封面
市场调查报告书
商品编码
1406386

智慧电子设备市场 - 全球产业规模、份额、趋势、机会和预测,按类型、按应用、行业垂直、地区、竞争细分,2018-2028

Intelligent Electronic Devices Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Application, By Industry Vertical, By Region, By Competition, 2018-2028

出版日期: | 出版商: TechSci Research | 英文 190 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2022 年全球智慧电子设备市场价值为 70.8 亿美元,预计在预测期内将强劲成长,到 2028 年CAGR为 9.19%。

智慧电子设备 (IED) 市场是指更广泛的电子产业中充满活力且不断发展的产业,专注于开发、生产和部署具有先进感测、处理和通讯功能的智慧互连设备。这些设备在智慧电网、工业自动化和基础设施管理等各种应用中发挥关键作用。从本质上讲,IED 旨在收集、分析即时数据并根据即时资料采取行动,从而在不同的环境中实现增强的监视、控制和自动化。

对高效能源管理、电网现代化计划以及跨行业智慧技术整合的需求不断增长,推动了市场的成长。 IED 有助于优化流程、提高可靠性并促进关键部门的数据驱动决策。随着技术进步不断塑造格局,智慧电子设备市场成为各领域向智慧互联繫统持续转型的关键推动者。

市场概况
预测期 2024-2028
2022 年市场规模 70.8亿美元
2028 年市场规模 126亿美元
2023-2028 年CAGR 9.19%
成长最快的细分市场 能源与电力
最大的市场 北美洲

主要市场驱动因素

北美:

在强大的技术基础设施、对电网现代化的关注和严格的监管框架的推动下,北美成为简易爆炸装置采用的主要中心。尤其是美国,在智慧电网计划方面的大量投资在该地区处于领先地位。再生能源整合的推动,加上对电网弹性的需求,推动了该市场对简易爆炸装置的需求。美国联邦能源管理委员会 (FERC) 支持电网现代化的政策起到了催化剂的作用,促进了整个能源产业的创新和简易爆炸装置的采用。

欧洲:

欧洲对永续发展和能源效率表现出坚定的承诺,使其成为全球简易爆炸装置市场的关键参与者。欧盟的倡议,例如「为所有欧洲人提供清洁能源」一揽子计划,推动了对智慧电网的投资并鼓励部署简易爆炸装置。德国等重点关注工业 4.0 的国家为工业自动化领域 IED 市场的成长做出了贡献。此外,欧洲对网路安全法规的重视,特别是在关键基础设施方面,影响了安全简易爆炸装置的设计和采用。

亚太:

由于快速的工业化、城市化和电力需求的不断增长,亚太地区的简易爆炸装置市场呈现出强劲的成长势头。中国和印度等国家正在大力投资智慧电网项目,以满足不断变化的能源需求。 IED 在工业领域的整合是由「中国製造 2025」和印度「智慧城市使命」等倡议推动的。此外,该地区对再生能源的倾向进一步推动了简易爆炸装置的采用,以实现高效的电网管理。

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
  • 主要市场区隔

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 范围的製定
  • 假设和限制
  • 研究来源
    • 二次研究
    • 初步研究
  • 市场研究方法
    • 自下而上的方法
    • 自上而下的方法
  • 计算市场规模和市场份额所遵循的方法
  • 预测方法
    • 数据三角测量与验证

第 3 章:执行摘要

第 4 章:客户之声

第 5 章:全球智慧电子设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型(数位继电器、稳压器、保护继电器、断路器控制器、有载分接开关控制器、重合器控制器、电容器组开关)、
    • 按应用(自动化、状态监控、牵引讯号和控制系统),
    • 依垂直产业(汽车、能源与电力、食品与饮料、製药)
    • 按地区
    • 按公司划分 (2022)
  • 市场地图

第 6 章:北美智慧电子设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按应用
    • 按行业分类
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 7 章:欧洲智慧电子设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按应用
    • 按行业分类
    • 按国家/地区
  • 欧洲:国家分析
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙

第 8 章:亚太地区智慧电子设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按应用
    • 按行业分类
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲

第 9 章:南美洲智慧电子设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按应用
    • 按行业分类
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第10章:中东和非洲智慧电子设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按应用
    • 按行业分类
    • 按国家/地区
  • 中东和非洲:国家分析
    • 南非智慧电子设备
    • 沙乌地阿拉伯智慧电子设备
    • 阿联酋智慧电子设备
    • 科威特智慧电子设备
    • 土耳其智慧电子设备

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

第 13 章:公司简介

  • ABB有限公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 施耐德电机公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 西门子公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 霍尼韦尔国际公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 伊顿公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 罗克韦尔自动化公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 通用电气公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 思科系统公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 诺瓦科技有限公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 子网路解决方案公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered

第 14 章:策略建议

第 15 章:关于我们与免责声明

简介目录
Product Code: 19847

Global Intelligent Electronic Devices Market was valued at USD 7.08 billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 9.19% through 2028.

The Intelligent Electronic Devices (IEDs) market refers to the dynamic and evolving sector within the broader electronics industry that focuses on the development, production, and deployment of smart, interconnected devices endowed with advanced sensing, processing, and communication capabilities. These devices play a pivotal role in various applications, including smart grids, industrial automation, and infrastructure management. In essence, IEDs are designed to gather, analyze, and act upon real-time data, enabling enhanced monitoring, control, and automation in diverse settings.

The market's growth is fueled by the increasing demand for efficient energy management, grid modernization initiatives, and the integration of smart technologies across industries. IEDs contribute to the optimization of processes, improvement of reliability, and facilitation of data-driven decision-making in critical sectors. As technological advancements continue to shape the landscape, the Intelligent Electronic Devices market represents a key enabler of the ongoing transition toward intelligent, interconnected systems across various domains.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 7.08 Billion
Market Size 2028USD 12.6 Billion
CAGR 2023-20289.19%
Fastest Growing SegmentEnergy & Power
Largest MarketNorth America

Key Market Drivers

Increasing Demand for Smart Grids

The global Intelligent Electronic Devices (IEDs) market is experiencing a significant boost due to the escalating demand for smart grids. Smart grids are modern electrical grids that leverage advanced communication and control technologies to optimize the generation, distribution, and consumption of electricity. IEDs play a crucial role in smart grids by providing real-time monitoring, control, and automation capabilities. The growing need for efficient energy management, reduction of transmission and distribution losses, and integration of renewable energy sources are key factors driving the adoption of smart grids, subsequently propelling the demand for IEDs.

Smart grids enable utilities to enhance grid reliability, reduce downtime, and improve overall operational efficiency. IEDs, equipped with advanced sensors and communication modules, facilitate the collection of data from various points in the grid, enabling utilities to make informed decisions and respond quickly to grid disturbances. As countries worldwide focus on modernizing their aging power infrastructure, the demand for IEDs in the context of smart grids is expected to witness sustained growth.

Industrial Automation and Industry 4.0

The fourth industrial revolution, often referred to as Industry 4.0, is characterized by the integration of digital technologies into various industrial processes. This wave of technological advancement is a key driver for the global IEDs market. Industries are increasingly adopting automation and smart technologies to improve operational efficiency, reduce downtime, and enhance overall productivity. IEDs play a pivotal role in this scenario by providing intelligent monitoring and control capabilities in industrial settings.

IEDs in industrial automation help in real-time data acquisition, analysis, and decision-making, contributing to the seamless functioning of manufacturing processes. As industries strive to stay competitive in a globalized market, the adoption of Industry 4.0 principles becomes imperative. This, in turn, fuels the demand for IEDs that can enable the integration and connectivity required for smart and automated industrial systems.

Rising Concerns about Power Quality and Reliability

The increasing digitization of various aspects of life and business has heightened sensitivity to power quality and reliability. Businesses and consumers alike depend on a continuous and stable power supply for various applications, ranging from critical industrial processes to everyday electronic devices. IEDs play a crucial role in ensuring power quality by monitoring voltage levels, frequency, and other parameters in real-time.

The escalating use of sensitive electronic equipment, coupled with the proliferation of renewable energy sources, has led to a greater emphasis on maintaining stable power quality. IEDs, equipped with advanced monitoring and control features, assist utilities in identifying and addressing power quality issues promptly. As the demand for high-quality and reliable power supply continues to rise, the deployment of IEDs becomes essential for utilities to meet the expectations of consumers and businesses.

Integration of IoT and Edge Computing

The integration of Internet of Things (IoT) devices and edge computing technologies is a transformative driver for the IEDs market. With the advent of IoT, there is an increasing need for devices to communicate and share data in real-time. IEDs, with their sensing, processing, and communication capabilities, are well-positioned to be integral components of IoT ecosystems.

In the context of smart cities, smart buildings, and connected infrastructure, IEDs enable the collection of data from diverse sources. This data is then processed at the edge, allowing for quicker decision-making and reducing the need for centralized data processing. The synergy between IEDs, IoT, and edge computing is creating new opportunities for applications such as predictive maintenance, energy management, and environmental monitoring.

Regulatory Mandates and Grid Modernization Initiatives

Government regulations and initiatives aimed at modernizing power grids are significant drivers for the IEDs market. Many countries are implementing regulations that mandate the deployment of advanced technologies to enhance the reliability and efficiency of their electrical grids. For instance, regulations promoting the integration of renewable energy sources and the reduction of carbon emissions are driving the adoption of IEDs for better grid management.

Grid modernization initiatives, often supported by government funding, involve the upgrade of aging infrastructure with advanced technologies. IEDs play a crucial role in these initiatives by providing the necessary intelligence and control capabilities to modernize the grid. Utilities and energy companies, in response to regulatory requirements and incentives, are increasingly investing in IEDs to meet the evolving standards for grid reliability and efficiency.

Growing Awareness of Cybersecurity Threats

As the dependency on interconnected digital systems increases, so does the awareness of cybersecurity threats. The IEDs market is experiencing a boost as utilities and industries recognize the importance of securing critical infrastructure from cyberattacks. IEDs, being integral components of modern electrical and industrial systems, are potential targets for cyber threats.

The growing emphasis on cybersecurity in the IEDs market is driving innovations in secure communication protocols, authentication mechanisms, and intrusion detection systems. Vendors in the IEDs market are focusing on developing solutions that not only provide advanced functionality for grid management but also incorporate robust cybersecurity features. The awareness of cybersecurity risks is pushing organizations to prioritize the implementation of secure IEDs to safeguard their critical infrastructure and maintain the integrity of their operations.

In conclusion, the global IEDs market is propelled by a combination of factors, including the demand for smart grids, industrial automation trends, concerns about power quality and reliability, the integration of IoT and edge computing, regulatory mandates, and the growing awareness of cybersecurity threats. These drivers collectively contribute to the continued growth and evolution of the Intelligent Electronic Devices market on a global scale.

Government Policies are Likely to Propel the Market

Grid Modernization Initiatives

Grid modernization initiatives represent a key government policy influencing the global Intelligent Electronic Devices (IEDs) market. Governments around the world are recognizing the need to upgrade and modernize their aging power grids to enhance efficiency, reliability, and sustainability. Grid modernization policies typically involve substantial investments in advanced technologies, including IEDs, to equip power infrastructure with intelligent monitoring and control capabilities.

One aspect of these initiatives is the deployment of smart grids, where IEDs play a crucial role. Governments often provide financial incentives, grants, or regulatory support to encourage utilities and energy companies to invest in IEDs for real-time monitoring, automation, and data-driven decision-making. These policies are designed to create a more resilient and responsive energy infrastructure capable of integrating renewable energy sources, improving energy efficiency, and reducing carbon emissions.

As governments continue to prioritize sustainable and smart energy solutions, the demand for IEDs is expected to grow in alignment with grid modernization policies.

Renewable Energy Integration Mandates

The global push towards a more sustainable and low-carbon future has led many governments to enact policies promoting the integration of renewable energy sources into their energy mix. These policies, often accompanied by renewable energy targets and incentives, drive the adoption of Intelligent Electronic Devices (IEDs) in the energy sector.

To accommodate the variability of renewable sources such as solar and wind, IEDs are utilized to monitor and control the grid dynamically. They enable utilities to manage the integration of renewable energy by providing real-time data on energy production, consumption, and grid conditions. Governments may implement regulations requiring utilities to deploy IEDs as part of their strategy to achieve renewable energy integration goals.

By aligning with renewable energy integration mandates, IEDs contribute to the establishment of a more sustainable and resilient energy infrastructure.

Cybersecurity Standards and Regulations

Governments globally are increasingly recognizing the importance of securing critical infrastructure, including the electrical grid, against cybersecurity threats. Policies and regulations focused on enhancing cybersecurity standards for Intelligent Electronic Devices (IEDs) are becoming more prevalent as these devices play a pivotal role in the functioning of modern energy systems.

Government policies in this realm often entail the establishment of cybersecurity frameworks, standards, and certification processes that IED manufacturers must adhere to. This includes requirements for secure communication protocols, encryption standards, and robust authentication mechanisms to safeguard IEDs from potential cyber threats.

By enforcing stringent cybersecurity policies, governments aim to mitigate the risks associated with cyberattacks on IEDs, ensuring the integrity and reliability of the power grid.

Energy Efficiency Regulations

Governments worldwide are prioritizing energy efficiency as a means to reduce carbon emissions and enhance sustainability. Policies and regulations promoting energy efficiency impact the global Intelligent Electronic Devices (IEDs) market as these devices contribute significantly to optimizing energy consumption in various applications.

Governments may establish energy efficiency standards that IEDs must meet to be deployed in specific sectors. For instance, in industrial settings, IEDs can be utilized to optimize processes, monitor energy usage, and implement energy-saving measures. Government policies may incentivize the adoption of IEDs that contribute to achieving energy efficiency goals, fostering a market environment where manufacturers innovate to produce more energy-efficient devices.

By aligning with energy efficiency regulations, the IEDs market becomes an integral part of the broader strategy to create a more sustainable and environmentally friendly energy landscape.

Interoperability Standards for Smart Grids

Interoperability is crucial for the effective functioning of smart grids, and governments often play a role in setting standards to ensure seamless communication and coordination among various components, including Intelligent Electronic Devices (IEDs). Policies related to interoperability standards aim to create a unified and interconnected grid infrastructure.

Governments may collaborate with industry stakeholders to define and enforce standards that facilitate the integration of IEDs from different manufacturers into a cohesive smart grid ecosystem. These policies encourage the development of IEDs that adhere to established communication protocols, ensuring compatibility and interoperability across diverse grid components.

By promoting interoperability standards, governments contribute to the creation of more flexible, scalable, and efficient smart grid systems, driving the demand for IEDs in the market.

Research and Development Incentives

To foster innovation and technological advancements in the field of Intelligent Electronic Devices (IEDs), governments may implement policies that provide incentives for research and development (R&D) activities. These incentives can take the form of tax credits, grants, or subsidies aimed at encouraging companies to invest in the development of cutting-edge IED technologies.

Governments recognize the role of IEDs in shaping the future of energy systems, and by promoting R&D initiatives, they aim to accelerate the pace of innovation in this sector. These policies incentivize manufacturers to explore new functionalities, improve efficiency, and enhance the overall capabilities of IEDs.

By fostering a conducive environment for research and development, governments contribute to the continuous evolution and competitiveness of the global IEDs market.

In conclusion, government policies related to grid modernization, renewable energy integration, cybersecurity, energy efficiency, interoperability standards, and research and development incentives play a significant role in shaping the landscape of the global Intelligent Electronic Devices market. These policies collectively influence the adoption, innovation, and integration of IEDs in diverse sectors, contributing to the evolution of intelligent and resilient energy systems worldwide.

Key Market Challenges

Interoperability and Standardization Complexities

One of the prominent challenges facing the global Intelligent Electronic Devices (IEDs) market revolves around interoperability and standardization complexities. As the demand for sophisticated IEDs continues to grow across diverse applications, ensuring seamless communication and integration between devices from different manufacturers becomes a significant hurdle.

The IEDs market comprises a wide array of devices, each designed with specific functionalities to cater to various sectors such as energy, industrial automation, and smart infrastructure. However, the lack of universally accepted communication protocols and standards poses a significant challenge. Different manufacturers often employ proprietary technologies and communication protocols, hindering the interoperability of IEDs in mixed-device environments.

Interoperability challenges can lead to integration difficulties, increased implementation costs, and limitations in the scalability of intelligent systems. For example, in smart grids where various IEDs need to work in concert to ensure efficient energy distribution and management, interoperability issues may result in suboptimal performance and hinder the realization of the full potential of these systems.

Governments and industry stakeholders recognize the importance of addressing these challenges and may play a crucial role in establishing and enforcing interoperability standards. However, achieving consensus on standardized protocols across the diverse landscape of IEDs remains a complex task. The challenge persists as the market continues to evolve with new entrants and technological advancements, requiring continuous efforts to ensure compatibility and seamless integration.

Overcoming interoperability and standardization challenges demands collaborative efforts from manufacturers, industry organizations, and policymakers. Developing and adopting open standards can facilitate smoother integration of IEDs, enhance flexibility in system design, and pave the way for a more interconnected and efficient intelligent devices market.

Cybersecurity Risks and Threats

The increasing digitization and connectivity of critical infrastructure, including the widespread deployment of Intelligent Electronic Devices (IEDs), bring forth a significant challenge: cybersecurity risks and threats. As IEDs become integral components of smart grids, industrial automation systems, and other applications, they also become potential targets for cyberattacks.

Cybersecurity challenges in the IEDs market are multifaceted. These devices are often deployed in remote and distributed environments, making them susceptible to various cyber threats such as unauthorized access, data breaches, and manipulation of control systems. A successful cyberattack on IEDs can have severe consequences, including disruptions to essential services, compromised grid reliability, and potential safety hazards.

The challenge is exacerbated by the evolving nature of cyber threats, with attackers becoming increasingly sophisticated in their methods. IEDs, with their communication capabilities and integration into critical infrastructure, are attractive targets for malicious actors seeking to exploit vulnerabilities for financial gain, political motives, or other malicious purposes.

Addressing cybersecurity challenges in the IEDs market requires a holistic approach involving manufacturers, system integrators, governments, and cybersecurity experts. Manufacturers must prioritize security features in the design and development of IEDs, incorporating robust authentication mechanisms, encryption protocols, and continuous monitoring capabilities.

Governments play a crucial role in establishing and enforcing cybersecurity standards and regulations specific to the IEDs market. These regulations may mandate compliance with cybersecurity frameworks, regular security assessments, and the implementation of measures to detect and mitigate potential threats.

Additionally, ongoing cybersecurity education and awareness programs are essential to ensure that end-users and operators of IEDs understand the risks and take appropriate measures to safeguard their systems. Collaborative efforts between public and private sectors are crucial to staying ahead of evolving cybersecurity threats and maintaining the integrity and security of global intelligent device deployments.

In conclusion, the challenges of interoperability and standardization, along with cybersecurity risks and threats, pose significant obstacles to the growth and stability of the global Intelligent Electronic Devices market. Addressing these challenges requires concerted efforts from industry stakeholders, governments, and cybersecurity experts to establish common standards, enhance device security, and create a resilient and secure environment for the deployment of intelligent devices in critical infrastructure.

Segmental Insights

Type Insights

The Digital Relay segment held the largest Market share in 2022. Digital relays offer advanced protection and control features. They can rapidly detect abnormalities, such as overcurrent, overvoltage, and faults, and respond swiftly to isolate the affected part of the power system. This capability is critical for preventing damage to equipment and ensuring the reliability of the electrical grid.

Digital relays are highly flexible and programmable. This allows utilities and operators to customize protection settings based on specific system requirements. The ability to reconfigure relay settings remotely makes them adaptable to different operational scenarios and evolving grid conditions.

Digital relays are equipped with communication interfaces, enabling seamless integration into supervisory control and data acquisition (SCADA) systems and other communication networks. This facilitates real-time monitoring, data exchange, and remote control, enhancing overall grid visibility and management.

The increasing adoption of smart grids, which involve the integration of digital technologies for efficient energy management, has driven the demand for digital relays. These relays are integral to the implementation of smart grid functionalities, including demand response, grid automation, and the integration of renewable energy sources.

Digital relays often come with diagnostic features that provide insights into the health and performance of the power system. This diagnostic information aids in predictive maintenance, reducing downtime, and enhancing the overall reliability of the electrical infrastructure.

Digital relays are often designed to comply with international standards such as IEC 61850, which defines communication protocols for the substation automation and integration of intelligent electronic devices. This standardization facilitates interoperability between devices from different manufacturers and contributes to the seamless integration of digital relays into diverse systems.

Recognizing the increasing importance of cybersecurity in critical infrastructure, digital relays often incorporate robust security features. This includes secure communication protocols, encryption, and authentication mechanisms to protect against cyber threats.

Over time, advancements in technology have led to increased cost-effectiveness in the production of digital relays. The decreasing costs, coupled with the benefits offered by these relays in terms of advanced protection and control, make them an attractive and economically viable choice for utilities and industries.

Application Insights

The Automation segment held the largest Market share in 2022. Automation is a cornerstone for enhancing operational efficiency in various industries. IEDs contribute to automating tasks and processes, reducing manual intervention, and streamlining operations. This efficiency gain is particularly crucial in industries where precision and speed are paramount.

In manufacturing and industrial settings, IEDs play a pivotal role in automating complex processes. They facilitate real-time monitoring and control of equipment, ensuring seamless operation and reducing the risk of errors. This is essential for optimizing production and maintaining consistent product quality.

Automation is integral to the modernization of power grids, and IEDs are key components in smart grid automation. They enable utilities to remotely monitor, control, and automate various functions in the electricity distribution network. Automation in smart grids enhances grid reliability, enables rapid response to faults, and supports the integration of renewable energy sources.

IEDs enable remote monitoring and control of critical systems and equipment. This capability is particularly valuable in industries where assets are distributed across large areas or are located in challenging environments. Remote monitoring ensures quick response times to issues and reduces the need for physical presence at the site.

IEDs offer a high degree of adaptability and customization. This allows industries to tailor automation solutions to their specific needs. The flexibility of IEDs in terms of programmability and configuration makes them versatile tools for addressing diverse automation requirements.

The emergence of Industry 4.0, characterized by the integration of digital technologies into industrial processes, has further propelled the importance of automation. IEDs contribute to the realization of Industry 4.0 principles by providing the intelligence and connectivity required for smart and automated manufacturing environments.

In sectors such as smart buildings and energy management systems, IEDs support automation for optimizing energy consumption. They enable the implementation of energy-efficient strategies, such as demand response and load shedding, contributing to sustainability goals.

Automation, facilitated by IEDs, reduces reliance on manual labor for routine and repetitive tasks. This not only improves efficiency but also minimizes the potential for human error, enhancing overall system reliability.

Regional Insights

North America:

North America stands as a major hub for IEDs adoption, driven by robust technological infrastructure, a focus on grid modernization, and stringent regulatory frameworks. The United States, in particular, leads the region with significant investments in smart grid initiatives. The push towards renewable energy integration, coupled with the need for grid resilience, has propelled the demand for IEDs in this market. The U.S. Federal Energy Regulatory Commission's (FERC) policies supporting grid modernization act as a catalyst, fostering innovation and adoption of IEDs across the energy sector.

Europe:

Europe exhibits a strong commitment to sustainability and energy efficiency, making it a key player in the global IEDs market. The European Union's initiatives, such as the Clean Energy for All Europeans package, drive investments in smart grids and encourage the deployment of IEDs. Countries like Germany, with its focus on Industry 4.0, contribute to the growth of the IEDs market in the industrial automation sector. Additionally, Europe's emphasis on cybersecurity regulations, particularly in critical infrastructure, impacts the design and adoption of secure IEDs.

Asia-Pacific:

The Asia-Pacific region showcases dynamic growth in the IEDs market, attributed to rapid industrialization, urbanization, and the increasing demand for electricity. Countries like China and India are investing heavily in smart grid projects to address their evolving energy needs. The integration of IEDs in the industrial landscape is driven by initiatives like "Made in China 2025" and "Smart Cities Mission" in India. Moreover, the region's inclination towards renewable energy sources further fuels the adoption of IEDs for efficient grid management.

Key Market Players

ABB Ltd

Schneider Electric S.E.

Siemens AG

Honeywell International Inc.

Eaton Corporation PLC

Rockwell Automation Inc.

General Electric SE

Cisco Systems Inc.

NovaTech LLC

SUBNET Solutions Inc.

Report Scope:

In this report, the Global Intelligent Electronic Devices Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Intelligent Electronic Devices Market, By Type:

  • Digital Relay
  • Voltage Regulator
  • Protection Relay
  • Circuit Breaker Controller
  • Load Tap Changer Controller
  • Recloser Controller
  • Capacitor Bank Switch

Intelligent Electronic Devices Market, By Application:

  • Automation
  • Condition Monitoring
  • Traction Signalling & Control System

Intelligent Electronic Devices Market, By Industry Vertical:

  • Automotive
  • Energy&Power
  • Food & Beverages
  • Pharmaceutical

Intelligent Electronic Devices Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait
  • Turkey

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Intelligent Electronic Devices Market.

Available Customizations:

  • Global Intelligent Electronic Devices Market report with the given Market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional Market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Voice of Customer

5. Global Intelligent Electronic Devices Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Digital Relay, Voltage Regulator, Protection Relay, Circuit Breaker Controller, Load Tap Changer Controller, Recloser Controller, Capacitor Bank Switch),
    • 5.2.2. By Application (Automation, Condition Monitoring, Traction Signalling & Control System),
    • 5.2.3. By Industry Vertical (Automotive, Energy&Power, Food & Beverages, Pharmaceutical)
    • 5.2.4. By Region
    • 5.2.5. By Company (2022)
  • 5.3. Market Map

6. North America Intelligent Electronic Devices Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Application
    • 6.2.3. By Industry Vertical
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Intelligent Electronic Devices Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By Industry Vertical
    • 6.3.2. Canada Intelligent Electronic Devices Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By Industry Vertical
    • 6.3.3. Mexico Intelligent Electronic Devices Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By Industry Vertical

7. Europe Intelligent Electronic Devices Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Application
    • 7.2.3. By Industry Vertical
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Intelligent Electronic Devices Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By Industry Vertical
    • 7.3.2. United Kingdom Intelligent Electronic Devices Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By Industry Vertical
    • 7.3.3. Italy Intelligent Electronic Devices Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By Industry Vertical
    • 7.3.4. France Intelligent Electronic Devices Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By Industry Vertical
    • 7.3.5. Spain Intelligent Electronic Devices Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By Industry Vertical

8. Asia-Pacific Intelligent Electronic Devices Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Application
    • 8.2.3. By Industry Vertical
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Intelligent Electronic Devices Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By Industry Vertical
    • 8.3.2. India Intelligent Electronic Devices Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By Industry Vertical
    • 8.3.3. Japan Intelligent Electronic Devices Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By Industry Vertical
    • 8.3.4. South Korea Intelligent Electronic Devices Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By Industry Vertical
    • 8.3.5. Australia Intelligent Electronic Devices Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By Industry Vertical

9. South America Intelligent Electronic Devices Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Application
    • 9.2.3. By Industry Vertical
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Intelligent Electronic Devices Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By Industry Vertical
    • 9.3.2. Argentina Intelligent Electronic Devices Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By Industry Vertical
    • 9.3.3. Colombia Intelligent Electronic Devices Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By Industry Vertical

10. Middle East and Africa Intelligent Electronic Devices Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Application
    • 10.2.3. By Industry Vertical
    • 10.2.4. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Intelligent Electronic Devices Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By Industry Vertical
    • 10.3.2. Saudi Arabia Intelligent Electronic Devices Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By Industry Vertical
    • 10.3.3. UAE Intelligent Electronic Devices Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By Industry Vertical
    • 10.3.4. Kuwait Intelligent Electronic Devices Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Application
        • 10.3.4.2.3. By Industry Vertical
    • 10.3.5. Turkey Intelligent Electronic Devices Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Type
        • 10.3.5.2.2. By Application
        • 10.3.5.2.3. By Industry Vertical

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

13. Company Profiles

  • 13.1. ABB Ltd
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. Schneider Electric S.E.
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel/Key Contact Person
    • 13.2.5. Key Product/Services Offered
  • 13.3. Siemens AG
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel/Key Contact Person
    • 13.3.5. Key Product/Services Offered
  • 13.4. Honeywell International Inc.
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel/Key Contact Person
    • 13.4.5. Key Product/Services Offered
  • 13.5. Eaton Corporation PLC
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel/Key Contact Person
    • 13.5.5. Key Product/Services Offered
  • 13.6. Rockwell Automation Inc.
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel/Key Contact Person
    • 13.6.5. Key Product/Services Offered
  • 13.7. General Electric SE
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel/Key Contact Person
    • 13.7.5. Key Product/Services Offered
  • 13.8. Cisco Systems Inc.
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel/Key Contact Person
    • 13.8.5. Key Product/Services Offered
  • 13.9. NovaTech LLC
    • 13.9.1. Business Overview
    • 13.9.2. Key Revenue and Financials
    • 13.9.3. Recent Developments
    • 13.9.4. Key Personnel/Key Contact Person
    • 13.9.5. Key Product/Services Offered
  • 13.10. SUBNET Solutions Inc.
    • 13.10.1. Business Overview
    • 13.10.2. Key Revenue and Financials
    • 13.10.3. Recent Developments
    • 13.10.4. Key Personnel/Key Contact Person
    • 13.10.5. Key Product/Services Offered

14. Strategic Recommendations

15. About Us & Disclaimer