approach has shown promise in the treatment of various cancers, such as prostate cancer, using agents like Lutetium-177-PSMA. Advances in alpha-particle-emitting radiopharmaceuticals have gained attention for their high energy and short range, making them effective in targeting cancer cells while sparing surrounding healthy tissue. This approach is being explored for certain types of cancer therapy. Theranostics is an emerging field that combines diagnostic and therapeutic capabilities. It involves the use of radiopharmaceuticals for both imaging and therapy. This approach allows for patient-specific treatment planning based on imaging findings.

Dosimetry techniques have improved the ability to estimate and optimize radiation doses delivered to specific target areas while minimizing exposure to healthy tissues. This is crucial for personalized cancer treatment. Automation and robotics have been integrated into nuclear medicine procedures to enhance precision and reduce human error. Automated systems can prepare radiopharmaceuticals, administer treatments, and perform image acquisition. Digital detectors and processing techniques have improved the speed and quality of nuclear medicine imaging. This has led to reduced radiation exposure for patients and faster image acquisition. Quantitative analysis tools have been developed to provide more accurate and reproducible measurements of physiological and molecular parameters. This is particularly valuable for monitoring treatment response and disease progression. Radiomics involves the extraction and analysis of many quantitative image features from medical images. It holds the potential to predict treatment outcomes and provide insights into disease characteristics. AI and machine learning are being applied to nuclear medicine data analysis. AI algorithms can assist in image interpretation, disease diagnosis, treatment planning, and predicting patient outcomes. Advances in radiation protection techniques and equipment ensure the safety of patients and healthcare providers during nuclear medicine procedures. This factor will help in the development of Global Nuclear Medicine Therapeutics Market.

Growing Aging Population

As people age, they are more susceptible to certain age-related diseases, such as cancer, heart disease, and neurodegenerative disorders. Nuclear medicine plays a crucial role in the diagnosis, staging, and treatment of these conditions. Cancer is more common among older adults, and nuclear medicine techniques, such as PET-CT and SPECT-CT, are essential for cancer diagnosis, staging, and monitoring treatment response. Additionally, radiopharmaceuticals are used in cancer therapy, making nuclear medicine a vital component of cancer care for the elderly population. Older adults are at higher risk of cardiovascular diseases, including coronary artery disease and heart failure. Nuclear cardiology techniques, like myocardial perfusion imaging, are used for the assessment of cardiac function and the detection of ischemia, contributing to the management of these conditions. Neurological disorders, such as Alzheimer's disease and Parkinson's disease, become more prevalent with age. Nuclear medicine methods, including PET imaging with specific radiopharmaceuticals, aid in the early diagnosis and monitoring of these conditions. Older adults are at greater risk of osteoporosis and bone fractures. Bone scans using radiopharmaceuticals like technetium-99m are used to assess bone health and identify fractures.

The aging population often requires long-term care and management of chronic conditions. Nuclear medicine provides valuable tools for monitoring disease progression and the effectiveness of treatments over time. Nuclear medicine allows for personalized treatment plans based on an individual's unique health profile and disease characteristics. This approach is especially relevant for older adults who may have multiple comorbidities and varying responses to treatment. Nuclear medicine therapies, such as radioligand therapies, can improve the quality of life for older adults by alleviating symptoms, reducing pain, and managing disease-related complications. The aging population offers a significant pool for clinical research and trials related to nuclear medicine. Studies on the effectiveness of new radiopharmaceuticals and therapeutic approaches often include older adults. The healthcare infrastructure, including the availability of nuclear medicine facilities and expertise, needs to adapt to the increasing healthcare needs of the aging population. This drives investments in healthcare technology and services. Healthcare policy and reimbursement strategies often consider the needs of older adults, which can influence the accessibility and affordability of nuclear medicine services for this demographic. This factor will pace up the demand of Global Nuclear Medicine Therapeutics Market.

Increasing Awareness About Early Diagnosis

Awareness campaigns educate the public about the importance of early detection and diagnosis of various medical conditions, including cancer and cardiovascular diseases. Nuclear medicine techniques like PET-CT and SPECT-CT are highly effective in early disease detection, and increased awareness can lead to more individuals seeking these diagnostic tests. Public awareness initiatives often focus on cancer prevention and screening. When people understand the role of nuclear medicine in cancer diagnosis and staging, they are more likely to undergo regular screenings, leading to early intervention and improved outcomes. Patients who are aware of nuclear medicine options are more likely to discuss these options with their healthcare providers. Informed patients can actively participate in treatment decisions, leading to better-informed choices regarding nuclear medicine therapies. Healthcare providers who are well-informed about nuclear medicine may refer patients for nuclear medicine procedures when appropriate. This awareness among healthcare professionals can lead to increased utilization of nuclear medicine services. Nuclear medicine is continually evolving, with new applications and therapies emerging. Awareness campaigns can help highlight these advancements, leading to greater interest from both patients and healthcare providers.

Health organizations often conduct community outreach programs and events to raise awareness about various healthcare topics, including the benefits of nuclear medicine. These events may include educational sessions and free or discounted screenings. Patient advocacy groups play a crucial role in raising awareness about specific diseases and treatment options. Many of these groups actively promote nuclear medicine as part of their awareness and advocacy efforts. As public perception of nuclear medicine becomes more positive and well-informed, there is a greater acceptance of nuclear medicine as a safe and effective medical specialty. This can lead to increased demand for nuclear medicine services. Greater public awareness can also lead to increased funding for nuclear medicine research. Increased research funding can lead to advancements in technologies, therapies, and diagnostic tools. Public awareness can influence healthcare policies and regulations, leading to improved access to nuclear medicine services and reimbursement for treatments. International awareness campaigns and educational initiatives can help expand the use of nuclear medicine in regions where access to advanced medical technologies may be limited. This factor will accelerate the demand of Global Nuclear Medicine Therapeutics Market.

Key Market Challenges

Supply Chain and Radioisotope Availability

Nuclear medicine heavily relies on radioisotopes, which are radioactive materials used in imaging and therapy. The production of these radioisotopes can be complex and is often centralized in a few facilities globally. Any disruptions in production or supply can have widespread implications for nuclear medicine services. Many radioisotopes used in nuclear medicine have short half-lives, meaning they decay rapidly. This necessitates just-in-time production and delivery to healthcare facilities. Any delays in production, transportation, or delivery can lead to radioisotope shortages. The global supply chain for radioisotopes can be vulnerable to various factors, such as technical issues in production facilities, regulatory challenges, geopolitical tensions, and transportation disruptions. These vulnerabilities can lead to interruptions in the supply of radioisotopes. The demand for radioisotopes, especially those used in oncology and cardiology, has been steadily increasing. Meeting this growing demand while ensuring a stable supply chain can be a logistical challenge. There are relatively few facilities worldwide that produce medical-grade radioisotopes. Relying on a small number of production centers increases the risk of supply disruptions. The production of radioisotopes often involves the use of nuclear reactors or particle accelerators, which require specialized infrastructure and expertise. Technical challenges or maintenance shutdowns can affect production. Radioisotopes must be transported under strict safety regulations. Delays or disruptions in transportation can impact the timely delivery of radiopharmaceuticals to healthcare facilities.

Competition with Alternative Therapies

Alternative therapies, such as surgery, chemotherapy, radiation therapy, and immunotherapy, may offer varying levels of efficacy for different medical conditions. Healthcare providers must assess the relative effectiveness of nuclear medicine compared to these alternatives. The side effects and tolerability of different treatment options can vary significantly. Nuclear medicine therapies can have side effects, and patients and providers need to consider these effects when making treatment decisions. The cost of nuclear medicine therapies can be high, and this cost can be a barrier to access for some patients. Comparatively, some alternative therapies may be more cost-effective, depending on the specific medical condition and treatment plan. The availability of nuclear medicine services and radiopharmaceuticals can vary by region. Patients may have limited access to nuclear medicine facilities, which can lead them to explore alternative treatments that are more readily available. Patient preferences play a significant role in treatment decisions. Some patients may prefer non-invasive treatments like nuclear medicine, while others may opt for surgical interventions or systemic therapies. Medical guidelines and recommendations may favor certain therapies over others for specific medical conditions. Healthcare providers often adhere to established guidelines when making treatment recommendations.

Key Market Trends

Radiopharmaceutical Production

The growing awareness of nuclear medicine's diagnostic and therapeutic capabilities has led to an increased demand for radiopharmaceuticals. This trend is driven by the rising prevalence of diseases such as cancer and cardiovascular conditions that benefit from nuclear medicine procedures. Ongoing research and development efforts have led to the creation of a diverse range of radiopharmaceuticals, including those for PET, SPECT, and therapeutic applications. This diversification allows for a broader spectrum of medical conditions to be addressed using nuclear medicine. Radiopharmaceuticals can be designed to target specific disease markers or receptors, enabling more precise diagnosis and therapy. Targeted radiopharmaceuticals are a growing area of interest, particularly in oncology. The concept of theranostics, which combines diagnostic and therapeutic capabilities using the same radiopharmaceutical, has gained traction. Theranostic approaches allow for personalized treatment planning based on diagnostic imaging findings. Improvements in radioisotope production methods have contributed to a more reliable and efficient supply of radiopharmaceuticals. Cyclotron and generator technologies have advanced to support increased production capacity. Efforts have been made to reduce the production time for radiopharmaceuticals with short half-lives. This is crucial for ensuring timely access to these materials.

Segmental Insights

Type Insights

In 2022, the Global Nuclear Medicine Therapeutics Market dominated by Beta Emitters segment and is predicted to continue expanding over the coming years. Beta emitters offer a versatile range of radiation energies and penetration depths, making them suitable for targeting different types of tumours and cancerous tissues. This versatility allows for the treatment of a wide variety of cancers. Beta-emitting radiopharmaceuticals, including iodine-131 and lutetium-177, are readily available and have well-established production processes. This availability facilitates their use in clinical practice. Many beta-emitting isotopes have longer half-lives compared to alpha emitters, which means they can be transported and used in medical facilities with less urgency. This longer half-life allows for more flexibility in logistics. The use of beta emitters in nuclear medicine therapy is generally well-accepted by patients due to their established track record and effectiveness in treating cancer.

Application Insights

In 2022, the Global Nuclear Medicine Therapeutics Market largest share was dominated by oncology segment in the forecast period and is predicted to continue expanding over the coming years. Cancer is a leading cause of mortality and a significant public health concern worldwide. The high prevalence of various types of cancer, including lung, breast, prostate, and colorectal cancer, drives the demand for effective diagnostic and therapeutic tools, including nuclear medicine techniques. Nuclear medicine plays a crucial role in the diagnosis and staging of cancer. Techniques like positron emission tomography (PET) and single-photon emission computed tomography (SPECT) with radiopharmaceuticals are used to detect tumours, assess their size, and spread, and determine treatment strategies. Accurate diagnosis is vital for effective cancer management. Ongoing research and development have led to the creation of advanced radiopharmaceuticals specifically designed for cancer imaging and therapy. These radiopharmaceuticals offer improved accuracy and effectiveness in cancer diagnosis and treatment.

Regional Insights

The North America region dominates the Global Nuclear Medicine Therapeutics Market in 2022. North America, particularly the United States and Canada, boasts a highly developed and advanced healthcare infrastructure. This includes a network of well-equipped hospitals, research institutions, and medical facilities that are well-suited for the practice of nuclear medicine. The United States has one of the highest healthcare expenditures in the world. This substantial investment in healthcare infrastructure and research and development provides a conducive environment for the growth of the nuclear medicine therapeutics market. The region is home to many leading pharmaceutical and biotechnology companies, academic research centers, and healthcare organizations. These entities invest significantly in research and development, leading to the development and commercialization of innovative nuclear medicine therapies.

Key Market Players

Actinium Pharmaceutical Inc.

Alpha Tau Medical Ltd

Bayer AG

Fusion Pharmaceuticals Inc.

IBA Radiopharma Solutions

RadioMedix Inc.

Telix Pharmaceuticals Ltd

NTP Radioisotopes Pty Ltd.

Bracco SpA

Cardinal Health Inc.

Nordion Inc. (Sotera Health Company)

Triad Isotopes Inc. (Jubilant Life Sciences)

Report Scope:

In this report, the Global Nuclear Medicine Therapeutics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Nuclear Medicine Therapeutics Market, By Type:

  • Alpha Emitters
  • Radium-223 (RA-223) & Alpharadin
  • Actinium-225 (AC-225)
  • Lead-212 (PB-212)/Bismuth-212 (BI-212)
  • Other Alpha Emitters
  • Beta Emitters
  • Iodine-131 (I-131)
  • Yttrium-90 (Y-90)
  • Other Beta Emitters
  • Brachytherapy
  • Cesium-131
  • Iodine-125
  • Other Brachytherapies

Nuclear Medicine Therapeutics Market, By Application:

  • Oncology
  • Cardiology
  • Thyroid
  • Other Applications

Global Nuclear Medicine Therapeutics Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Asia-Pacific
  • China
  • India
  • South Korea
  • Australia
  • Japan
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Italy
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Nuclear Medicine Therapeutics Market.

Available Customizations:

  • Global Nuclear Medicine Therapeutics Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Nuclear Medicine Therapeutics Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Alpha Emitters, Beta Emitters, and Brachytherapy)
    • 5.2.2. By Application (Oncology, Cardiology, Thyroid, and Other Applications)
    • 5.2.3. By Region
    • 5.2.4. By Company (2022)
  • 5.3. Market Map

6. Asia Pacific Nuclear Medicine Therapeutics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Application
    • 6.2.3. By Country
  • 6.3. Asia Pacific: Country Analysis
    • 6.3.1. China Nuclear Medicine Therapeutics Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Application
    • 6.3.2. India Nuclear Medicine Therapeutics Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Application
    • 6.3.3. Australia Nuclear Medicine Therapeutics Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Application
    • 6.3.4. Japan Nuclear Medicine Therapeutics Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Type
        • 6.3.4.2.2. By Application
    • 6.3.5. South Korea Nuclear Medicine Therapeutics Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Type
        • 6.3.5.2.2. By Application

7. Europe Nuclear Medicine Therapeutics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Application
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Nuclear Medicine Therapeutics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Application
    • 7.3.2. Germany Nuclear Medicine Therapeutics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Application
    • 7.3.3. Spain Nuclear Medicine Therapeutics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Application
    • 7.3.4. Italy Nuclear Medicine Therapeutics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Application
    • 7.3.5. United Kingdom Nuclear Medicine Therapeutics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Application

8. North America Nuclear Medicine Therapeutics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Application
    • 8.2.3. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Nuclear Medicine Therapeutics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Application
    • 8.3.2. Mexico Nuclear Medicine Therapeutics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Application
    • 8.3.3. Canada Nuclear Medicine Therapeutics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Application

9. South America Nuclear Medicine Therapeutics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Application
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Nuclear Medicine Therapeutics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Application
    • 9.3.2. Argentina Nuclear Medicine Therapeutics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Application
    • 9.3.3. Colombia Nuclear Medicine Therapeutics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Application

10. Middle East and Africa Nuclear Medicine Therapeutics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Application
    • 10.2.3. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Nuclear Medicine Therapeutics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Application
    • 10.3.2. Saudi Arabia Nuclear Medicine Therapeutics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Application
    • 10.3.3. UAE Nuclear Medicine Therapeutics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches
  • 12.3. Mergers & Acquisitions

13. Global Nuclear Medicine Therapeutics Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. PESTLE Analysis

16. Competitive Landscape

  • 16.1. Actinium Pharmaceutical Inc.
    • 16.1.1. Business Overview
    • 16.1.2. Company Snapshot
    • 16.1.3. Products & Services
    • 16.1.4. Financials (In case of listed companies)
    • 16.1.5. Recent Developments
    • 16.1.6. SWOT Analysis
  • 16.2. Alpha Tau Medical Ltd
    • 16.2.1. Business Overview
    • 16.2.2. Company Snapshot
    • 16.2.3. Products & Services
    • 16.2.4. Financials (In case of listed companies)
    • 16.2.5. Recent Developments
    • 16.2.6. SWOT Analysis
  • 16.3. Bayer AG
    • 16.3.1. Business Overview
    • 16.3.2. Company Snapshot
    • 16.3.3. Products & Services
    • 16.3.4. Financials (In case of listed companies)
    • 16.3.5. Recent Developments
    • 16.3.6. SWOT Analysis
  • 16.4. Fusion Pharmaceuticals Inc.
    • 16.4.1. Business Overview
    • 16.4.2. Company Snapshot
    • 16.4.3. Products & Services
    • 16.4.4. Financials (In case of listed companies)
    • 16.4.5. Recent Developments
    • 16.4.6. SWOT Analysis
  • 16.5. IBA Radiopharma Solutions
    • 16.5.1. Business Overview
    • 16.5.2. Company Snapshot
    • 16.5.3. Products & Services
    • 16.5.4. Financials (In case of listed companies)
    • 16.5.5. Recent Developments
    • 16.5.6. SWOT Analysis
  • 16.6. RadioMedix Inc.
    • 16.6.1. Business Overview
    • 16.6.2. Company Snapshot
    • 16.6.3. Products & Services
    • 16.6.4. Financials (In case of listed companies)
    • 16.6.5. Recent Developments
    • 16.6.6. SWOT Analysis
  • 16.7. Telix Pharmaceuticals Ltd
    • 16.7.1. Business Overview
    • 16.7.2. Company Snapshot
    • 16.7.3. Products & Services
    • 16.7.4. Financials (In case of listed companies)
    • 16.7.5. Recent Developments
    • 16.7.6. SWOT Analysis
  • 16.8. NTP Radioisotopes Pty Ltd.
    • 16.8.1. Business Overview
    • 16.8.2. Company Snapshot
    • 16.8.3. Products & Services
    • 16.8.4. Financials (In case of listed companies)
    • 16.8.5. Recent Developments
    • 16.8.6. SWOT Analysis
  • 16.9. Bracco SpA
    • 16.9.1. Business Overview
    • 16.9.2. Company Snapshot
    • 16.9.3. Products & Services
    • 16.9.4. Financials (In case of listed companies)
    • 16.9.5. Recent Developments
    • 16.9.6. SWOT Analysis
  • 16.10. Cardinal Health Inc.
    • 16.10.1. Business Overview
    • 16.10.2. Company Snapshot
    • 16.10.3. Products & Services
    • 16.10.4. Financials (In case of listed companies)
    • 16.10.5. Recent Developments
    • 16.10.6. SWOT Analysis
  • 16.11. Nordion Inc. (Sotera Health Company)
    • 16.11.1. Business Overview
    • 16.11.2. Company Snapshot
    • 16.11.3. Products & Services
    • 16.11.4. Financials (In case of listed companies)
    • 16.11.5. Recent Developments
    • 16.11.6. SWOT Analysis
  • 16.12. Triad Isotopes Inc. (Jubilant Life Sciences)
    • 16.12.1. Business Overview
    • 16.12.2. Company Snapshot
    • 16.12.3. Products & Services
    • 16.12.4. Financials (In case of listed companies)
    • 16.12.5. Recent Developments
    • 16.12.6. SWOT Analysis

17. Strategic Recommendations

18. About Us & Disclaimer