封面
市场调查报告书
商品编码
1406757

异噁唑草酮市场 - 2018-2028 年全球产业规模、份额、趋势、机会和预测,按农作物(蔬菜、甘蔗、杏仁、桃子、玉米、苹果等)地区和竞争细分

Isoxaflutole Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Crops (Vegetables, Sugarcane, Almonds, Peaches, Maize, Apple, Others) Region and Competition

出版日期: | 出版商: TechSci Research | 英文 190 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2022 年,全球异噁唑草酮市值为 1.6113 亿美元,预计在预测期内将强劲增长,到 2028 年复合CAGR为5.02%。全球异噁唑草酮市场正在强劲增长,这主要是由于全球人口不断增长和随之而来的粮食需求激增。随着世界人口持续成长,农业系统生产更多粮食的压力增加。农民面临着提高农作物产量以满足不断增长的粮食需求的挑战,有效的杂草管理是实现这一目标的核心。异噁唑草酮是一种选择性除草剂,透过帮助农民对抗与作物争夺必需养分、水和阳光的入侵杂草,在现代农业中发挥关键作用。

由于可供耕种的耕地有限,气候变迁的不利影响带来了额外的挑战,因此对有效的杂草控制解决方案的需求变得至关重要。异噁唑草酮提供了一种有效且可靠的方法来应对这项挑战,使农民能够透过抑制杂草侵扰来最大限度地提高作物产量。这种除草剂对各种杂草的广谱控制使其成为玉米、大豆和甘蔗等一系列作物的多功能选择。

此外,基因改造(GM)作物(例如耐除草剂大豆和玉米)的采用进一步扩大了对异噁唑草酮的需求。这些基因改造作物经过精心设计,可以耐受异恶草醚等除草剂的使用,使农民能够在不损害作物的情况下消灭杂草。异噁唑草酮和耐除草剂基改作物之间的这种相容性使除草剂成为现代农业不可或缺的工具,有助于提高生产力以满足全球粮食需求。

市场概况
预测期 2024-2028
2022 年市场规模 16113万美元
2028 年市场规模 21440万美元
2023-2028 年CAGR 5.02%
成长最快的细分市场 亚太地区
最大的市场 北美洲

主要市场驱动因素

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
    • 主要市场区隔

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 主要产业伙伴
  • 主要协会和二手资料来源
  • 预测方法
  • 数据三角测量与验证
  • 假设和限制

第 3 章:执行摘要

  • 市场概况
  • 主要市场细分概述
  • 主要市场参与者概述
  • 重点地区/国家概况
  • 市场驱动因素、挑战、趋势概述

第 4 章:全球异噁唑草酮市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依农作物(蔬菜、甘蔗、杏仁、桃子、玉米、苹果、其他)
    • 按地区
    • 按公司划分 (2022)
  • 市场地图
    • 按农作物分类
    • 按地区

第 5 章:亚太地区异噁唑草酮市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按农作物分类
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国异噁唑草酮
    • 印度 异噁唑草酮
    • 澳洲异噁唑草酮
    • 日本异噁唑草酮
    • 韩国 异噁唑草酮

第 6 章:欧洲异噁唑草酮市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按农作物分类
    • 按国家/地区
  • 欧洲:国家分析
    • 法国
    • 德国
    • 西班牙
    • 义大利
    • 英国

第 7 章:北美异噁唑草酮市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按农作物分类
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第 8 章:南美洲异噁唑草酮市场前景

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按农作物分类
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第 9 章:中东和非洲异噁唑草酮市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按农作物分类
    • 按国家/地区
  • MEA:国家分析
    • 南非 异噁唑草酮
    • 沙乌地阿拉伯 异噁唑草酮
    • 阿联酋异噁唑草酮
    • 埃及 异噁唑草酮

第 10 章:市场动态

  • 司机
  • 挑战

第 11 章:市场趋势与发展

  • 最近的发展
  • 产品发布
  • 併购

第 12 章:全球异噁唑草酮市场:SWOT 分析

第 13 章:波特的五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第14章:竞争格局

  • 巴斯夫公司
    • Business Overview
    • Company Snapshot
    • Products & Services
    • Current Capacity Analysis
    • Financials (In case of listed)
    • Recent Developments
    • SWOT Analysis
  • 拜耳公司
  • CHEMOS 有限公司
  • 默克公司
  • 圣克鲁斯生物技术有限公司
  • 上海亿通化工有限公司
  • 石家庄艾维纳生物科技有限公司
  • 万科化学有限公司

第 15 章:策略建议

第 16 章:关于我们与免责声明

简介目录
Product Code: 19556

Global Isoxaflutole Market has valued at USD 161.13 million in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 5.02% through 2028. The global isoxaflutole market is witnessing robust growth, primarily fueled by the ever-growing global population and the consequent surge in food demand. As the world's population continues to expand, the pressure on agricultural systems to produce more food intensifies. Farmers are confronted with the challenge of increasing crop yields to meet the rising demand for food, and effective weed management is central to achieving this goal. Isoxaflutole, a selective herbicide, plays a pivotal role in modern agriculture by helping farmers combat invasive weeds that compete with crops for essential nutrients, water, and sunlight.

With limited arable land available for cultivation and the adverse effects of climate change posing additional challenges, the need for efficient weed control solutions has become paramount. Isoxaflutole offers an effective and reliable means of addressing this challenge, allowing farmers to maximize crop yields by curbing weed infestations. This herbicide's broad-spectrum control of various weed species makes it a versatile choice for a range of crops, including corn, soybeans, and sugarcane.

Furthermore, the adoption of genetically modified (GM) crops, such as herbicide-tolerant soybeans and corn, has further amplified the demand for isoxaflutole. These GM crops have been engineered to withstand herbicide applications, including isoxaflutole, enabling farmers to target weeds without harming their crops. This compatibility between isoxaflutole and herbicide-tolerant GM crops has made the herbicide an indispensable tool for modern agriculture, contributing to increased productivity in response to the global food demand.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 161.13 Million
Market Size 2028USD 214.40 Million
CAGR 2023-20285.02%
Fastest Growing SegmentAsia Pacific
Largest MarketNorth America

Key Market Drivers

Adoption of Genetically Modified (GM) Crops

The global isoxaflutole market has experienced a significant boost thanks to the widespread adoption of genetically modified (GM) crops, which has revolutionized modern agriculture. GM crops engineered for herbicide tolerance, such as herbicide-tolerant soybeans and corn, have reshaped farming practices and contributed to the increased demand for herbicides like isoxaflutole.

GM crops engineered to tolerate specific herbicides, including isoxaflutole, offer several advantages to farmers. They allow for efficient and targeted weed control, as the crops can withstand herbicide applications that would otherwise harm non-GM counterparts. This compatibility with isoxaflutole has made the herbicide an indispensable tool for weed management in GM crop systems.

Farmers who cultivate herbicide-tolerant GM crops find that isoxaflutole provides a powerful option for controlling weeds effectively. This results in improved crop yields and reduced competition between crops and invasive weed species. Additionally, the use of isoxaflutole in GM crop systems can streamline weed management practices, leading to increased efficiency and reduced labor and input costs.

The adoption of GM crops, in conjunction with isoxaflutole, is particularly advantageous in regions where weed pressure is high or where traditional weed management methods have become less effective due to weed resistance to other herbicides. Isoxaflutole's unique mode of action makes it effective against a broad spectrum of weed species, including those that have developed resistance to other herbicides. This versatility further enhances its appeal to farmers relying on GM crop technology.

Resistance Management

Resistance management is a critical factor driving the growth of the global isoxaflutole market. In the world of agriculture, weeds have proven to be remarkably adaptable, developing resistance to various herbicides over time. This poses a significant challenge for farmers, as they must constantly seek innovative solutions to combat these resilient weed populations. Isoxaflutole has emerged as a valuable tool in this ongoing battle against herbicide resistance.

The unique mode of action of isoxaflutole makes it highly effective against a wide range of weed species, including those that have developed resistance to other herbicides. This versatility is a key advantage in resistance management strategies. When farmers encounter weed populations that are no longer effectively controlled by traditional herbicides, isoxaflutole can provide a new and effective means of managing these resistant weeds.

Moreover, isoxaflutole's inclusion in integrated weed management programs contributes to its effectiveness in resistance management. By rotating or alternating herbicides with different modes of action, farmers can slow down the development of resistance in weed populations. Isoxaflutole, as a unique herbicide, fits well into such rotation schemes, helping to preserve its efficacy over time.

The importance of resistance management in modern agriculture cannot be overstated. As weed populations continue to adapt and evolve, farmers must stay ahead of the curve by adopting innovative herbicides like isoxaflutole. By incorporating isoxaflutole into their weed control strategies and utilizing it strategically within integrated approaches, farmers can better manage weed resistance while maintaining or even improving crop yields.

Resistance management is a key driver behind the growing demand for isoxaflutole in the global agricultural sector. The herbicide's unique mode of action, versatility against resistant weed species, and compatibility with integrated weed management practices position it as an essential tool for farmers facing the ongoing challenge of herbicide resistance. As weed populations continue to evolve, isoxaflutole's role in resistance management is expected to play a pivotal role in sustaining crop productivity and food security worldwide.

Growing Global Population and Food Demand

The global isoxaflutole market is witnessing robust growth, primarily fueled by the ever-growing global population and the consequent surge in food demand. As the world's population continues to expand, the pressure on agricultural systems to produce more food intensifies. Farmers are confronted with the challenge of increasing crop yields to meet the rising demand for food, and effective weed management is central to achieving this goal. Isoxaflutole, a selective herbicide, plays a pivotal role in modern agriculture by helping farmers combat invasive weeds that compete with crops for essential nutrients, water, and sunlight.

With limited arable land available for cultivation and the adverse effects of climate change posing additional challenges, the need for efficient weed control solutions has become paramount. Isoxaflutole offers an effective and reliable means of addressing this challenge, allowing farmers to maximize crop yields by curbing weed infestations. This herbicide's broad-spectrum control of various weed species makes it a versatile choice for a range of crops, including corn, soybeans, and sugarcane.

Furthermore, the adoption of genetically modified (GM) crops, such as herbicide-tolerant soybeans and corn, has further amplified the demand for isoxaflutole. These GM crops have been engineered to withstand herbicide applications, including isoxaflutole, enabling farmers to target weeds without harming their crops. This compatibility between isoxaflutole and herbicide-tolerant GM crops has made the herbicide an indispensable tool for modern agriculture, contributing to increased productivity in response to the global food demand.

Key Market Challenges

Herbicide Resistance

Herbicide resistance has emerged as a significant challenge in the global isoxaflutole market, casting a shadow over its effectiveness in weed control and sustainability in modern agriculture. Isoxaflutole, a selective herbicide widely used to combat weeds in various crops, has faced increasing resistance issues in recent years, undermining its role as a reliable weed management tool.

One of the primary drivers of herbicide resistance is the repeated and continuous use of isoxaflutole in crop production. Weeds are incredibly adaptable and have the ability to develop resistance to herbicides over time through natural selection. As farmers rely on isoxaflutole for weed control season after season, weed populations can gradually evolve to become less susceptible to the herbicide's mode of action.

The consequences of herbicide resistance are far-reaching. When resistant weed populations proliferate, they can compete with crops for vital resources, reducing crop yields and agricultural productivity. This, in turn, places economic strain on farmers and raises concerns about global food security.

To combat herbicide resistance, farmers must adopt integrated weed management strategies that include rotating or alternating herbicides with different modes of action. However, this can be a complex and costly endeavor, as it requires a thorough understanding of local weed populations, careful planning, and potentially the use of multiple herbicides. These strategies are essential to slow down the development of resistance and prolong the efficacy of isoxaflutole. Additionally, herbicide resistance management necessitates proactive measures, such as weed monitoring, early detection of resistance, and education for farmers on best practices.

Shift Towards Sustainable Agriculture

The global isoxaflutole market faces a significant hurdle in the form of a growing shift towards sustainable agriculture practices. While isoxaflutole has long been valued for its efficacy in weed control, the increasing emphasis on environmental stewardship and sustainable farming methods is putting pressure on the continued use of this herbicide.

Sustainable agriculture focuses on minimizing the environmental impact of farming operations, reducing chemical inputs, and promoting practices that maintain soil health and biodiversity. As a result, there is an increasing demand for eco-friendly and less chemically intensive alternatives to traditional herbicides like isoxaflutole.

Environmental concerns associated with isoxaflutole include its potential to leach into groundwater and surface water, posing risks to aquatic ecosystems. Additionally, there are concerns about herbicide residues in food products and their potential impact on human health. These concerns have led to stricter regulations and requirements for the use of isoxaflutole in many regions, adding to the challenges faced by the isoxaflutole market.

Farmers are increasingly exploring and adopting sustainable weed management practices, such as organic farming, cover cropping, crop rotation, and mechanical weed control methods. These practices aim to reduce the reliance on synthetic chemicals like isoxaflutole, aligning with the principles of sustainable agriculture.

Furthermore, the shift towards sustainable agriculture is being driven by consumer demand. Consumers are becoming more conscious of the environmental and health impacts of their food choices. As a result, there is a growing market for organic and pesticide-free produce, which incentivizes farmers to adopt practices that minimize the use of synthetic herbicides, including isoxaflutole.

Key Market Trends

Shift Towards Sustainable Agriculture

The global isoxaflutole market is experiencing a boost thanks to the growing shift towards sustainable agriculture practices. Sustainable agriculture, characterized by reduced environmental impact and a focus on responsible resource management, has become a dominant trend in modern farming. Isoxaflutole, a selective herbicide, is playing a pivotal role in supporting these sustainable practices, and this shift is positively impacting its market demand.

One of the key drivers of this trend is the increasing awareness and concern for environmental sustainability. Consumers, regulatory bodies, and farmers alike are increasingly recognizing the importance of reducing the ecological footprint of agricultural activities. Isoxaflutole, when used judiciously, can contribute to sustainable weed management by minimizing the need for extensive tillage, which can lead to soil erosion and compaction. The herbicide's targeted action helps conserve soil structure and biodiversity, aligning with sustainable farming principles.

Furthermore, sustainable agriculture emphasizes the reduction of chemical inputs, including herbicides. Isoxaflutole is compatible with this objective because it offers efficient weed control at low application rates. Farmers can use isoxaflutole sparingly, reducing their reliance on more aggressive herbicides and minimizing the overall chemical load in the environment.

Crop rotation, an essential component of sustainable farming, benefits from isoxaflutole's versatility. The herbicide's effectiveness against a wide spectrum of weed species makes it a valuable tool for maintaining diverse crop rotations, which can improve soil health, reduce pest pressure, and promote overall sustainability.

Additionally, sustainable agriculture practices often prioritize the preservation of water resources. Isoxaflutole's limited mobility in soil and its lower leaching potential compared to some other herbicides align with these water conservation goals. This can be particularly important in regions with vulnerable groundwater or surface water resources.

Global Expansion of Commercial Agriculture

The global expansion of commercial agriculture has emerged as a significant driver behind the rising demand for isoxaflutole, bolstering its position in the agrochemical market. As the world's population continues to grow, so does the need for increased agricultural productivity to ensure food security. Commercial agriculture, characterized by large-scale, mechanized farming operations, is at the forefront of this effort, and isoxaflutole plays a crucial role in supporting these expansive ventures.

One of the primary reasons isoxaflutole is gaining prominence in commercial agriculture is its effectiveness in weed control. Weeds pose a persistent threat to crop yields, and their unchecked growth can significantly diminish harvests. Isoxaflutole's unique mode of action allows it to combat a broad spectrum of weed species effectively, providing commercial farmers with a valuable tool to ensure the health and productivity of their crops.

The expansion of commercial agriculture is not limited to established regions; emerging economies in Asia-Pacific and Latin America are witnessing rapid growth in large-scale farming. As these regions modernize their agricultural practices and increase their production capacities, the demand for efficient herbicides like isoxaflutole rises in tandem.

Moreover, commercial agriculture often involves the cultivation of high-value crops such as corn, soybeans, and sugarcane, where maximizing yields is of paramount importance. Isoxaflutole's ability to help maintain clean and weed-free fields is particularly appealing to commercial growers seeking to optimize their output and profitability.

The global nature of commercial agriculture also means that isoxaflutole has become an essential tool for farmers across various climates and geographical regions. Its adaptability to different cropping systems and its efficacy in managing diverse weed species make it a versatile solution for large-scale farming operations worldwide.

Segmental Insights

Crops Insights

Based on the Crops, Maize emerged as the dominant segment in the global market for Global Isoxaflutole Market in 2022. Maize is one of the most widely grown crops globally, with production spanning various regions and climates. It serves as a staple food for many populations and plays a crucial role in livestock feed production. The extensive cultivation of maize creates a substantial demand for herbicides like isoxaflutole to manage weed infestations effectively. Maize fields are susceptible to weed competition due to their relatively wide spacing between rows and the tall, upright growth of maize plants. Effective weed control is vital to prevent yield losses and maintain the quality of the harvest. Isoxaflutole is a preferred herbicide in maize farming due to its efficacy in controlling a wide range of weed species, which can otherwise reduce crop yields significantly.

Regional Insights

Asia-pacific emerged as the dominant player in the global Isoxaflutole Market in 2022, holding the largest market share. The Asia-Pacific region boasts a diverse range of climates and ecosystems, making it a hotbed for agricultural activity. Countries like China and India have vast expanses of arable land dedicated to crop cultivation, contributing significantly to the global demand for herbicides like isoxaflutole. The region is home to a substantial portion of the world's population, resulting in high food demand. To meet this demand, farmers in Asia-Pacific often employ modern agricultural practices to maximize crop yields, creating a substantial need for effective weed control solutions like isoxaflutole.

Key Market Players

BASF SE

Bayer AG

CHEMOS GmbH & Co. KG

Merck KGaA

Santa Cruz Biotechnology, Inc.

Shanghai E-Tong Chemical Co., Ltd.

Shijiazhuang Awiner Biotechnology ltd

Wanko Chemical Co. Ltd

Report Scope:

In this report, the Global Isoxaflutole Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Global Isoxaflutole Market, By Crops:

  • Vegetables
  • Sugarcane
  • Almonds
  • Peaches
  • Maize
  • Apple
  • Others

Global Isoxaflutole Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait
  • Turkey
  • Egypt

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Isoxaflutole Market.

Available Customizations:

  • Global Isoxaflutole Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Global Isoxaflutole Market Outlook

  • 4.1. Market Size & Forecast
    • 4.1.1. By Value
  • 4.2. Market Share & Forecast
    • 4.2.1. By Crops (Vegetables, Sugarcane, Almonds, Peaches, Maize, Apple, Others)
    • 4.2.2. By Region
    • 4.2.3. By Company (2022)
  • 4.3. Market Map
    • 4.3.1. By Crops
    • 4.3.2. By Region

5. Asia Pacific Isoxaflutole Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Crops
    • 5.2.2. By Country
  • 5.3. Asia Pacific: Country Analysis
    • 5.3.1. China Isoxaflutole Market Outlook
      • 5.3.1.1. Market Size & Forecast
        • 5.3.1.1.1. By Value
      • 5.3.1.2. Market Share & Forecast
        • 5.3.1.2.1. By Crops
    • 5.3.2. India Isoxaflutole Market Outlook
      • 5.3.2.1. Market Size & Forecast
        • 5.3.2.1.1. By Value
      • 5.3.2.2. Market Share & Forecast
        • 5.3.2.2.1. By Crops
    • 5.3.3. Australia Isoxaflutole Market Outlook
      • 5.3.3.1. Market Size & Forecast
        • 5.3.3.1.1. By Value
      • 5.3.3.2. Market Share & Forecast
        • 5.3.3.2.1. By Crops
    • 5.3.4. Japan Isoxaflutole Market Outlook
      • 5.3.4.1. Market Size & Forecast
        • 5.3.4.1.1. By Value
      • 5.3.4.2. Market Share & Forecast
        • 5.3.4.2.1. By Crops
    • 5.3.5. South Korea Isoxaflutole Market Outlook
      • 5.3.5.1. Market Size & Forecast
        • 5.3.5.1.1. By Value
      • 5.3.5.2. Market Share & Forecast
        • 5.3.5.2.1. By Crops

6. Europe Isoxaflutole Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Crops
    • 6.2.2. By Country
  • 6.3. Europe: Country Analysis
    • 6.3.1. France Isoxaflutole Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Crops
    • 6.3.2. Germany Isoxaflutole Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Crops
    • 6.3.3. Spain Isoxaflutole Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Crops
    • 6.3.4. Italy Isoxaflutole Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Crops
    • 6.3.5. United Kingdom Isoxaflutole Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Crops

7. North America Isoxaflutole Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Crops
    • 7.2.2. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Isoxaflutole Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Crops
    • 7.3.2. Mexico Isoxaflutole Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Crops
    • 7.3.3. Canada Isoxaflutole Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Crops

8. South America Isoxaflutole Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Crops
    • 8.2.2. By Country
  • 8.3. South America: Country Analysis
    • 8.3.1. Brazil Isoxaflutole Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Crops
    • 8.3.2. Argentina Isoxaflutole Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Crops
    • 8.3.3. Colombia Isoxaflutole Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Crops

9. Middle East and Africa Isoxaflutole Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Crops
    • 9.2.2. By Country
  • 9.3. MEA: Country Analysis
    • 9.3.1. South Africa Isoxaflutole Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Crops
    • 9.3.2. Saudi Arabia Isoxaflutole Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Crops
    • 9.3.3. UAE Isoxaflutole Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Crops
    • 9.3.4. Egypt Isoxaflutole Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Crops

10. Market Dynamics

  • 10.1. Drivers
  • 10.2. Challenges

11. Market Trends & Developments

  • 11.1. Recent Developments
  • 11.2. Product Launches
  • 11.3. Mergers & Acquisitions

12. Global Isoxaflutole Market: SWOT Analysis

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Product

14. Competitive Landscape

  • 14.1. BASF SE
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Current Capacity Analysis
    • 14.1.5. Financials (In case of listed)
    • 14.1.6. Recent Developments
    • 14.1.7. SWOT Analysis
  • 14.2. Bayer AG
  • 14.3. CHEMOS GmbH & Co. KG
  • 14.4. Merck KGaA
  • 14.5. Santa Cruz Biotechnology, Inc.
  • 14.6. Shanghai E-Tong Chemical Co., Ltd.
  • 14.7. Shijiazhuang Awiner Biotechnology ltd
  • 14.8. Wanko Chemical Co. Ltd.

15. Strategic Recommendations

16. About Us & Disclaimer