封面
市场调查报告书
商品编码
1407593

陆上浮动太阳能市场 - 全球产业规模、份额、趋势、机会和预测,按组件、类型、按应用、地区、竞争细分,2018-2028 年

Onshore Floating Solar Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Type, By Application, By Region, By Competition, 2018-2028

出版日期: | 出版商: TechSci Research | 英文 189 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2022 年全球陆上浮动太阳能市场估值为 29 亿美元,预计在预测期内将强劲增长,到 2028 年复合CAGR为40.8%。在不断增长的需求推动下,全球陆上浮动太阳能市场正在经历显着增长。可持续和可再生能源解决方案。随着世界越来越关注减少碳排放和转向更清洁的能源,陆上浮动太阳能成为可行的创新选择。该市场的崛起可归因于其优化土地利用的能力,这使其在可用土地有限的地区特别有吸引力。陆上浮动太阳能装置具有提高能源生产效率、减少水蒸发和最小化环境影响等优点。此外,太阳能光电系统的技术进步和成本降低也有助于市场的扩张。政府、企业和投资者正在认识到陆上浮动太阳能作为实现能源转型目标的关键组成部分的潜力,促进这种永续能源解决方案在全球范围内的进一步开发和采用。

主要市场驱动因素

土地优化和不断增加的能源需求

市场概况
预测期 2024-2028
2022 年市场规模 29亿美元
2028 年市场规模 228亿美元
2023-2028 年CAGR 40.8%
成长最快的细分市场 追踪
最大的市场 亚太

全球陆上浮动太阳能市场的激增主要是由于迫切需要彻底改变土地利用以实现高效能太阳能发电。在传统太阳能装置争夺有限且日益稀缺的土地的世界中,特别是在人口稠密的地区,陆上浮动太阳能作为一种利用未充分利用的水体潜力的创新解决方案脱颖而出。这项驱动力源自于人们日益认识到优化土地利用的至关重要性,在湖泊、水库和池塘上部署陆上浮动太阳能电池阵列就是例证。这种策略性利用释放了陆地空间用于其他目的,减轻了可用土地资源的压力。全球能源需求的不断激增进一步凸显了这一紧迫性,强调了从现有土地中获得最大效用的必要性。除了满足不断增长的能源需求的迫切需求之外,陆上浮动太阳能专案还透过对与土地稀缺相关的不断升级的挑战做出务实的反应,在促进永续发展方面发挥关键作用。透过这种创新方法,陆上浮动太阳能不仅满足了能源格局的直接需求,而且还为协调能源生产与生态永续性的更广泛愿景做出了重大贡献,体现了太阳能发电未来的前瞻性范式。

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
    • 主要市场区隔

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 范围的製定
  • 假设和限制
  • 研究来源
    • 二次研究
    • 初步研究
  • 市场研究方法
    • 自下而上的方法
    • 自上而下的方法
  • 计算市场规模和市场份额所遵循的方法
  • 预测方法
    • 数据三角测量与验证

第 3 章:执行摘要

第 4 章:COVID-19 对全球陆上浮动太阳能市场的影响

第 5 章:客户之声

第 6 章:全球陆上浮动太阳能市场概述

第 7 章:全球陆上浮动太阳能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件(光伏组件、防雷系统、锚定係统、逆变器、其他)
    • 依类型(固定式、追踪式)
    • 按应用(灌溉、水力发电大坝、水处理、采石场和采矿)
    • 按地区(北美、欧洲、南美、中东和非洲、亚太地区)
  • 按公司划分 (2022)
  • 市场地图

第 8 章:北美陆上浮动太阳能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按类型
    • 按应用
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 9 章:欧洲陆上浮动太阳能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按类型
    • 按应用
    • 按国家/地区
  • 欧洲:国家分析
    • 德国
    • 法国
    • 英国
    • 义大利
    • 西班牙
    • 比利时

第 10 章:南美洲陆上浮动太阳能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按类型
    • 按应用
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 哥伦比亚
    • 阿根廷
    • 智利
    • 秘鲁

第 11 章:中东和非洲陆上浮动太阳能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按类型
    • 按应用
    • 按国家/地区
  • 中东和非洲:国家分析
    • 沙乌地阿拉伯
    • 阿联酋
    • 南非
    • 土耳其
    • 以色列

第 12 章:亚太地区陆上浮动太阳能市场展望

  • 市场规模及预测
    • 按组件
    • 按类型
    • 按应用
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国陆上浮动太阳能
    • 印度陆上浮动太阳能
    • 日本陆上浮动太阳能
    • 韩国陆上浮动太阳能
    • 澳洲陆上浮动太阳能
    • 印尼陆上浮动太阳能
    • 越南陆上浮动太阳能

第 13 章:市场动态

  • 司机
  • 挑战

第 14 章:市场趋势与发展

第 15 章:公司简介

  • 夏尔与泰尔国际
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 京瓷公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 瓦锡兰公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 基础建设产业
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 浮动电厂A/S
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 国家电力公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • SPG太阳能
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 斯维姆索尔有限公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 海洋太阳AS
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 原则动力公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered

第 16 章:策略建议

第 17 章:关于我们与免责声明

简介目录
Product Code: 20435

Global Onshore Floating Solar Market was valued at USD 2.9 Billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 40.8% through 2028. The global onshore floating solar market is experiencing significant growth, driven by the escalating demand for sustainable and renewable energy solutions. As the world increasingly focuses on reducing carbon emissions and transitioning towards cleaner energy sources, onshore floating solar emerges as a viable and innovative option. This market's rise can be attributed to its ability to optimize land use, making it particularly attractive in regions where available land is limited. Onshore floating solar installations offer advantages such as increased energy production efficiency, reduced water evaporation, and minimized environmental impact. Additionally, advancements in technology and cost reductions in solar photovoltaic systems contribute to the market's expansion. Governments, businesses, and investors are recognizing the potential of onshore floating solar as a crucial component in achieving energy transition goals, fostering further development and adoption of this sustainable energy solution on a global scale.

Key Market Drivers

Land Optimization and Increasing Energy Demand

Market Overview
Forecast Period2024-2028
Market Size 2022USD 2.9 Billion
Market Size 2028USD 22.8 Billion
CAGR 2023-202840.8%
Fastest Growing SegmentTracking
Largest MarketAsia-Pacific

The surge in the global onshore floating solar market is primarily fueled by a compelling need to revolutionize land use for the efficient generation of solar power. In a world where conventional solar installations vie for a finite and increasingly scarce expanse of land, particularly in densely populated regions, onshore floating solar stands out as an innovative solution harnessing the potential of underutilized water bodies. This driving force stems from a growing acknowledgment of the critical importance of optimizing land utilization, exemplified by the deployment of onshore floating solar arrays on lakes, reservoirs, and ponds. This strategic utilization liberates terrestrial space for alternative purposes, mitigating the strain on available land resources. The urgency is further underscored by the relentless surge in global energy demand, emphasizing the need to extract the maximum utility from existing land parcels. Beyond merely addressing the imperative of meeting escalating energy needs, onshore floating solar projects play a pivotal role in fostering sustainable development by providing a pragmatic response to the escalating challenges associated with land scarcity. Through this innovative approach, onshore floating solar not only meets the immediate demands of the energy landscape but also contributes significantly to the broader vision of harmonizing energy production with ecological sustainability, epitomizing a forward-thinking paradigm for the future of solar power generation.

Technological Advancements and Cost Reductions

A pivotal force propelling the ascent of the global onshore floating solar market lies in the relentless evolution of solar technology coupled with concurrent cost reductions. This dynamic synergy of technological advancement and financial feasibility has become a linchpin in the industry's rapid growth. Innovations in floating platforms, characterized by heightened efficiency and adaptability, have played a pivotal role in reshaping the landscape. Similarly, the development of robust anchoring systems has fortified the resilience and stability of onshore floating solar installations, allowing for deployment in a diverse range of water bodies. Notably, the augmentation of solar panel efficiency has emerged as a transformative facet, amplifying the appeal of onshore floating solar projects by optimizing energy capture. Equally pivotal is the reduction in costs associated with solar photovoltaic systems, a trend that has substantially enhanced the economic viability of onshore floating solar endeavors. As the expense of harnessing solar power continues to decrease, the feasibility of onshore floating solar projects is markedly heightened, attracting investors and stakeholders alike. The cumulative impact of these advancements extends beyond mere economic considerations, as they significantly elevate the overall performance and durability of floating solar arrays. This transformative progress is not only shaping the present competitiveness of onshore floating solar but is also instrumental in steering the industry toward achieving grid parity. The attainment of grid parity is a crucial milestone, positioning onshore floating solar as not only a technologically sophisticated and environmentally friendly solution but also a financially competitive option within the broader spectrum of renewable energy. In essence, the symbiotic relationship between technological innovation and cost reduction is ushering in an era where onshore floating solar is transitioning from a niche technology to a mainstream contender in the global renewable energy landscape, offering a sustainable and economically viable alternative for meeting the escalating demands of clean energy.

Environmental Sustainability and Climate Change Mitigation

The imperative to confront climate change and champion environmental sustainability stands out as a pivotal force propelling the expansion of the global onshore floating solar market. In this paradigm shift towards sustainable energy solutions, onshore floating solar installations emerge as a beacon of environmental stewardship, ushering in a host of ecological benefits. A foremost advantage lies in the reduction of water evaporation from covered reservoirs, a critical contribution to water conservation efforts. Simultaneously, the deployment of onshore floating solar arrays plays a key role in mitigating the proliferation of algae, fostering the health and balance of aquatic ecosystems. Moreover, by minimizing the impacts of land-use change, these installations circumvent the environmental disruptions associated with conventional solar projects on terrestrial landscapes. Against the backdrop of a planet grappling with the palpable consequences of climate change, the global community is intensifying its scrutiny of clean energy solutions that can meaningfully curb greenhouse gas emissions. Onshore floating solar, as an exemplar of harnessing sunlight to generate electricity without contributing to carbon emissions, aligns seamlessly with the overarching global commitment to transition towards a low-carbon and sustainable energy future. In essence, the ascendancy of onshore floating solar mirrors an evolving ethos wherein environmental responsibility converges with cutting-edge technology to forge a path towards a cleaner, more resilient planet.

Government Policies and Incentives

The pivotal role of government policies and incentives in propelling the global expansion of the onshore floating solar market cannot be overstated. Governments worldwide have come to recognize the paramount importance of embracing renewable energy as a linchpin for achieving energy security, curbing dependence on finite fossil fuel resources, and meeting ambitious climate goals. To catalyze this shift, governments deploy a multifaceted approach, deploying subsidies, tax incentives, and cultivating regulatory frameworks that foster a conducive environment for businesses and investors to engage in onshore floating solar projects. This strategic alignment of governmental initiatives with the objectives of the onshore floating solar market is transformative. Policymakers are increasingly integrating onshore floating solar into their broader renewable energy agendas, underscoring a commitment that transcends rhetoric and manifests in tangible support. This manifests not only in financial backing but also in the provision of regulatory assurances, creating a landscape ripe for accelerated project development. In essence, the synergy between governmental vision and industry objectives engenders an environment that not only spurs immediate growth but lays a robust foundation for the sustained and dynamic expansion of the onshore floating solar market on a global scale.

Water-Energy Nexus and Synergy with Hydropower Infrastructure

The intricate interplay between water resources and energy production emerges as a compelling impetus propelling the ascent of the onshore floating solar market. This dynamic relationship is underscored by the strategic integration of onshore floating solar projects with existing hydropower infrastructure, facilitating a symbiotic synergy between these two renewable energy sources. The coexistence of onshore floating solar arrays and hydropower installations on shared water bodies stands out as a strategic utilization of resources, maximizing overall energy output. This interdependence is particularly pertinent in regions grappling with the dual challenges of water scarcity and escalating energy demand. The concurrent deployment of onshore floating solar and hydropower offers a dual solution, addressing both imperatives simultaneously and demonstrating the adaptability of renewable energy systems to diverse environmental and societal needs. The resulting synergy not only amplifies energy generation but aligns seamlessly with the overarching objective of forging resilient, diversified energy systems capable of navigating the complexities of a rapidly evolving global landscape. In essence, the nexus between water resources and renewable energy stands as a testament to the transformative potential of onshore floating solar, offering a strategic and sustainable pathway to meet the intertwined challenges of water scarcity and surging energy requirements.

Key Market Challenges

Technical and Engineering Challenges

The global onshore floating solar market faces significant technical and engineering challenges that impede its widespread adoption. One key obstacle lies in the development of robust floating platforms capable of withstanding various environmental conditions, including strong winds, waves, and water currents. Designing floating structures that are both durable and cost-effective poses a complex engineering challenge. Additionally, ensuring the stability of solar panels on water surfaces without compromising efficiency or risking damage remains a critical concern. As projects expand into diverse geographical locations, addressing these technical challenges becomes imperative to guarantee the long-term viability and success of onshore floating solar installations.

Environmental Impact and Ecological Concerns

While onshore floating solar projects offer environmental benefits, they also present potential ecological challenges that must be carefully managed. Concerns include alterations to aquatic ecosystems, changes in water temperature, and impacts on aquatic flora and fauna beneath the solar panels. The shading effect created by the panels can affect the natural processes occurring in the water bodies, potentially disrupting local ecosystems. Proper environmental impact assessments and mitigation measures are essential to minimize any adverse effects on biodiversity. Striking a balance between renewable energy generation and preserving the ecological integrity of water bodies is a complex challenge that requires close collaboration between stakeholders, including environmental experts, policymakers, and project developers.

Regulatory and Permitting Hurdles

The growth of the onshore floating solar market is hindered by regulatory and permitting challenges that vary across different regions. Obtaining the necessary approvals for deploying solar installations on water bodies involves navigating a complex regulatory landscape. Issues such as land ownership, water rights, and environmental regulations add layers of complexity to the permitting process. Inconsistent or unclear policies can create uncertainties for investors and developers, leading to delays and increased project costs. Streamlining regulatory frameworks and establishing standardized permitting processes specific to onshore floating solar projects are essential to foster a conducive environment for industry growth and facilitate the deployment of these innovative renewable energy solutions.

Financing and Economic Viability

The economic viability of onshore floating solar projects remains a challenge, primarily due to the higher upfront costs associated with floating platforms and anchoring systems. Despite ongoing reductions in the cost of solar photovoltaic technology, the additional expenses related to floating infrastructure can deter potential investors. Securing financing for onshore floating solar projects may be challenging, especially in regions where financial institutions may be unfamiliar with the technology or perceive it as higher risk. Addressing this challenge requires demonstrating the long-term economic benefits of onshore floating solar, emphasizing factors such as increased energy production efficiency, land use optimization, and potential revenue streams from dual-use applications. Unlocking financial mechanisms, such as subsidies, grants, and innovative financing models, can further incentivize investment and accelerate the development of the onshore floating solar market.

Key Market Trends

Increasing Capacity and Scale of Installations

A prominent trend in the global onshore floating solar market is the continual increase in the capacity and scale of installations. As technology advances and project developers gain more experience, the size of onshore floating solar projects has grown significantly. Initially considered suitable for smaller bodies of water, such as ponds or reservoirs, recent trends indicate a shift towards larger installations on expansive lakes and water bodies. This scaling up is driven by a desire to maximize energy output, capitalize on economies of scale, and meet the escalating global demand for renewable energy. Large-scale onshore floating solar installations are becoming integral components of national and regional energy portfolios, contributing substantially to the overall renewable energy capacity.

Integration with Energy Storage Systems

A pivotal trend shaping the landscape of onshore floating solar is the seamless integration of these installations with cutting-edge energy storage systems. This strategic incorporation addresses a perennial challenge inherent in solar power generation-the intermittent nature of sunlight availability. Energy storage emerges as a transformative solution, enabling the capture and retention of excess energy generated during peak production hours and subsequently releasing it during periods characterized by low sunlight. This trend is not merely a technological innovation but a harmonious alignment with the broader objectives of global energy transition. By augmenting the reliability and grid integration of onshore floating solar projects, the integration of energy storage systems plays a central role in enhancing the overall efficacy of renewable energy infrastructure. Project developers, cognizant of the transformative potential of advancements in battery technology, are proactively integrating storage solutions into their onshore floating solar projects. This strategic move aims to optimize energy dispatch, ensuring a consistent and reliable power supply irrespective of fluctuations in solar availability. The integration of energy storage not only contributes to the stability of onshore floating solar projects but also augments the resilience of the broader electricity grid, thus fortifying the foundation for a sustainable and dependable energy future. In essence, the trend towards seamlessly amalgamating onshore floating solar with energy storage systems signifies a pivotal step towards addressing the intermittency challenge inherent in solar power generation, concurrently steering the industry towards a more robust, adaptable, and grid-integrated renewable energy landscape.

Advancements in Floating Solar Technology

The onshore floating solar market is experiencing rapid technological advancements, driving improvements in floating platform design, anchoring systems, and solar panel efficiency. Innovations such as modular floating structures, advanced materials, and tracking mechanisms that optimize solar panel orientation contribute to increased performance and durability. These technological advancements not only enhance the overall efficiency of onshore floating solar installations but also play a crucial role in addressing technical challenges and expanding the geographic feasibility of projects. As the technology continues to evolve, onshore floating solar is becoming more adaptable to various water bodies and environmental conditions, opening up new opportunities for widespread deployment.

Emergence of Hybrid Renewable Energy Projects

A conspicuous trend in the onshore floating solar landscape is the rise of hybrid renewable energy projects, orchestrating a harmonious integration between onshore floating solar and other renewable energy sources like wind or hydropower. This paradigm shift underscores a strategic fusion of the distinctive characteristics inherent in different renewable technologies, engendering synergies that elevate overall energy generation capabilities. An illustrative example lies in the fusion of onshore floating solar with hydropower, where shared infrastructure optimizes the utilization of both water resources and land. This trend represents a sophisticated and forward-thinking approach to energy diversification, leveraging the strengths of various renewable technologies to create a resilient and sustainable energy ecosystem. By intertwining onshore floating solar with other renewables, these hybrid projects not only enhance energy output but also exemplify a strategic optimization of available resources, reinforcing the trajectory towards more adaptable, resilient, and ecologically sustainable energy systems. In essence, the emergence of hybrid renewable energy projects signals a transformative shift towards a future where the collaborative integration of diverse renewable sources paves the way for enhanced energy efficiency and a more sustainable energy landscape.

Growing Interest in Floating Solar for Industrial Applications

There is a growing trend towards deploying onshore floating solar installations for industrial applications. Industries with access to water bodies, such as mining operations, wastewater treatment plants, and agricultural facilities, are increasingly recognizing the potential of onshore floating solar to meet their energy needs. The dual-use concept, where floating solar installations coexist with industrial activities, is gaining traction. This trend not only enhances the economic viability of onshore floating solar projects but also underscores the versatility of this renewable energy solution in catering to the specific energy requirements of diverse industrial sectors. As industries seek sustainable energy alternatives, onshore floating solar presents itself as a viable and adaptable solution for powering industrial operations while minimizing environmental impact.

Segmental Insights

Component Insights

The photovoltaic (PV) modules segment emerged as the dominant force in the global onshore floating solar market and is poised to maintain its supremacy throughout the forecast period. PV modules, responsible for converting sunlight into electricity, constitute a fundamental and indispensable component of onshore floating solar installations. The dominance of this segment can be attributed to the continual advancements in solar technology, leading to increased efficiency and cost-effectiveness of PV modules. As the core energy-harvesting element, PV modules play a pivotal role in determining the overall performance and economic viability of onshore floating solar projects. Moreover, the global emphasis on reducing the levelized cost of electricity (LCOE) for solar power has further propelled the dominance of the PV modules segment. With ongoing research and development efforts focused on enhancing the efficiency and durability of PV modules, this component is expected to maintain its lead, driving the growth and expansion of the onshore floating solar market as it continues to establish itself as a key player in the renewable energy landscape.

Type Insights

In 2022, the stationary type segment asserted its dominance in the global onshore floating solar market and is anticipated to sustain its leading position throughout the forecast period. Stationary onshore floating solar installations, characterized by fixed positions on water bodies, have gained prominence due to their simplicity in design, cost-effectiveness, and ease of maintenance. This segment's dominance is further fueled by the suitability of stationary systems for a diverse range of water bodies, including lakes, reservoirs, and ponds, where tracking systems may not be as practical. The stability and reliability of stationary installations, coupled with the potential for reduced implementation costs, contribute to their widespread adoption. While tracking systems offer the advantage of following the sun's trajectory for optimized energy capture, the stationary segment's market dominance is expected to persist due to its broad applicability, economic feasibility, and the maturity of technology associated with fixed-position onshore floating solar installations. As the onshore floating solar market continues to evolve, stationary systems are likely to remain the preferred choice for many projects, particularly in regions with diverse water bodies and varying environmental conditions.

Application Insights

The irrigation application segment asserted its dominance in the global onshore floating solar market and is anticipated to maintain its leading position throughout the forecast period. Onshore floating solar installations for irrigation systems have experienced significant adoption due to their ability to provide a sustainable and efficient energy source for powering water pumps and irrigation processes. The integration of onshore floating solar with irrigation infrastructure aligns with the broader global emphasis on sustainable agriculture practices, offering a dual solution by simultaneously addressing energy needs and water management. The irrigation segment's dominance is further propelled by the potential to enhance agricultural productivity while reducing dependence on traditional energy sources. As water scarcity concerns persist, particularly in regions where agriculture is a crucial economic activity, the irrigation application segment is expected to see sustained growth. Additionally, the adaptability of onshore floating solar to various water bodies, including ponds and reservoirs used for irrigation, positions it as a versatile and effective solution for the agriculture sector. With ongoing efforts to promote renewable energy in agriculture and the increasing recognition of onshore floating solar's benefits in addressing both energy and water challenges, the irrigation application segment is poised to remain a key driver of market growth in the foreseeable future.

Regional Insights

The Asia-Pacific region emerged as the dominant force in the global onshore floating solar market and is expected to maintain its leadership throughout the forecast period. The dominance of the Asia-Pacific region can be attributed to the proactive adoption of renewable energy solutions, favorable government policies, and a surge in onshore floating solar installations across countries such as China, India, and Japan. These nations, driven by a growing demand for clean energy and a commitment to reducing carbon emissions, have witnessed substantial investments in onshore floating solar projects. Additionally, the abundance of water bodies, such as lakes and reservoirs, coupled with the region's technological advancements in solar energy, has contributed to the widespread deployment of onshore floating solar installations. The Asia-Pacific region's dominance is further reinforced by the focus on energy security and sustainable development, with governments actively promoting the integration of onshore floating solar into their energy mix. As the global onshore floating solar market continues to expand, the Asia-Pacific region is poised to maintain its leadership position, driven by a combination of market-friendly policies, technological expertise, and a robust commitment to transitioning towards renewable energy sources.

Key Market Players

Ciel & Terre International

Kyocera Corporation

Wartsila Corporation

Infratech Industries

Floating Power Plant A/S

Statkraft

SPG Solar

Swimsol GmbH

Ocean Sun AS

Principle Power, Inc.

Report Scope:

In this report, the Global Onshore Floating Solar Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Onshore Floating Solar Market, By Component:

  • PV Modules
  • Lightning Protection System
  • Anchoring System
  • Inverter
  • Others

Onshore Floating Solar Market, By Type:

  • Stationary
  • Tracking

Onshore Floating Solar Market, By Application:

  • Irrigation
  • Hydroelectric Dam
  • Water Treatment
  • Quarry
  • Mining

Onshore Floating Solar Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Belgium
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • Indonesia
  • Vietnam
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Chile
  • Peru
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Turkey
  • Israel

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Onshore Floating Solar Market.

Available Customizations:

  • Global Onshore Floating Solar market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Impact of COVID-19 on Global Onshore Floating Solar Market

5. Voice of Customer

6. Global Onshore Floating Solar Market Overview

7. Global Onshore Floating Solar Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component (PV Modules, Lightning Protection System, Anchoring System, Inverter, Others)
    • 7.2.2. By Type (Stationary, Tracking)
    • 7.2.3. By Application (Irrigation, Hydroelectric Dam, Water Treatment, Quarry and Mining)
    • 7.2.4. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 7.3. By Company (2022)
  • 7.4. Market Map

8. North America Onshore Floating Solar Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Type
    • 8.2.3. By Application
    • 8.2.4. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Onshore Floating Solar Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Type
        • 8.3.1.2.3. By Application
    • 8.3.2. Canada Onshore Floating Solar Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Type
        • 8.3.2.2.3. By Application
    • 8.3.3. Mexico Onshore Floating Solar Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Type
        • 8.3.3.2.3. By Application

9. Europe Onshore Floating Solar Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Type
    • 9.2.3. By Application
    • 9.2.4. By Country
  • 9.3. Europe: Country Analysis
    • 9.3.1. Germany Onshore Floating Solar Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Type
        • 9.3.1.2.3. By Application
    • 9.3.2. France Onshore Floating Solar Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Type
        • 9.3.2.2.3. By Application
    • 9.3.3. United Kingdom Onshore Floating Solar Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Type
        • 9.3.3.2.3. By Application
    • 9.3.4. Italy Onshore Floating Solar Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Component
        • 9.3.4.2.2. By Type
        • 9.3.4.2.3. By Application
    • 9.3.5. Spain Onshore Floating Solar Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Component
        • 9.3.5.2.2. By Type
        • 9.3.5.2.3. By Application
    • 9.3.6. Belgium Onshore Floating Solar Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Component
        • 9.3.6.2.2. By Type
        • 9.3.6.2.3. By Application

10. South America Onshore Floating Solar Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Type
    • 10.2.3. By Application
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Onshore Floating Solar Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Type
        • 10.3.1.2.3. By Application
    • 10.3.2. Colombia Onshore Floating Solar Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Type
        • 10.3.2.2.3. By Application
    • 10.3.3. Argentina Onshore Floating Solar Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Type
        • 10.3.3.2.3. By Application
    • 10.3.4. Chile Onshore Floating Solar Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Component
        • 10.3.4.2.2. By Type
        • 10.3.4.2.3. By Application
    • 10.3.5. Peru Onshore Floating Solar Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Component
        • 10.3.5.2.2. By Type
        • 10.3.5.2.3. By Application

11. Middle East & Africa Onshore Floating Solar Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Component
    • 11.2.2. By Type
    • 11.2.3. By Application
    • 11.2.4. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Onshore Floating Solar Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Component
        • 11.3.1.2.2. By Type
        • 11.3.1.2.3. By Application
    • 11.3.2. UAE Onshore Floating Solar Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Component
        • 11.3.2.2.2. By Type
        • 11.3.2.2.3. By Application
    • 11.3.3. South Africa Onshore Floating Solar Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Component
        • 11.3.3.2.2. By Type
        • 11.3.3.2.3. By Application
    • 11.3.4. Turkey Onshore Floating Solar Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Component
        • 11.3.4.2.2. By Type
        • 11.3.4.2.3. By Application
    • 11.3.5. Israel Onshore Floating Solar Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Component
        • 11.3.5.2.2. By Type
        • 11.3.5.2.3. By Application

12. Asia Pacific Onshore Floating Solar Market Outlook

  • 12.1. Market Size & Forecast
    • 12.1.1. By Component
    • 12.1.2. By Type
    • 12.1.3. By Application
    • 12.1.4. By Country
  • 12.2. Asia-Pacific: Country Analysis
    • 12.2.1. China Onshore Floating Solar Market Outlook
      • 12.2.1.1. Market Size & Forecast
        • 12.2.1.1.1. By Value
      • 12.2.1.2. Market Share & Forecast
        • 12.2.1.2.1. By Component
        • 12.2.1.2.2. By Type
        • 12.2.1.2.3. By Application
    • 12.2.2. India Onshore Floating Solar Market Outlook
      • 12.2.2.1. Market Size & Forecast
        • 12.2.2.1.1. By Value
      • 12.2.2.2. Market Share & Forecast
        • 12.2.2.2.1. By Component
        • 12.2.2.2.2. By Type
        • 12.2.2.2.3. By Application
    • 12.2.3. Japan Onshore Floating Solar Market Outlook
      • 12.2.3.1. Market Size & Forecast
        • 12.2.3.1.1. By Value
      • 12.2.3.2. Market Share & Forecast
        • 12.2.3.2.1. By Component
        • 12.2.3.2.2. By Type
        • 12.2.3.2.3. By Application
    • 12.2.4. South Korea Onshore Floating Solar Market Outlook
      • 12.2.4.1. Market Size & Forecast
        • 12.2.4.1.1. By Value
      • 12.2.4.2. Market Share & Forecast
        • 12.2.4.2.1. By Component
        • 12.2.4.2.2. By Type
        • 12.2.4.2.3. By Application
    • 12.2.5. Australia Onshore Floating Solar Market Outlook
      • 12.2.5.1. Market Size & Forecast
        • 12.2.5.1.1. By Value
      • 12.2.5.2. Market Share & Forecast
        • 12.2.5.2.1. By Component
        • 12.2.5.2.2. By Type
        • 12.2.5.2.3. By Application
    • 12.2.6. Indonesia Onshore Floating Solar Market Outlook
      • 12.2.6.1. Market Size & Forecast
        • 12.2.6.1.1. By Value
      • 12.2.6.2. Market Share & Forecast
        • 12.2.6.2.1. By Component
        • 12.2.6.2.2. By Type
        • 12.2.6.2.3. By Application
    • 12.2.7. Vietnam Onshore Floating Solar Market Outlook
      • 12.2.7.1. Market Size & Forecast
        • 12.2.7.1.1. By Value
      • 12.2.7.2. Market Share & Forecast
        • 12.2.7.2.1. By Component
        • 12.2.7.2.2. By Type
        • 12.2.7.2.3. By Application

13. Market Dynamics

  • 13.1. Drivers
  • 13.2. Challenges

14. Market Trends and Developments

15. Company Profiles

  • 15.1. Ciel & Terre International
    • 15.1.1. Business Overview
    • 15.1.2. Key Revenue and Financials
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel/Key Contact Person
    • 15.1.5. Key Product/Services Offered
  • 15.2. Kyocera Corporation
    • 15.2.1. Business Overview
    • 15.2.2. Key Revenue and Financials
    • 15.2.3. Recent Developments
    • 15.2.4. Key Personnel/Key Contact Person
    • 15.2.5. Key Product/Services Offered
  • 15.3. Wartsila Corporation
    • 15.3.1. Business Overview
    • 15.3.2. Key Revenue and Financials
    • 15.3.3. Recent Developments
    • 15.3.4. Key Personnel/Key Contact Person
    • 15.3.5. Key Product/Services Offered
  • 15.4. Infratech Industries
    • 15.4.1. Business Overview
    • 15.4.2. Key Revenue and Financials
    • 15.4.3. Recent Developments
    • 15.4.4. Key Personnel/Key Contact Person
    • 15.4.5. Key Product/Services Offered
  • 15.5. Floating Power Plant A/S
    • 15.5.1. Business Overview
    • 15.5.2. Key Revenue and Financials
    • 15.5.3. Recent Developments
    • 15.5.4. Key Personnel/Key Contact Person
    • 15.5.5. Key Product/Services Offered
  • 15.6. Statkraft
    • 15.6.1. Business Overview
    • 15.6.2. Key Revenue and Financials
    • 15.6.3. Recent Developments
    • 15.6.4. Key Personnel/Key Contact Person
    • 15.6.5. Key Product/Services Offered
  • 15.7. SPG Solar
    • 15.7.1. Business Overview
    • 15.7.2. Key Revenue and Financials
    • 15.7.3. Recent Developments
    • 15.7.4. Key Personnel/Key Contact Person
    • 15.7.5. Key Product/Services Offered
  • 15.8. Swimsol GmbH
    • 15.8.1. Business Overview
    • 15.8.2. Key Revenue and Financials
    • 15.8.3. Recent Developments
    • 15.8.4. Key Personnel/Key Contact Person
    • 15.8.5. Key Product/Services Offered
  • 15.9. Ocean Sun AS
    • 15.9.1. Business Overview
    • 15.9.2. Key Revenue and Financials
    • 15.9.3. Recent Developments
    • 15.9.4. Key Personnel/Key Contact Person
    • 15.9.5. Key Product/Services Offered
  • 15.10. Principle Power, Inc.
    • 15.10.1. Business Overview
    • 15.10.2. Key Revenue and Financials
    • 15.10.3. Recent Developments
    • 15.10.4. Key Personnel/Key Contact Person
    • 15.10.5. Key Product/Services Offered

16. Strategic Recommendations

17. About Us & Disclaimer