封面
市场调查报告书
商品编码
1601689

太空推进系统市场 - 全球产业规模、份额、趋势、机会和预测,按轨道类别、最终用户、类型、地区和竞争细分,2019-2029F

Space Propulsion System Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Class of Orbit, By End User, By Type, By Region & Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2023年,全球太空推进系统市场规模达133.8亿美元,预计在预测期内复合年增长率为7.48%。全球太空推进系统市场涵盖了一系列在外太空操纵太空船所需的技术。这些推进系统对于将卫星发射到轨道、执行深空任务以及操纵太空船进行通讯、地球观测和科学探索等各种应用至关重要。关键推进技术包括利用液体或固体推进剂的化学推进系统,透过化学反应产生推力。这些系统非常可靠,广泛用于卫星发射和初始太空船机动。

市场概况
预测期 2025-2029
2023 年市场规模 133.8亿美元
2029 年市场规模 206亿美元
2024-2029 年复合年增长率 7.48%
成长最快的细分市场 地球轨道
最大的市场 北美洲

除了化学推进之外,电力推进系统近年来因其在长期任务中的效率和有效性而受到重视。电力推进系统使用电力或电磁力来加速推进剂离子,与化学系统相比提供更高的比衝。这可以提高燃油效率并延长任务持续时间,使电力推进成为深空任务和卫星定位的理想选择。核热推进和太阳帆推进等先进推进概念也在开发中,为未来的太空探索任务带来了新的能力。

太空推进系统市场是由卫星发射需求的增加、正在进行的天体探索任务以及卫星技术的进步所推动的。政府和私人企业正在大力投资太空探索,推动创新和采用先进推进技术。挑战包括推进系统的开发和部署成本高昂、监管限制以及需要可靠、高效的系统来支援长期任务和星际旅行。儘管有这些挑战,但随着材料科学、推进效率的进步,以及由科学发现和太空旅游和资源利用方面的商业利益所驱动的新太空任务的出现,市场提供了成长的机会。

主要市场驱动因素

太空探索野心与卫星部署

商业航太工业

燃料效率、卫星部署和环境问题

合作和国际伙伴关係

主要市场挑战

技术复杂性

环境问题

整合复杂性

供应链漏洞

主要市场趋势

绿色推进剂的进步

核推进的创新

太空活动的商业化

积层製造(3D 列印)

细分市场洞察

轨道洞察等级

区域洞察

目录

第 1 章:简介

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:COVID-19 对全球太空推进系统市场的影响

第 5 章:全球空间推进系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依轨道类别(椭圆轨道、GEO、LEO、MEO)
    • 按最终用户(民用和地球观测、政府和军事、商业)
    • 按类型(化学推进、非化学推进)
    • 按地区划分
    • 按公司划分(前 5 名公司,其他 - 按价值,2023 年)
  • 全球空间推进系统市场测绘与机会评估
    • 按轨道类别
    • 按最终用户
    • 按类型
    • 按地区划分

第 6 章:亚太空间推进系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按轨道类别
    • 按最终用户
    • 按类型
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 印尼
    • 泰国
    • 韩国
    • 澳洲

第 7 章:欧洲与独联体空间推进系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按轨道类别
    • 按最终用户
    • 按类型
    • 按国家/地区
  • 欧洲与独联体:国家分析
    • 德国
    • 西班牙
    • 法国
    • 俄罗斯
    • 义大利
    • 英国
    • 比利时

第 8 章:北美太空推进系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按轨道类别
    • 按最终用户
    • 按类型
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第 9 章:南美洲太空推进系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按轨道类别
    • 按最终用户
    • 按类型
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 哥伦比亚
    • 阿根廷

第 10 章:中东和非洲太空推进系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按轨道类别
    • 按最终用户
    • 按类型
    • 按国家/地区
  • 中东和非洲:国家分析
    • 土耳其
    • 伊朗
    • 沙乌地阿拉伯
    • 阿联酋

第 11 章:SWOT 分析

  • 力量
  • 弱点
  • 机会
  • 威胁

第 12 章:市场动态

  • 市场驱动因素
  • 市场挑战

第 13 章:市场趋势与发展

第14章:竞争格局

  • 公司简介(最多10家主要公司)
    • Space Exploration Technologies Corp.
    • The Boeing Company
    • Blue Origin Enterprises, LP
    • Moog Inc.
    • L3Harris Technologies, Inc.
    • Avio SpA
    • International Astronautical Federation
    • OHB SE
    • IHI Corporation
    • Sierra Nevada Corporation

第 15 章:策略建议

  • 重点关注领域
    • 目标地区
    • 目标轨道等级

第16章调查会社について・免责事项

简介目录
Product Code: 19252

The Global Space Propulsion System Market size reached USD 13.38 billion in 2023 and is expected to grow with a CAGR of 7.48% in the forecast period. The global space propulsion system market encompasses a range of technologies essential for maneuvering spacecraft in outer space. These propulsion systems are crucial for launching satellites into orbit, conducting deep space missions, and maneuvering spacecraft for various applications such as communication, Earth observation, and scientific exploration. Key propulsion technologies include chemical propulsion systems utilizing liquid or solid propellants, which generate thrust through chemical reactions. These systems are reliable and widely used for satellite launches and initial spacecraft maneuvers.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 13.38 Billion
Market Size 2029USD 20.60 Billion
CAGR 2024-20297.48%
Fastest Growing SegmentGEO
Largest MarketNorth America

In addition to chemical propulsion, electric propulsion systems have gained prominence in recent years due to their efficiency and effectiveness in long-duration missions. Electric propulsion systems use electric or electromagnetic forces to accelerate propellant ions, offering higher specific impulse compared to chemical systems. This results in fuel efficiency and extended mission durations, making electric propulsion ideal for deep space missions and satellite station-keeping. Advanced propulsion concepts such as nuclear thermal propulsion and solar sail propulsion are also under development, promising new capabilities for future space exploration missions.

The market for space propulsion systems is driven by increasing demand for satellite launches, ongoing exploration missions to celestial bodies, and advancements in satellite technology. Governments and private companies are investing heavily in space exploration, driving innovation and adoption of advanced propulsion technologies. Challenges include the high cost of development and deployment of propulsion systems, regulatory constraints, and the need for reliable and efficient systems to support long-duration missions and interplanetary travel. Despite these challenges, the market presents opportunities for growth with advancements in materials science, propulsion efficiency, and the emergence of new space missions driven by scientific discovery and commercial interests in space tourism and resource utilization.

Key Market Drivers

Space Exploration Ambitions and Satellite Deployment

The growing aspirations for space exploration are evident in missions like NASA's Artemis program, which aims to return humans to the Moon, and SpaceX's plans for Mars colonization. These missions require advanced propulsion systems capable of long-duration travel, orbital maneuvers, and lunar or Martian landings. The global demand for satellite-based services, including telecommunications, Earth observation, and global positioning, is soaring. The successful deployment and maintenance of satellite constellations rely on efficient propulsion systems to reach precise orbits and perform station-keeping maneuvers.

Commercial Space Industry

The commercial space sector, led by companies like SpaceX, Blue Origin, and Virgin Galactic, is reshaping the industry. These firms are driving innovation, cost reduction, and increased accessibility to space. Competition among them fosters the development of more efficient propulsion systems. Small satellites, particularly CubeSats and nanosatellites, are increasingly prevalent due to their lower launch costs and versatility. Miniaturized propulsion systems are in demand to enable these small satellites to change orbits, rendezvous with other satellites, or deorbit safely.

Fuel Efficiency, Satellite Deployment and Environmental Concerns

The desire for prolonged missions and reduced launch costs has led to the adoption of electric propulsion systems. Ion and Hall-effect thrusters offer significantly greater fuel efficiency than traditional chemical propulsion, making them ideal for missions requiring extended durations and high delta-V maneuvers. Governments worldwide are investing in space technologies to enhance national security. Advanced propulsion systems are essential for surveillance, reconnaissance, and early warning systems in space, which are crucial for national defense. Environmental consciousness extends to space. There's a push for cleaner propulsion technologies that emit fewer pollutants. Researchers are exploring green propellants and alternative technologies like solar sails, which use sunlight for propulsion.

Collaboration and International Partnerships

Major collaborative projects, such as the International Space Station (ISS), demonstrate the power of international cooperation. These partnerships foster research and development in propulsion technology, as seen in NASA's collaborations with international space agencies. These drivers collectively fuel progress in space propulsion systems, pushing the boundaries of technology to enable a wide range of space missions, from scientific exploration to commercial ventures, and contributing to the broader transformation of the space industry. In 2023,RocketStar, a US-based startup, has successfully demonstrated an electric propulsion unit for spacecraft that utilizes nuclear fusion-enhanced pulsed plasma. Known as the FireStar Drive, this innovative system is fueled by water and integrates aneutronic nuclear fusion to enhance its performance. During testing, RocketStar's propulsion system ionized water vapor to generate high-speed protons. These protons collided with boron nuclei, initiating a fusion reaction that produced high-energy carbon and alpha particles. This fusion process operates similarly to an afterburner in a jet engine, effectively enhancing the thruster's performance by introducing boron into the exhaust. Originally developed as part of the US Air Force's AFWERX initiative, the technology underwent rigorous validation at the Georgia Institute of Technology's HPEPL in Atlanta, where it demonstrated a remarkable 50% increase in thrust.

Key Market Challenges

Technical Complexity

Propulsion systems used in space must operate flawlessly in the extreme conditions of space, including vacuum, extreme temperatures, and radiation exposure. Ensuring the reliability and durability of these systems is a significant technical challenge. In 2024, In a groundbreaking achievement, scientists have unveiled the world's first nuclear fusion-powered electric propulsion drive. Developed through a collaborative effort between leading aerospace companies and research institutions, this innovative drive promises to revolutionize space travel by offering unprecedented efficiency and sustainability. Harnessing the power of nuclear fusion, the propulsion system aims to enable faster and more cost-effective missions to distant planets and asteroids. Initial tests have demonstrated promising results, highlighting its potential to reduce travel times and enhance spacecraft maneuverability. This milestone marks a significant advancement in propulsion technology, setting the stage for future deep space exploration missions.

Environmental Concerns

While propulsion systems are essential for space exploration, they can contribute to space debris and pose environmental risks. Minimizing space debris and ensuring responsible propulsion system disposal are growing concerns. Ensuring the safety and reliability of propulsion systems for crewed missions is paramount. Space agencies and manufacturers must continuously improve safety measures to mitigate potential risks to astronauts and spacecraft.

Integration Complexity

Integrating propulsion systems into spacecraft and launch vehicles can be complex. Achieving seamless compatibility and ensuring that propulsion components do not interfere with other systems is a technical challenge. The space industry is subject to a complex web of international regulations and treaties. Complying with these legal frameworks, including export controls and space traffic management, can be challenging.

Supply Chain Vulnerabilities

Space propulsion systems often rely on a global supply chain for components and materials. Disruptions in the supply chain, whether due to geopolitical tensions or natural disasters, can impact production and launch schedules. The growing number of players in the space industry has led to increased competition. Market fragmentation can make it challenging for manufacturers to secure contracts and maintain profitability. These challenges, while significant, also present opportunities for innovation and collaboration within the Global Space Propulsion System Market. Overcoming these obstacles is crucial for the continued advancement of space exploration and technology.

Key Market Trends

Advancements in Green Propellants

The development of environmentally friendly propellants, known as "green propellants," is gaining traction. These propellants are less toxic and produce fewer harmful byproducts, aligning with growing environmental concerns. In 2024,The DRDO successfully launched a green propulsion system for micro satellites, marking a milestone in space technology. Developed by Bengaluru-based start-up Bellatrix Aerospace Pvt Ltd, the 1N Class Green Monopropellant thruster aims to control altitude and maintain orbit for micro satellites. Telemetry data from the PSLV Orbital Experimental Module (POEM) at ISRO's Telemetry, Tracking, and Command Network (ISTRAC) in Bengaluru validated the system, exceeding all performance parameters. This innovative technology offers a non-toxic and environmentally friendly propulsion solution for low-orbit space missions. The system includes indigenously developed components like propellant, valves, catalyst bed, and drive electronics, making it ideal for missions requiring high thrust, according to the ministry.

Innovations in Nuclear Propulsion

Nuclear propulsion is being explored for deep-space missions due to its potential for faster travel and reduced mission durations. Research and development efforts in this area are on the rise. With the increasing deployment of small satellites, there's a growing demand for miniaturized propulsion systems. These systems enable small satellites to maneuver, change orbits, and extend their operational lifetimes.

Commercialization of Space Activities

The commercial space sector is driving innovation and cost reduction in propulsion technology. Companies like SpaceX and Blue Origin are pushing the boundaries of what is possible and making space more accessible. Solar sail technology, which harnesses sunlight for propulsion, is gaining attention for interplanetary missions. It offers an inexhaustible source of propulsion and the potential for extremely long missions.

Additive Manufacturing (3D Printing)

The use of additive manufacturing, or 3D printing, in the production of propulsion components is increasing. It allows for more complex and efficient designs, reducing production costs and lead times. The focus on interplanetary exploration, including missions to Mars and beyond, is driving the development of advanced propulsion systems capable of handling the rigors of deep-space travel. These trends collectively reflect the industry's commitment to advancing propulsion technology, enhancing mission capabilities, and reducing the environmental footprint of space activities. As space exploration continues to expand, these trends will play a pivotal role in shaping the future of the Global Space Propulsion System Market.

Segmental Insights

Class of Orbit Insights

The global space propulsion system market is segmented by class of orbit into Elliptical, Geostationary Earth Orbit (GEO), Low Earth Orbit (LEO), and Medium Earth Orbit (MEO), catering to diverse satellite and spacecraft requirements. Elliptical orbits offer satellites variable distances from Earth, enabling broad coverage while maintaining proximity to the planet, which is advantageous for communication and observation missions. Medium Earth Orbit (MEO) has firmly established itself as the primary class of orbit within the space propulsion system market, marking a pivotal evolution in satellite technology. Positioned between Low Earth Orbit (LEO) and Geostationary Orbit (GEO), MEO satellites typically operate at altitudes ranging from 2,000 to 36,000 kilometers above the Earth's surface. This strategic placement offers a balance between the coverage area and the signal latency, making MEO satellites ideal for a wide array of applications. One of the key advantages of MEO is its ability to provide global coverage with fewer satellites compared to LEO constellations, which require a larger number of satellites due to their lower orbits. This efficiency in deployment and coverage makes MEO a cost-effective solution for communication, navigation, and Earth observation missions. Companies and governments around the world are increasingly leveraging MEO satellites to enhance telecommunications infrastructure, improve GPS navigation accuracy, monitor climate change, and support disaster management efforts. Moreover, advancements in propulsion systems have significantly contributed to the growing dominance of MEO. Efficient electric propulsion technologies, such as ion thrusters and Hall effect thrusters, enable MEO satellites to maintain precise orbits and extend their operational lifetimes, thereby maximizing return on investment. As demand for high-speed internet, real-time data, and global connectivity continues to grow, MEO's role in the space propulsion system market is poised to expand further, driving innovation and transforming industries worldwide.

Regional Insights

The global space propulsion system market, segmented by region into North America, Europe & CIS, Asia Pacific, South America, and Middle East & Africa, exhibits varied dynamics across different geographical areas. North America leads the market due to its advanced aerospace industry, significant investments in space exploration, and robust presence of space agencies and private aerospace companies. North America has emerged as the dominant leader in the space propulsion system market, bolstered by its advanced technological capabilities and robust industry infrastructure. The region's prominence is largely driven by its extensive investments in research and development, fostering innovation across various sectors of space propulsion. North American companies and organizations are at the forefront of developing cutting-edge propulsion technologies that propel spacecraft into various orbits, including Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary Orbit (GEO).

Key players in North America are continuously pushing the boundaries of propulsion systems, incorporating advanced materials, efficient propulsion methods such as electric propulsion, and novel propulsion technologies like solar sails and nuclear thermal propulsion. These innovations not only enhance satellite capabilities but also contribute to reducing mission costs and improving sustainability in space operations. Furthermore, North America's leadership in the space propulsion system market is underpinned by a strong network of aerospace industry giants, research institutions, and government agencies like NASA. These entities collaborate closely to drive technological advancements and maintain a competitive edge in the global market. As space exploration and commercial satellite ventures continue to expand, North America's role as the dominant force in the space propulsion sector is expected to grow, influencing the trajectory of space missions and satellite deployments worldwide.

Key Market Players

  • Space Exploration Technologies Corp.
  • The Boeing Company
  • Blue Origin Enterprises, L.P.
  • Moog Inc.
  • L3Harris Technologies, Inc.
  • Avio S.p.A.
  • International Astronautical Federation
  • OHB SE
  • IHI Corporation
  • Sierra Nevada Corporation

Report Scope:

In this report, the Global Space Propulsion System Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Space Propulsion System Market, By Class of Orbit:

  • Elliptical
  • GEO
  • LEO
  • MEO

Space Propulsion System Market, By End User:

  • Civil and Earth Observation
  • Government and Military
  • Commercial

Space Propulsion System Market, By Type:

  • Chemical Propulsion
  • Non-Chemical Propulsion

Space Propulsion System Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe & CIS
    • Germany
    • Spain
    • France
    • Russia
    • Italy
    • United Kingdom
    • Belgium
  • Asia-Pacific
    • China
    • India
    • Japan
    • Indonesia
    • Thailand
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • Turkey
    • Iran
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Space Propulsion System Market.

Available Customizations:

Global Space Propulsion System Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Introduction

  • 1.1. Market Overview
  • 1.2. Key Highlights of the Report
  • 1.3. Market Coverage
  • 1.4. Market Segments Covered
  • 1.5. Research Tenure Considered

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Market Overview
  • 3.2. Market Forecast
  • 3.3. Key Regions
  • 3.4. Key Segments

4. Impact of COVID-19 on Global Space Propulsion System Market

5. Global Space Propulsion System Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Class of Orbit Market Share Analysis (Elliptical, GEO, LEO, MEO)
    • 5.2.2. By End User Market Share Analysis (Civil and Earth Observation, Government and Military, Commercial)
    • 5.2.3. By Type Market Share Analysis (Chemical Propulsion, Non-Chemical Propulsion)
    • 5.2.4. By Regional Market Share Analysis
      • 5.2.4.1. Asia-Pacific Market Share Analysis
      • 5.2.4.2. Europe & CIS Market Share Analysis
      • 5.2.4.3. North America Market Share Analysis
      • 5.2.4.4. South America Market Share Analysis
      • 5.2.4.5. Middle East & Africa Market Share Analysis
    • 5.2.5. By Company Market Share Analysis (Top 5 Companies, Others - By Value, 2023)
  • 5.3. Global Space Propulsion System Market Mapping & Opportunity Assessment
    • 5.3.1. By Class of Orbit Market Mapping & Opportunity Assessment
    • 5.3.2. By End User Market Mapping & Opportunity Assessment
    • 5.3.3. By Type Market Mapping & Opportunity Assessment
    • 5.3.4. By Regional Market Mapping & Opportunity Assessment

6. Asia-Pacific Space Propulsion System Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Class of Orbit Market Share Analysis
    • 6.2.2. By End User Market Share Analysis
    • 6.2.3. By Type Market Share Analysis
    • 6.2.4. By Country Market Share Analysis
      • 6.2.4.1. China Market Share Analysis
      • 6.2.4.2. India Market Share Analysis
      • 6.2.4.3. Japan Market Share Analysis
      • 6.2.4.4. Indonesia Market Share Analysis
      • 6.2.4.5. Thailand Market Share Analysis
      • 6.2.4.6. South Korea Market Share Analysis
      • 6.2.4.7. Australia Market Share Analysis
      • 6.2.4.8. Rest of Asia-Pacific Market Share Analysis
  • 6.3. Asia-Pacific: Country Analysis
    • 6.3.1. China Space Propulsion System Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Class of Orbit Market Share Analysis
        • 6.3.1.2.2. By End User Market Share Analysis
        • 6.3.1.2.3. By Type Market Share Analysis
    • 6.3.2. India Space Propulsion System Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Class of Orbit Market Share Analysis
        • 6.3.2.2.2. By End User Market Share Analysis
        • 6.3.2.2.3. By Type Market Share Analysis
    • 6.3.3. Japan Space Propulsion System Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Class of Orbit Market Share Analysis
        • 6.3.3.2.2. By End User Market Share Analysis
        • 6.3.3.2.3. By Type Market Share Analysis
    • 6.3.4. Indonesia Space Propulsion System Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Class of Orbit Market Share Analysis
        • 6.3.4.2.2. By End User Market Share Analysis
        • 6.3.4.2.3. By Type Market Share Analysis
    • 6.3.5. Thailand Space Propulsion System Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Class of Orbit Market Share Analysis
        • 6.3.5.2.2. By End User Market Share Analysis
        • 6.3.5.2.3. By Type Market Share Analysis
    • 6.3.6. South Korea Space Propulsion System Market Outlook
      • 6.3.6.1. Market Size & Forecast
        • 6.3.6.1.1. By Value
      • 6.3.6.2. Market Share & Forecast
        • 6.3.6.2.1. By Class of Orbit Market Share Analysis
        • 6.3.6.2.2. By End User Market Share Analysis
        • 6.3.6.2.3. By Type Market Share Analysis
    • 6.3.7. Australia Space Propulsion System Market Outlook
      • 6.3.7.1. Market Size & Forecast
        • 6.3.7.1.1. By Value
      • 6.3.7.2. Market Share & Forecast
        • 6.3.7.2.1. By Class of Orbit Market Share Analysis
        • 6.3.7.2.2. By End User Market Share Analysis
        • 6.3.7.2.3. By Type Market Share Analysis

7. Europe & CIS Space Propulsion System Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Class of Orbit Market Share Analysis
    • 7.2.2. By End User Market Share Analysis
    • 7.2.3. By Type Market Share Analysis
    • 7.2.4. By Country Market Share Analysis
      • 7.2.4.1. Germany Market Share Analysis
      • 7.2.4.2. Spain Market Share Analysis
      • 7.2.4.3. France Market Share Analysis
      • 7.2.4.4. Russia Market Share Analysis
      • 7.2.4.5. Italy Market Share Analysis
      • 7.2.4.6. United Kingdom Market Share Analysis
      • 7.2.4.7. Belgium Market Share Analysis
      • 7.2.4.8. Rest of Europe & CIS Market Share Analysis
  • 7.3. Europe & CIS: Country Analysis
    • 7.3.1. Germany Space Propulsion System Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Class of Orbit Market Share Analysis
        • 7.3.1.2.2. By End User Market Share Analysis
        • 7.3.1.2.3. By Type Market Share Analysis
    • 7.3.2. Spain Space Propulsion System Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Class of Orbit Market Share Analysis
        • 7.3.2.2.2. By End User Market Share Analysis
        • 7.3.2.2.3. By Type Market Share Analysis
    • 7.3.3. France Space Propulsion System Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Class of Orbit Market Share Analysis
        • 7.3.3.2.2. By End User Market Share Analysis
        • 7.3.3.2.3. By Type Market Share Analysis
    • 7.3.4. Russia Space Propulsion System Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Class of Orbit Market Share Analysis
        • 7.3.4.2.2. By End User Market Share Analysis
        • 7.3.4.2.3. By Type Market Share Analysis
    • 7.3.5. Italy Space Propulsion System Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Class of Orbit Market Share Analysis
        • 7.3.5.2.2. By End User Market Share Analysis
        • 7.3.5.2.3. By Type Market Share Analysis
    • 7.3.6. United Kingdom Space Propulsion System Market Outlook
      • 7.3.6.1. Market Size & Forecast
        • 7.3.6.1.1. By Value
      • 7.3.6.2. Market Share & Forecast
        • 7.3.6.2.1. By Class of Orbit Market Share Analysis
        • 7.3.6.2.2. By End User Market Share Analysis
        • 7.3.6.2.3. By Type Market Share Analysis
    • 7.3.7. Belgium Space Propulsion System Market Outlook
      • 7.3.7.1. Market Size & Forecast
        • 7.3.7.1.1. By Value
      • 7.3.7.2. Market Share & Forecast
        • 7.3.7.2.1. By Class of Orbit Market Share Analysis
        • 7.3.7.2.2. By End User Market Share Analysis
        • 7.3.7.2.3. By Type Market Share Analysis

8. North America Space Propulsion System Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Class of Orbit Market Share Analysis
    • 8.2.2. By End User Market Share Analysis
    • 8.2.3. By Type Market Share Analysis
    • 8.2.4. By Country Market Share Analysis
      • 8.2.4.1. United States Market Share Analysis
      • 8.2.4.2. Mexico Market Share Analysis
      • 8.2.4.3. Canada Market Share Analysis
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Space Propulsion System Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Class of Orbit Market Share Analysis
        • 8.3.1.2.2. By End User Market Share Analysis
        • 8.3.1.2.3. By Type Market Share Analysis
    • 8.3.2. Mexico Space Propulsion System Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Class of Orbit Market Share Analysis
        • 8.3.2.2.2. By End User Market Share Analysis
        • 8.3.2.2.3. By Type Market Share Analysis
    • 8.3.3. Canada Space Propulsion System Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Class of Orbit Market Share Analysis
        • 8.3.3.2.2. By End User Market Share Analysis
        • 8.3.3.2.3. By Type Market Share Analysis

9. South America Space Propulsion System Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Class of Orbit Market Share Analysis
    • 9.2.2. By End User Market Share Analysis
    • 9.2.3. By Type Market Share Analysis
    • 9.2.4. By Country Market Share Analysis
      • 9.2.4.1. Brazil Market Share Analysis
      • 9.2.4.2. Argentina Market Share Analysis
      • 9.2.4.3. Colombia Market Share Analysis
      • 9.2.4.4. Rest of South America Market Share Analysis
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Space Propulsion System Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Class of Orbit Market Share Analysis
        • 9.3.1.2.2. By End User Market Share Analysis
        • 9.3.1.2.3. By Type Market Share Analysis
    • 9.3.2. Colombia Space Propulsion System Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Class of Orbit Market Share Analysis
        • 9.3.2.2.2. By End User Market Share Analysis
        • 9.3.2.2.3. By Type Market Share Analysis
    • 9.3.3. Argentina Space Propulsion System Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Class of Orbit Market Share Analysis
        • 9.3.3.2.2. By End User Market Share Analysis
        • 9.3.3.2.3. By Type Market Share Analysis

10. Middle East & Africa Space Propulsion System Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Class of Orbit Market Share Analysis
    • 10.2.2. By End User Market Share Analysis
    • 10.2.3. By Type Market Share Analysis
    • 10.2.4. By Country Market Share Analysis
      • 10.2.4.1. Turkey Market Share Analysis
      • 10.2.4.2. Iran Market Share Analysis
      • 10.2.4.3. Saudi Arabia Market Share Analysis
      • 10.2.4.4. UAE Market Share Analysis
      • 10.2.4.5. Rest of Middle East & Africa Market Share Analysis
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. Turkey Space Propulsion System Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Class of Orbit Market Share Analysis
        • 10.3.1.2.2. By End User Market Share Analysis
        • 10.3.1.2.3. By Type Market Share Analysis
    • 10.3.2. Iran Space Propulsion System Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Class of Orbit Market Share Analysis
        • 10.3.2.2.2. By End User Market Share Analysis
        • 10.3.2.2.3. By Type Market Share Analysis
    • 10.3.3. Saudi Arabia Space Propulsion System Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Class of Orbit Market Share Analysis
        • 10.3.3.2.2. By End User Market Share Analysis
        • 10.3.3.2.3. By Type Market Share Analysis
    • 10.3.4. UAE Space Propulsion System Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Class of Orbit Market Share Analysis
        • 10.3.4.2.2. By End User Market Share Analysis
        • 10.3.4.2.3. By Type Market Share Analysis

11. SWOT Analysis

  • 11.1. Strength
  • 11.2. Weakness
  • 11.3. Opportunities
  • 11.4. Threats

12. Market Dynamics

  • 12.1. Market Drivers
  • 12.2. Market Challenges

13. Market Trends and Developments

14. Competitive Landscape

  • 14.1. Company Profiles (Up to 10 Major Companies)
    • 14.1.1. Space Exploration Technologies Corp.
      • 14.1.1.1. Company Details
      • 14.1.1.2. Key Product Offered
      • 14.1.1.3. Financials (As Per Availability)
      • 14.1.1.4. Recent Developments
      • 14.1.1.5. Key Management Personnel
    • 14.1.2. The Boeing Company
      • 14.1.2.1. Company Details
      • 14.1.2.2. Key Product Offered
      • 14.1.2.3. Financials (As Per Availability)
      • 14.1.2.4. Recent Developments
      • 14.1.2.5. Key Management Personnel
    • 14.1.3. Blue Origin Enterprises, L.P.
      • 14.1.3.1. Company Details
      • 14.1.3.2. Key Product Offered
      • 14.1.3.3. Financials (As Per Availability)
      • 14.1.3.4. Recent Developments
      • 14.1.3.5. Key Management Personnel
    • 14.1.4. Moog Inc.
      • 14.1.4.1. Company Details
      • 14.1.4.2. Key Product Offered
      • 14.1.4.3. Financials (As Per Availability)
      • 14.1.4.4. Recent Developments
      • 14.1.4.5. Key Management Personnel
    • 14.1.5. L3Harris Technologies, Inc.
      • 14.1.5.1. Company Details
      • 14.1.5.2. Key Product Offered
      • 14.1.5.3. Financials (As Per Availability)
      • 14.1.5.4. Recent Developments
      • 14.1.5.5. Key Management Personnel
    • 14.1.6. Avio S.p.A.
      • 14.1.6.1. Company Details
      • 14.1.6.2. Key Product Offered
      • 14.1.6.3. Financials (As Per Availability)
      • 14.1.6.4. Recent Developments
      • 14.1.6.5. Key Management Personnel
    • 14.1.7. International Astronautical Federation
      • 14.1.7.1. Company Details
      • 14.1.7.2. Key Product Offered
      • 14.1.7.3. Financials (As Per Availability)
      • 14.1.7.4. Recent Developments
      • 14.1.7.5. Key Management Personnel
    • 14.1.8. OHB SE
      • 14.1.8.1. Company Details
      • 14.1.8.2. Key Product Offered
      • 14.1.8.3. Financials (As Per Availability)
      • 14.1.8.4. Recent Developments
      • 14.1.8.5. Key Management Personnel
    • 14.1.9. IHI Corporation
      • 14.1.9.1. Company Details
      • 14.1.9.2. Key Product Offered
      • 14.1.9.3. Financials (As Per Availability)
      • 14.1.9.4. Recent Developments
      • 14.1.9.5. Key Management Personnel
    • 14.1.10. Sierra Nevada Corporation
      • 14.1.10.1. Company Details
      • 14.1.10.2. Key Product Offered
      • 14.1.10.3. Financials (As Per Availability)
      • 14.1.10.4. Recent Developments
      • 14.1.10.5. Key Management Personnel

15. Strategic Recommendations

  • 15.1. Key Focus Areas
    • 15.1.1. Target Regions
    • 15.1.2. Target Class of Orbit

16. About Us & Disclaimer