封面
市场调查报告书
商品编码
1493615

心臟病学市场中的人工智慧 - 全球行业规模、份额、趋势、机会和预测,按组件、应用、地区和竞争细分,2019-2029F

Artificial Intelligence in Cardiology Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Application, By Region and Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2023 年,全球心臟病学人工智慧市场价值为7.399 亿美元,预计到2029 年,预测期内将实现强劲成长,复合年增长率为12.06%。先进的计算技术和开发可以分析和解释与心血管系统相关的医疗资料的演算法和系统的技术。人工智慧旨在复製类似人类的认知过程,例如学习和决策,以协助医疗保健专业人员诊断、治疗和管理各种心臟病。人工智慧在心臟病学中的目标是透过应用机器学习、深度学习、自然语言处理和其他人工智慧方法来加强患者护理、改善临床结果并简化医疗工作流程。

市场概况
预测期 2025-2029
2023 年市场规模 7.3990亿美元
2029 年市场规模 145173万美元
2024-2029 年复合年增长率 12.06%
成长最快的细分市场 软体解决方案
最大的市场 北美洲

电子健康记录、医学影像和穿戴式装置资料等大量医疗资料的可用性,为人工智慧在心臟病学中的应用提供了基础。人工智慧可以处理和分析这些资料,以提取有价值的见解。人工智慧演算法在增强医学影像分析、帮助检测细微的心臟异常以及提高 MRI、CT 扫描和超音波心动图等成像技术的诊断准确性方面显示出了前景。向个人化医疗的转变需要为个别患者量身定制治疗计划。人工智慧可以分析患者的具体资料,以推荐最合适的治疗方案,改善患者的治疗结果并减少不良反应。美国 FDA 等监管机构有兴趣透过创建人工智慧驱动的医疗设备和软体的审批和监管途径来加速人工智慧在医疗保健领域的采用。人工智慧演算法、机器学习和深度学习技术的进步提高了分析心臟影像、遗传资讯和病患记录等复杂医疗资料的能力。这带来了更准确的预测和更好的患者治疗结果。

主要市场驱动因素

超音波心臟检查增强

技术进步

主要市场挑战

医生接受和培训

演算法偏差和公平性

主要市场趋势

风险评估与预测

临床证据和验证

细分市场洞察

组件洞察

应用洞察

区域洞察

目录

第 1 章:产品概述

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:客户之声

第 5 章:全球心臟病学人工智慧市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件(硬体、软体解决方案、服务)
    • 按应用(心律不整、中风、缺血性心臟病/CAD、其他)
    • 按公司划分 (2023)
    • 按地区
  • 市场地图

第 6 章:北美心臟病学人工智慧市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按申请
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第 7 章:欧洲心臟病学人工智慧市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按申请
    • 按国家/地区
  • 欧洲:国家分析
    • 法国
    • 德国
    • 英国
    • 义大利
    • 西班牙

第 8 章:亚太心臟病学人工智慧市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按申请
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 韩国
    • 日本
    • 澳洲

第 9 章:南美洲心臟病学人工智慧市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按申请
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第 10 章:中东和非洲心臟病学人工智慧市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按申请
    • 按国家/地区
  • MEA:国家分析
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

  • 併购(如有)
  • 产品发布(如有)
  • 最近的发展

第 13 章:波特五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第14章:竞争格局

  • IDOVEN
  • Dia Imaging Analysis Ltd
  • Ultromics Limited
  • Tempus AI, Inc.
  • Koninklijke Philips NV
  • UltraSight Inc.
  • HeartVista Inc.
  • RSIP Vision
  • Cleerly, Inc.
  • Viz.ai, Inc.

第 15 章:策略建议

第16章调查会社について・免责事项

简介目录
Product Code: 23989

Global Artificial Intelligence in Cardiology Market was valued at USD 739.90 million in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 12.06% through 2029. Artificial Intelligence (AI) in Cardiology refers to the use of advanced computational techniques and technologies to develop algorithms and systems that can analyze and interpret medical data related to the cardiovascular system. AI aims to replicate human-like cognitive processes, such as learning and decision-making, to assist healthcare professionals in diagnosing, treating, and managing various cardiac conditions. The goal of AI in Cardiology is to enhance patient care, improve clinical outcomes, and streamline medical workflows through the application of machine learning, deep learning, natural language processing, and other AI methodologies.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 739.90 Million
Market Size 2029USD 1451.73 Million
CAGR 2024-202912.06%
Fastest Growing SegmentSoftware Solutions
Largest MarketNorth America

The availability of large volumes of medical data, including electronic health records, medical images, and wearable device data, has provided the foundation for AI applications in cardiology. AI can process and analyze this data to extract valuable insights. AI algorithms have shown promise in enhancing medical image analysis, aiding in the detection of subtle cardiac abnormalities, and improving the accuracy of diagnoses from imaging techniques such as MRI, CT scans, and echocardiograms. The shift toward personalized medicine calls for tailored treatment plans for individual patients. AI can analyze patient-specific data to recommend the most suitable treatment options, improving patient outcomes and reducing adverse effects. Regulatory bodies, such as the U.S. FDA, have shown interest in accelerating the adoption of AI in healthcare by creating pathways for the approval and regulation of AI-driven medical devices and software. Advances in AI algorithms, machine learning, and deep learning techniques have improved the ability to analyze complex medical data such as cardiac images, genetic information, and patient records. This has led to more accurate predictions and better patient outcomes.

Key Market Drivers

Echocardiography Enhancement

Echocardiography enhancement refers to the use of technology, often including Artificial Intelligence (AI) algorithms, to improve the quality and interpretation of echocardiographic images. Echocardiography, also known as an echo, is a non-invasive imaging technique that uses sound waves to create real-time images of the heart's structure and function. It is a valuable tool in diagnosing and monitoring various heart conditions, including valve diseases, heart failure, and congenital heart defects. Enhancing echocardiographic images can lead to clearer, more detailed visualizations, which in turn can assist healthcare professionals in making accurate diagnoses and treatment decisions. Echocardiograms can sometimes have noise or artifacts that affect image quality. AI algorithms can analyze the images to distinguish between true cardiac structures and noise, resulting in clearer images. AI can be used to remove noise from echocardiographic images, resulting in improved image quality and better visualization of cardiac structures. AI algorithms can identify specific features of interest within echocardiographic images, such as heart chambers, valves, and blood flow patterns, and enhance their visibility for better clinical assessment.

AI can aid in reconstructing 3D images from 2D echocardiographic images, providing a more comprehensive view of the heart's anatomy and function. AI algorithms can automate the process of measuring various cardiac parameters, such as chamber dimensions, ejection fraction, and valve function. This can reduce the time required for analysis and increase accuracy. AI can analyze myocardial strain patterns, which provide insights into the heart's contractile function. This analysis can help detect early signs of dysfunction or monitor treatment effectiveness. AI can provide quantitative data about blood flow velocities, pressure gradients, and other important hemodynamic parameters, aiding in the diagnosis of conditions like valve stenosis or regurgitation. AI-enhanced echocardiography can provide real-time monitoring during procedures like surgeries or interventions, allowing clinicians to make immediate decisions based on accurate data. Enhanced echocardiographic images can be shared remotely for expert consultations, improving access to specialized care in remote or underserved areas. AI can assist in creating educational tools by enhancing echocardiographic images for training purposes, allowing medical students and healthcare professionals to learn and practice interpretation. This factor will accelerate the demand of Global Artificial Intelligence in Cardiology Market.

Technological Advancements

Technological advancements have been a driving force in the growth and evolution of the Global Artificial Intelligence (AI) in Cardiology Market. These advancements encompass a wide range of developments that have enhanced the capabilities, applications, and impact of AI in the field of cardiology. Deep learning, a subset of machine learning, has enabled the development of more sophisticated algorithms capable of handling complex medical data such as images, waveforms, and patient records. Deep learning models, like convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have significantly improved accuracy in tasks like image analysis and diagnostics. AI algorithms have advanced the quality and interpretation of medical images in cardiology. Enhanced image resolution, noise reduction, and the ability to automatically identify cardiac structures have improved diagnostic accuracy. AI-driven 3D image reconstruction from 2D medical images has provided clinicians with more comprehensive views of cardiac anatomy and function, aiding in diagnosis and treatment planning.

Natural Language Processing (NLP) techniques enable AI to extract meaningful information from unstructured clinical notes, reports, and patient histories. This enhances the depth of patient data available for analysis. NLP techniques enable AI to extract meaningful information from unstructured clinical notes, reports, and patient histories. This enhances the depth of patient data available for analysis. AI is facilitating the analysis of genetic data to identify genetic predispositions to cardiovascular diseases and inform personalized treatment plans. Wearable sensors equipped with AI capabilities can monitor patients' cardiac health in real time, detecting irregularities and transmitting data to healthcare providers for timely intervention. AI can integrate data from diverse sources, including electronic health records, imaging devices, and wearables, to provide a comprehensive patient profile. This approach allows AI models to be trained collaboratively across different institutions without sharing sensitive patient data, improving model accuracy while preserving privacy. AI algorithms can assist in automating the process of diagnosing cardiac conditions and generating comprehensive reports for clinicians. AI is being used to guide interventions such as cardiac surgeries and catheter-based procedures, improving accuracy and outcomes. This factor will accelerate the demand of Global Artificial Intelligence in Cardiology Market.

Key Market Challenges

Physician Acceptance and Training

Physicians and other healthcare professionals are accustomed to traditional diagnostic and treatment approaches. Introducing AI technologies can disrupt established routines and workflows. Effective change management strategies, including communication, education, and involvement of clinicians in the adoption process, can help mitigate resistance. Many healthcare professionals might not be familiar with AI concepts, algorithms, and their potential benefits. Educational programs and resources are needed to familiarize them with AI's capabilities and limitations. Some healthcare professionals might fear that AI will replace their roles. It's important to emphasize that AI is meant to augment clinical decision-making, not replace human expertise.

Demonstrating AI's role as a tool that enhances clinical insights can alleviate concerns. Physicians and healthcare providers need appropriate training to effectively use AI tools in their practice. Training programs should be tailored to various skill levels, from basic understanding to more advanced application. Healthcare professionals must understand how AI-generated recommendations are derived and what they imply for patient care. Transparency and interpretability are crucial for building trust and ensuring confident decision-making. AI tools should seamlessly integrate into existing clinical workflows to avoid disrupting patient care processes. If AI introduces complexity or inefficiencies, physician acceptance might decrease.

Algorithm Bias and Fairness

Algorithm bias refers to the presence of systematic errors or unfairness in AI algorithms that lead to discriminatory outcomes, often affecting certain demographic groups more than others. Addressing bias and ensuring fairness in AI algorithms is crucial to maintain patient trust, provide equitable care, and avoid unintended consequences. AI algorithms learn from historical data, and if the training data contains biases or reflects existing healthcare disparities, the algorithms can inadvertently amplify these biases. This can result in unequal access to accurate diagnoses and treatments for different patient populations.

Biases in AI algorithms can disproportionately affect marginalized or underrepresented groups, leading to disparities in healthcare outcomes. For example, if certain demographics are underrepresented in the training data, the AI system may not perform well for those groups. Biases in healthcare data collection, such as differences in care access or treatment patterns, can lead to biased algorithms. Data collection practices should be carefully examined to mitigate these biases. Ensuring that training data is representative of the diversity of patient populations is essential to reduce algorithmic bias. Efforts should be made to include data from various ethnicities, genders, ages, and socio-economic backgrounds. AI developers are working on methods to detect and mitigate bias in algorithms. Techniques include re-sampling data to balance representation, applying fairness-aware training, and using debiasing algorithms.

Key Market Trends

Risk Assessment & Prediction

The application of AI in risk assessment and prediction aims to improve the early detection and management of cardiovascular diseases by analyzing patient data and identifying individuals at higher risk of developing heart-related conditions. AI algorithms can analyze a wide range of patient data, including medical history, genetics, biomarkers, and imaging results, to identify individuals who are at an increased risk of developing cardiovascular diseases like coronary artery disease, heart failure, or arrhythmias. Early detection allows for timely interventions and preventive measures. AI enables the development of patient-specific risk profiles. By considering multiple risk factors and personalizing the assessment, AI algorithms can provide more accurate risk stratification, helping healthcare providers tailor interventions based on individual patient needs. AI can analyze data from various sources, such as electronic health records, wearable devices, and genetic information, to build comprehensive risk models. This holistic approach enhances the accuracy of risk prediction. AI algorithms can predict the likelihood of cardiovascular events, such as heart attacks or strokes, based on historical patient data and ongoing monitoring. This helps in allocating resources and planning interventions more effectively. AI-driven risk assessment can aid in population-level health management strategies. Healthcare organizations and policymakers can identify high-risk populations and design targeted prevention and intervention programs. By accurately identifying individuals at lower risk, AI can help reduce unnecessary medical interventions and procedures, resulting in cost savings and improved patient experiences.

Clinical Evidence and Validation

The healthcare industry places a strong emphasis on evidence-based practices, and AI technologies are no exception. Demonstrating the clinical effectiveness, safety, and real-world impact of AI applications in cardiology is essential to gaining trust, regulatory approval, and widespread adoption. Healthcare providers and institutions require robust evidence that AI technologies can deliver meaningful clinical outcomes. Clinical validation builds credibility and instills trust in AI solutions. AI tools used in healthcare must meet high standards of safety. Clinical evidence helps ensure that AI algorithms make accurate and safe decisions that align with established medical practices. Regulatory bodies like the U.S. FDA require rigorous clinical validation to approve medical devices and technologies. Demonstrating safety and effectiveness is essential for obtaining necessary regulatory clearances. Clinicians and healthcare organizations are more likely to adopt AI technologies that have a proven track record of improving patient outcomes and care processes. Insurance reimbursement and funding decisions often require evidence of clinical utility. Providers are more likely to invest in AI technologies that have demonstrated their value through clinical validation.

AI technologies that are backed by strong clinical evidence are more likely to be incorporated into clinical guidelines and protocols, driving their adoption across healthcare settings. Physicians are more likely to use AI tools if they are confident in their accuracy and reliability. Clinical validation helps build this confidence. In a competitive market, AI developers with robust clinical evidence can differentiate their products and services from others, attracting more attention from healthcare providers. Patients are more likely to embrace AI technologies if they are assured that these tools are clinically validated and endorsed by healthcare professionals. To ensure long-term sustainability and continued investment in AI solutions, companies need to demonstrate a solid clinical case for their products. Clinical validation studies contribute to scientific research and medical literature, advancing the understanding of AI's role in cardiology and driving further interest and demand. Clinical evidence provides data that supports informed decision-making for healthcare leaders considering AI investments. This factor will pace up the demand of Global Artificial Intelligence in Cardiology Market.

Segmental Insights

Component Insights

In 2023, the global artificial intelligence in cardiology market was dominated by the software solutions segment and is predicted to continue expanding over the coming years. The software solutions of AI in cardiology includes the development of advanced algorithms and machine learning models. These algorithms are the core components that enable AI systems to analyse and interpret complex medical data, such as medical images, patient records, and genetic information. AI in cardiology heavily relies on processing and analysing large datasets, which can include medical images, patient histories, clinical notes, and more. The software component is responsible for efficiently handling and extracting meaningful insights from these vast amounts of data. AI software can enhance diagnostic accuracy by analysing complex patterns and subtle features in medical data that might be challenging for human clinicians to identify. The ability to accurately diagnose conditions like cardiac abnormalities can improve patient outcomes and reduce errors.

Application Insights

In 2023, the global artificial intelligence in cardiology market was dominated by coronary artery disease segment. Coronary artery disease is one of the leading causes of death globally. Its prevalence has been increasing due to factors like aging populations, sedentary lifestyles, and poor dietary habits. Addressing CAD is a high priority for healthcare systems around the world. Diagnosing coronary artery disease accurately can be complex. It often requires analysing various factors, such as patient history, risk factors, medical imaging (e.g., angiograms, CT scans), and laboratory results. AI has the potential to improve diagnostic accuracy by analysing these multifaceted data points. AI can assist in identifying patients at higher risk of developing CAD or experiencing adverse cardiovascular events. By analysing patient data, including medical history, biomarkers, and genetic information, AI models can provide more precise risk assessments. Medical imaging plays a crucial role in diagnosing and monitoring CAD. AI algorithms can analyse images of coronary arteries to detect blockages, stenosis, and other abnormalities, aiding clinicians in making more accurate interpretations.

Regional Insights

The North America region has established itself as the leader in the global artificial intelligence in cardiology market in 2023. The region is home to many prestigious universities, research centers, and technology companies that are at the forefront of AI research and development. These institutions have the expertise and resources to drive innovation in AI applications for cardiology. North America has access to extensive healthcare datasets, including electronic health records, medical images, and patient data. The availability of such data is essential for training AI algorithms effectively and ensuring their accuracy in clinical settings. The region has witnessed significant investment in healthcare technology, including AI. Both public and private sectors have shown interest in funding research and development efforts in AI applications for cardiology.

Key Market Players

IDOVEN

Dia Imaging Analysis Ltd

Ultromics Limited

Tempus AI, Inc.

Koninklijke Philips N.V

UltraSight Inc.

HeartVista Inc.

RSIP Vision

Cleerly, Inc.

Viz.ai, Inc.

Report Scope:

In this report, the Global Artificial Intelligence in Cardiology Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Artificial Intelligence in Cardiology Market, By Component:

    Hardware Software Solutions Services

Artificial Intelligence in Cardiology Market, By Application:

    Cardiac Arrhythmias Stroke Ischemic Heart Disease /CAD Others

Artificial Intelligence in Cardiology Market, By Region:

    North America

United States

Canada

Mexico

    Asia-Pacific

China

India

South Korea

Australia

Japan

    Europe

Germany

France

United Kingdom

Spain

Italy

    South America

Brazil

Argentina

Colombia

    Middle East & Africa

South Africa

Saudi Arabia

UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Artificial Intelligence in Cardiology Market.

Available Customizations:

Global Artificial Intelligence in Cardiology Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Artificial Intelligence in Cardiology Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Component (Hardware, Software Solutions, Services)
    • 5.2.2. By Application (Cardiac Arrhythmias, Stroke, Ischemic Heart Disease/CAD, Others)
    • 5.2.3. By Company (2023)
    • 5.2.4. By Region
  • 5.3. Market Map

6. North America Artificial Intelligence in Cardiology Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component
    • 6.2.2. By Application
    • 6.2.3. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Artificial Intelligence in Cardiology Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Component
        • 6.3.1.2.2. By Application
    • 6.3.2. Mexico Artificial Intelligence in Cardiology Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Component
        • 6.3.2.2.2. By Application
    • 6.3.3. Canada Artificial Intelligence in Cardiology Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Component
        • 6.3.3.2.2. By Application

7. Europe Artificial Intelligence in Cardiology Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By Application
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Artificial Intelligence in Cardiology Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By Application
    • 7.3.2. Germany Artificial Intelligence in Cardiology Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By Application
    • 7.3.3. United Kingdom Artificial Intelligence in Cardiology Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By Application
    • 7.3.4. Italy Artificial Intelligence in Cardiology Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Component
        • 7.3.4.2.2. By Application
    • 7.3.5. Spain Artificial Intelligence in Cardiology Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Component
        • 7.3.5.2.2. By Application

8. Asia-Pacific Artificial Intelligence in Cardiology Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Application
    • 8.2.3. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Artificial Intelligence in Cardiology Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Application
    • 8.3.2. India Artificial Intelligence in Cardiology Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Application
    • 8.3.3. South Korea Artificial Intelligence in Cardiology Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Application
    • 8.3.4. Japan Artificial Intelligence in Cardiology Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By Application
    • 8.3.5. Australia Artificial Intelligence in Cardiology Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By Application

9. South America Artificial Intelligence in Cardiology Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Application
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Artificial Intelligence in Cardiology Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Application
    • 9.3.2. Argentina Artificial Intelligence in Cardiology Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Application
    • 9.3.3. Colombia Artificial Intelligence in Cardiology Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Application

10. Middle East and Africa Artificial Intelligence in Cardiology Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Application
    • 10.2.3. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Artificial Intelligence in Cardiology Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Application
    • 10.3.2. Saudi Arabia Artificial Intelligence in Cardiology Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Application
    • 10.3.3. UAE Artificial Intelligence in Cardiology Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porters Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. IDOVEN
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. Dia Imaging Analysis Ltd
  • 14.3. Ultromics Limited
  • 14.4. Tempus AI, Inc.
  • 14.5. Koninklijke Philips N.V
  • 14.6. UltraSight Inc.
  • 14.7. HeartVista Inc.
  • 14.8. RSIP Vision
  • 14.9. Cleerly, Inc.
  • 14.10. Viz.ai, Inc.

15. Strategic Recommendations

16. About Us & Disclaimer