封面
市场调查报告书
商品编码
1624640

大数据市场 - 按硬体、服务、最终用户、地区和竞争细分的全球产业规模、份额、趋势、机会和预测,2019-2029F

Big Data Market - Global Industry Size, Share, Trends, Opportunity, and Forecast Segmented By Hardware, By Service, By End-User, By Region & Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 186 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2023年全球大数据市场价值为2,219.8亿美元,预估至2029年将达4,317.7亿美元,预测期内复合年增长率为11.56%。全球大数据市场是由数位设备、物联网和社群媒体产生的资料呈指数级增长,以及分析和机器学习技术的进步所推动的。组织越来越多地采用数据驱动的决策来提高效率并获得竞争优势。向云端运算的转变为大数据储存和处理提供了可扩展、经济高效的解决方案。此外,监管合规性、资料货币化的兴起以及竞争压力正在推动企业投资大数据技术。物联网和智慧型装置的激增进一步加速了对大数据解决方案的需求,从而实现即时分析和可行的见解。

市场概况
预测期 2025-2029
2023 年市场规模 2219.8亿美元
2029 年市场规模 4317.7亿美元
2024-2029 年复合年增长率 11.56%
成长最快的细分市场 咨询
最大的市场 北美洲

主要市场驱动因素

数据爆炸和数位技术的扩散

越来越重视数据驱动的决策与商业智能

主要市场挑战

资料隐私和安全问题

资料管理复杂性与整合挑战

主要市场趋势

越来越多地采用基于云端的大数据解决方案

细分市场洞察

最终使用者见解

区域洞察

目录

第 1 章:服务概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
    • 主要市场区隔

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:COVID-19 对全球大数据市场的影响

第 5 章:客户之声

第 6 章:全球大数据市场概述

第 7 章:全球大数据市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按硬体(储存、伺服器、网路设备)
    • 按服务(咨询、维护、培训和开发)
    • 按最终用户(BFSI、製造、零售、游戏、电信)
    • 按地区
  • 按公司划分 (2023)
  • 市场地图

第 8 章:北美大数据市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依硬体分类
    • 按服务
    • 按最终用户
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 9 章:欧洲大数据市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依硬体分类
    • 按服务
    • 按最终用户
    • 按国家/地区
  • 欧洲:国家分析
    • 德国
    • 法国
    • 英国
    • 义大利
    • 西班牙
    • 荷兰
    • 比利时

第 10 章:南美洲大数据市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依硬体分类
    • 按服务
    • 按最终用户
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 哥伦比亚
    • 阿根廷
    • 智利

第 11 章:中东和非洲大数据市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依硬体分类
    • 按服务
    • 按最终用户
    • 按国家/地区
  • 中东和非洲:国家分析
    • 沙乌地阿拉伯
    • 阿联酋
    • 南非
    • 土耳其

第12章:亚太大数据市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依硬体分类
    • 按服务
    • 按最终用户
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲
    • 泰国
    • 马来西亚

第 13 章:市场动态

  • 司机
  • 挑战

第 14 章:市场趋势与发展

第 15 章:公司简介

  • Oracle Corporation
  • Microsoft Corporation
  • SAP SE
  • IBM Corporation
  • SAS Institute Inc.
  • Salesforce, Inc.
  • Teradata Corporation
  • Google LLC
  • Accenture PLC
  • Informatica LLC
  • Wipro Limited
  • Hewlett Packard Enterprise Company

第 16 章:策略建议

第17章调查会社について・免责事项

简介目录
Product Code: 24874

Global Big Data Market was valued at USD 221.98 billion in 2023 and is expected to reach USD 431.77 billion by 2029 with a CAGR of 11.56% during the forecast period. The Global Big Data Market is driven by the exponential growth of data generated from digital devices, IoT, and social media, alongside advancements in analytics and machine learning technologies. Organizations are increasingly adopting data-driven decision-making to enhance efficiency and gain a competitive edge. The shift to cloud computing offers scalable, cost-effective solutions for Big Data storage and processing. Additionally, regulatory compliance, the rise of data monetization, and competitive pressures are pushing businesses to invest in Big Data technologies. The proliferation of IoT and smart devices further accelerates the demand for Big Data solutions, enabling real-time analytics and actionable insights.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 221.98 Billion
Market Size 2029USD 431.77 Billion
CAGR 2024-202911.56%
Fastest Growing SegmentConsulting
Largest MarketNorth America

Key Market Drivers

Data Explosion and the Proliferation of Digital Technologies

The rapid expansion of digital technologies and the subsequent data explosion are among the most significant drivers of the Global Big Data Market. The rise of internet-connected devices, social media platforms, and the Internet of Things (IoT) has led to an unprecedented surge in the amount of data generated daily. This surge is primarily driven by the continuous use of smartphones, wearables, sensors, and various IoT devices that produce vast amounts of structured and unstructured data. Social media interactions, online transactions, and user-generated content contribute significantly to this data volume, creating a vast reservoir of information that organizations can tap into for strategic insights. Every day, approximately 2.5 quintillion bytes of data are generated. The global market for Big Data analytics in healthcare is expected to reach USD79.23 billion by 2028. Currently, the digital universe contains over 44 zettabytes of data, with 70% of this data being user-generated. Additionally, annual spending on cloud computing by end-users totals around USD500 billion. These figures highlight the growing importance of data generation, analysis, and cloud technology across various industries, especially in sectors like healthcare and computing.

Moreover, the integration of digital technologies into everyday life has resulted in a data-centric culture, where organizations are compelled to analyze data to stay competitive. Businesses across all sectors, from healthcare to retail to manufacturing, are increasingly relying on data analytics to drive their strategies, improve customer experiences, and optimize operations. For instance, in retail, data analytics helps companies understand customer behavior and preferences, enabling them to tailor marketing strategies and improve product offerings. In healthcare, big data is crucial for patient care management, predictive analytics, and personalized medicine. This need to harness vast data volumes effectively is pushing the demand for advanced big data technologies, such as Hadoop, Apache Spark, and NoSQL databases, which can process and analyze data more efficiently.

The data explosion is also facilitating the growth of artificial intelligence (AI) and machine learning (ML) within the big data ecosystem. AI and ML models require large datasets to train algorithms, improve accuracy, and provide predictive analytics capabilities. As data generation continues to grow exponentially, organizations are investing heavily in big data infrastructure to support AI and ML initiatives. This trend is further accelerated by the adoption of cloud-based big data solutions, which offer scalable, flexible, and cost-effective options for storing and processing large datasets. The cloud's ability to handle massive data workloads without requiring substantial upfront investments in infrastructure makes it an attractive option for businesses of all sizes, thereby driving the market's growth.

Growing Emphasis on Data-Driven Decision Making and Business Intelligence

The increasing emphasis on data-driven decision-making and business intelligence is another key driver propelling the Global Big Data Market. In today's highly competitive business environment, companies are seeking ways to leverage data to make more informed decisions, optimize operations, and enhance customer satisfaction. Data-driven decision-making enables organizations to move beyond intuition and guesswork, allowing them to base their strategies on empirical data and analysis. This approach has proven to be highly effective in improving operational efficiency, identifying new market opportunities, and mitigating risks.

Business intelligence tools and big data analytics platforms provide organizations with the ability to collect, process, and analyze data from multiple sources in real time. This capability is particularly valuable in industries such as finance, healthcare, and retail, where timely insights can lead to significant competitive advantages. For example, in finance, big data analytics helps companies detect fraudulent activities by analyzing transaction patterns and identifying anomalies in real time. In healthcare, real-time analytics enable providers to monitor patient health data and predict potential health issues before they become critical, improving patient outcomes and reducing costs.

Moreover, the integration of big data analytics with business intelligence tools allows organizations to uncover hidden patterns and correlations within their data, leading to actionable insights. These insights can be used to enhance product development, optimize supply chains, and personalize customer experiences, ultimately driving business growth and profitability. As companies increasingly recognize the value of data as a strategic asset, there is a growing demand for robust big data solutions that can support complex analytics and provide deeper insights into market trends, customer behaviors, and operational efficiencies.

The adoption of big data technologies is also being driven by the need to remain agile and responsive in a rapidly changing market landscape. In an era where customer preferences and market dynamics are constantly evolving, organizations must be able to quickly adapt their strategies to stay ahead of the competition. Big data analytics provides the tools necessary to monitor market trends, analyze competitor actions, and respond proactively to changes in the business environment. This ability to make data-driven decisions in real-time is becoming increasingly important for businesses seeking to maintain a competitive edge, driving continued investment in big data technologies and solutions.

Key Market Challenges

Data Privacy and Security Concerns

One of the most significant challenges facing the Global Big Data Market is the growing concern over data privacy and security. As organizations collect and process vast amounts of sensitive data, including personal information, financial records, and proprietary business data, they become increasingly vulnerable to cyber threats and data breaches. High-profile data breaches have become more frequent, exposing critical vulnerabilities and leading to significant financial and reputational damage for companies. These breaches not only compromise personal and sensitive information but also erode consumer trust and bring about stringent regulatory scrutiny.

Regulatory frameworks such as the General Data Protection Regulation (GDPR) in Europe, the California Consumer Privacy Act (CCPA), and other regional data protection laws impose strict requirements on how organizations handle and protect data. Compliance with these regulations requires organizations to implement robust data governance frameworks, which can be complex and costly. Additionally, organizations must navigate varying legal requirements across different jurisdictions, adding to the complexity of ensuring compliance. Failing to comply can result in substantial fines, legal actions, and a loss of customer trust, further complicating the landscape for businesses operating on a global scale.

Furthermore, the integration of Big Data with emerging technologies like Artificial Intelligence (AI), Machine Learning (ML), and the Internet of Things (IoT) presents additional privacy and security challenges. These technologies often require the collection and analysis of vast amounts of data from multiple sources, increasing the potential attack surface for cyber threats. IoT devices, in particular, are often less secure and can be exploited as entry points into broader data systems. As the volume and variety of data continue to grow, ensuring data security and privacy becomes even more challenging, requiring continuous investments in advanced cybersecurity measures, encryption technologies, and secure data storage solutions.

The challenge is exacerbated by the shortage of skilled professionals in data security and privacy. Organizations often struggle to find qualified experts who can effectively implement and manage security protocols to protect large datasets. This skills gap, combined with the evolving nature of cyber threats, makes it difficult for organizations to stay ahead of potential risks. Consequently, data privacy and security concerns remain a significant barrier to the growth of the Global Big Data Market, as organizations must continually balance the need for data-driven insights with the imperative of safeguarding data integrity and privacy.

Data Management Complexity and Integration Challenges

The complexity of managing and integrating diverse datasets is another major challenge for the Global Big Data Market. As organizations collect data from a multitude of sources, including transactional databases, social media, IoT devices, and third-party providers, they are faced with the daunting task of ensuring data quality, consistency, and accessibility. The sheer volume, variety, and velocity of Big Data make it difficult to efficiently store, process, and analyze information. Traditional data management systems are often ill-equipped to handle these challenges, necessitating the adoption of more sophisticated technologies and strategies to manage data effectively.

One of the primary issues is the integration of disparate data sources. Different data types, such as structured data from relational databases and unstructured data from social media or sensor outputs, require different processing techniques and storage solutions. Integrating these data types into a cohesive system that provides comprehensive and actionable insights is a complex task. Data silos, where information is stored in isolated systems, further complicate this integration, leading to inefficiencies and a lack of a unified view of data. Organizations often need to invest in advanced data integration tools and platforms that can harmonize diverse datasets, ensuring seamless data flow and enhancing the overall analytics capabilities.

Moreover, maintaining data quality and consistency across large and varied datasets is a significant challenge. Data can often be incomplete, inaccurate, or outdated, affecting the reliability of the analytics outcomes. Ensuring high data quality requires ongoing data cleaning, validation, and enrichment processes, which can be resource-intensive and time-consuming. Additionally, as organizations increasingly rely on real-time data analytics, the need for low-latency data processing and high-speed data transfer becomes more critical. This requirement can strain existing IT infrastructure, necessitating further investments in high-performance computing resources and cloud-based solutions that can scale with the growing data demands.

The lack of standardized data management practices across different industries and regions adds another layer of complexity. Organizations must navigate diverse data standards, formats, and compliance requirements, making it difficult to establish a unified data management approach. This diversity can lead to challenges in data interoperability and sharing, hindering collaboration and the ability to derive holistic insights. As a result, organizations need to continually evolve their data management strategies, investing in new technologies and frameworks that can accommodate the growing complexity and ensure efficient and effective data integration and analysis. The ongoing need to address these challenges remains a critical barrier to maximizing the full potential of Big Data.

Key Market Trends

Increased Adoption of Cloud-Based Big Data Solutions

Another significant trend in the Global Big Data Market is the increased adoption of cloud-based Big Data solutions. As organizations generate more data than ever before, the need for scalable, flexible, and cost-effective data storage and processing solutions has become paramount. Cloud computing provides a robust platform for Big Data analytics, allowing businesses to store and process vast datasets without the substantial upfront investment in physical infrastructure. This shift to cloud-based solutions is being driven by the scalability and flexibility offered by cloud platforms, which enable organizations to adjust their resources based on demand, ensuring cost-efficiency and operational agility.

The adoption of cloud-based Big Data solutions is also accelerating due to the growing need for real-time data processing and analytics. Cloud platforms, such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP), offer a range of services specifically designed for Big Data, including data lakes, distributed storage systems, and high-performance computing environments. These platforms provide the computational power necessary to handle large-scale data processing tasks, such as streaming analytics, machine learning, and complex data modeling, in real time. This capability is essential for businesses looking to gain timely insights from their data to drive strategic decision-making and maintain a competitive edge in fast-paced markets.

Moreover, cloud-based Big Data solutions are enhancing data collaboration and integration across organizations. By leveraging the cloud, companies can break down data silos and enable seamless data sharing and collaboration between departments and with external partners. This increased data accessibility facilitates more comprehensive analytics and fosters innovation by allowing different stakeholders to contribute to data-driven insights. Additionally, the cloud's inherent support for multi-tenancy allows multiple organizations to share computing resources securely, reducing costs and enhancing collaboration.

The rise of hybrid and multi-cloud strategies is further influencing the adoption of cloud-based Big Data solutions. Many organizations are opting for hybrid models that combine on-premises infrastructure with public and private clouds to optimize their data management strategies. This approach provides the flexibility to keep sensitive data on-premises while leveraging the scalability of the cloud for less sensitive data processing tasks. Multi-cloud strategies, where businesses use services from multiple cloud providers, are also gaining traction, enabling companies to avoid vendor lock-in and optimize their Big Data environments for performance and cost. As a result, the continued shift towards cloud-based solutions is expected to drive significant growth in the Big Data market, providing businesses with the tools and flexibility needed to effectively manage and analyze their expanding data landscapes.

Segmental Insights

End-User Insights

The BFSI segment has emerged as the dominating segment in the global Big Data market, The Banking, Financial Services, and Insurance (BFSI) segment has emerged as the dominating segment in the global Big Data market due to its intensive reliance on data analytics to drive business strategies and maintain competitiveness. Financial institutions generate massive amounts of data daily from transactions, customer interactions, market feeds, and regulatory filings. Leveraging Big Data technologies allows these institutions to analyze this vast volume of structured and unstructured data in real time, leading to more informed decision-making, enhanced customer experiences, and improved risk management. Big Data analytics enables banks and insurers to detect fraudulent activities swiftly, assess credit risks more accurately, and develop personalized financial products that meet individual customer needs.

Furthermore, regulatory compliance is a significant driver for Big Data adoption in the BFSI sector. With stringent regulations like the Basel III, the Dodd-Frank Act, and the General Data Protection Regulation (GDPR), financial institutions must manage and analyze data effectively to ensure compliance and avoid penalties. Big Data solutions offer advanced tools for data governance, reporting, and auditing, making them essential for regulatory adherence.

The BFSI sector also benefits from predictive analytics powered by Big Data, which helps forecast market trends, optimize trading strategies, and improve investment decisions. The competitive nature of the financial industry pushes firms to continuously innovate and adopt cutting-edge technologies, further driving the demand for Big Data solutions. As the BFSI sector continues to prioritize data-driven insights for operational efficiency, risk mitigation, and customer engagement, its dominance in the global Big Data market is set to continue growing.

Regional Insights

North America has emerged as the dominating region in the global Big Data market, North America has emerged as the dominating region in the global Big Data market due to several key factors. Firstly, the region is home to many of the world's leading technology companies, such as Google, Microsoft, IBM, and Amazon, which are at the forefront of Big Data innovation. These companies have made significant investments in Big Data technologies, fostering a robust ecosystem of research, development, and deployment. Secondly, North America has a high rate of adoption of advanced technologies across various sectors, including finance, healthcare, retail, and government. Organizations in these sectors recognize the value of Big Data analytics for gaining competitive advantages, improving operational efficiencies, and enhancing customer experiences.

Moreover, the presence of a strong regulatory framework, coupled with stringent data privacy laws such as the California Consumer Privacy Act (CCPA), has pushed companies to invest heavily in data governance and management solutions. This has accelerated the adoption of Big Data tools that help ensure compliance and secure data handling. Additionally, North America's well-developed infrastructure, including widespread high-speed internet access and cloud computing facilities, supports the rapid processing and analysis of large datasets, further boosting the region's market dominance.

The growing demand for real-time analytics, driven by the need to make quick, data-driven decisions, is another factor contributing to North America's leadership in the Big Data market. As organizations continue to leverage Big Data for predictive analytics, machine learning, and AI applications, the region is likely to maintain its leading position, setting the pace for global market growth.

Key Market Players

  • Oracle Corporation
  • Microsoft Corporation
  • SAP SE
  • IBM Corporation
  • SAS Institute Inc.
  • Salesforce, Inc.
  • Teradata Corporation
  • Google LLC
  • Accenture PLC
  • Informatica LLC
  • Wipro Limited
  • Hewlett Packard Enterprise Company

Report Scope:

In this report, the Global Big Data Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Big Data Market, By Hardware:

  • Storage
  • Server
  • Network Equipment

Big Data Market, By Service:

  • Consulting
  • Maintenance
  • Training & Development

Big Data Market, By End-User:

  • BFSI
  • Manufacturing
  • Retail
  • Gaming
  • Telecom

Big Data Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
    • Netherlands
    • Belgium
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
    • Thailand
    • Malaysia
  • South America
    • Brazil
    • Argentina
    • Colombia
    • Chile
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Big Data Market.

Available Customizations:

Global Big Data Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Service Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1.Markets Covered
    • 1.2.2.Years Considered for Study
    • 1.2.3.Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1.Secondary Research
    • 2.5.2.Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1.The Bottom-Up Approach
    • 2.6.2.The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1.Data Triangulation & Validation

3. Executive Summary

4. Impact of COVID-19 on Global Big Data Market

5. Voice of Customer

6. Global Big Data Market Overview

7. Global Big Data Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1.By Value
  • 7.2. Market Share & Forecast
    • 7.2.1.By Hardware (Storage, Server, Network Equipment)
    • 7.2.2.By Service (Consulting, Maintenance, Training & Development)
    • 7.2.3.By End-User (BFSI, Manufacturing, Retail, Gaming, Telecom)
    • 7.2.4.By Region
  • 7.3. By Company (2023)
  • 7.4. Market Map

8. North America Big Data Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1.By Value
  • 8.2. Market Share & Forecast
    • 8.2.1.By Hardware
    • 8.2.2.By Service
    • 8.2.3.By End-User
    • 8.2.4.By Country
  • 8.3. North America: Country Analysis
    • 8.3.1.United States Big Data Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Hardware
        • 8.3.1.2.2. By Service
        • 8.3.1.2.3. By End-User
    • 8.3.2.Canada Big Data Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Hardware
        • 8.3.2.2.2. By Service
        • 8.3.2.2.3. By End-User
    • 8.3.3.Mexico Big Data Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Hardware
        • 8.3.3.2.2. By Service
        • 8.3.3.2.3. By End-User

9. Europe Big Data Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1.By Value
  • 9.2. Market Share & Forecast
    • 9.2.1.By Hardware
    • 9.2.2.By Service
    • 9.2.3.By End-User
    • 9.2.4.By Country
  • 9.3. Europe: Country Analysis
    • 9.3.1.Germany Big Data Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Hardware
        • 9.3.1.2.2. By Service
        • 9.3.1.2.3. By End-User
    • 9.3.2.France Big Data Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Hardware
        • 9.3.2.2.2. By Service
        • 9.3.2.2.3. By End-User
    • 9.3.3.United Kingdom Big Data Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Hardware
        • 9.3.3.2.2. By Service
        • 9.3.3.2.3. By End-User
    • 9.3.4.Italy Big Data Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Hardware
        • 9.3.4.2.2. By Service
        • 9.3.4.2.3. By End-User
    • 9.3.5.Spain Big Data Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Hardware
        • 9.3.5.2.2. By Service
        • 9.3.5.2.3. By End-User
    • 9.3.6.Netherlands Big Data Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Hardware
        • 9.3.6.2.2. By Service
        • 9.3.6.2.3. By End-User
    • 9.3.7.Belgium Big Data Market Outlook
      • 9.3.7.1. Market Size & Forecast
        • 9.3.7.1.1. By Value
      • 9.3.7.2. Market Share & Forecast
        • 9.3.7.2.1. By Hardware
        • 9.3.7.2.2. By Service
        • 9.3.7.2.3. By End-User

10. South America Big Data Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Hardware
    • 10.2.2. By Service
    • 10.2.3. By End-User
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Big Data Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Hardware
        • 10.3.1.2.2. By Service
        • 10.3.1.2.3. By End-User
    • 10.3.2. Colombia Big Data Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Hardware
        • 10.3.2.2.2. By Service
        • 10.3.2.2.3. By End-User
    • 10.3.3. Argentina Big Data Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Hardware
        • 10.3.3.2.2. By Service
        • 10.3.3.2.3. By End-User
    • 10.3.4. Chile Big Data Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Hardware
        • 10.3.4.2.2. By Service
        • 10.3.4.2.3. By End-User

11. Middle East & Africa Big Data Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Hardware
    • 11.2.2. By Service
    • 11.2.3. By End-User
    • 11.2.4. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Big Data Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Hardware
        • 11.3.1.2.2. By Service
        • 11.3.1.2.3. By End-User
    • 11.3.2. UAE Big Data Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Hardware
        • 11.3.2.2.2. By Service
        • 11.3.2.2.3. By End-User
    • 11.3.3. South Africa Big Data Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Hardware
        • 11.3.3.2.2. By Service
        • 11.3.3.2.3. By End-User
    • 11.3.4. Turkey Big Data Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Hardware
        • 11.3.4.2.2. By Service
        • 11.3.4.2.3. By End-User

12. Asia-Pacific Big Data Market Outlook

  • 12.1. Market Size & Forecast
    • 12.1.1. By Value
  • 12.2. Market Share & Forecast
    • 12.2.1. By Hardware
    • 12.2.2. By Service
    • 12.2.3. By End-User
    • 12.2.4. By Country
  • 12.3. Asia-Pacific: Country Analysis
    • 12.3.1. China Big Data Market Outlook
      • 12.3.1.1. Market Size & Forecast
        • 12.3.1.1.1. By Value
      • 12.3.1.2. Market Share & Forecast
        • 12.3.1.2.1. By Hardware
        • 12.3.1.2.2. By Service
        • 12.3.1.2.3. By End-User
    • 12.3.2. India Big Data Market Outlook
      • 12.3.2.1. Market Size & Forecast
        • 12.3.2.1.1. By Value
      • 12.3.2.2. Market Share & Forecast
        • 12.3.2.2.1. By Hardware
        • 12.3.2.2.2. By Service
        • 12.3.2.2.3. By End-User
    • 12.3.3. Japan Big Data Market Outlook
      • 12.3.3.1. Market Size & Forecast
        • 12.3.3.1.1. By Value
      • 12.3.3.2. Market Share & Forecast
        • 12.3.3.2.1. By Hardware
        • 12.3.3.2.2. By Service
        • 12.3.3.2.3. By End-User
    • 12.3.4. South Korea Big Data Market Outlook
      • 12.3.4.1. Market Size & Forecast
        • 12.3.4.1.1. By Value
      • 12.3.4.2. Market Share & Forecast
        • 12.3.4.2.1. By Hardware
        • 12.3.4.2.2. By Service
        • 12.3.4.2.3. By End-User
    • 12.3.5. Australia Big Data Market Outlook
      • 12.3.5.1. Market Size & Forecast
        • 12.3.5.1.1. By Value
      • 12.3.5.2. Market Share & Forecast
        • 12.3.5.2.1. By Hardware
        • 12.3.5.2.2. By Service
        • 12.3.5.2.3. By End-User
    • 12.3.6. Thailand Big Data Market Outlook
      • 12.3.6.1. Market Size & Forecast
        • 12.3.6.1.1. By Value
      • 12.3.6.2. Market Share & Forecast
        • 12.3.6.2.1. By Hardware
        • 12.3.6.2.2. By Service
        • 12.3.6.2.3. By End-User
    • 12.3.7. Malaysia Big Data Market Outlook
      • 12.3.7.1. Market Size & Forecast
        • 12.3.7.1.1. By Value
      • 12.3.7.2. Market Share & Forecast
        • 12.3.7.2.1. By Hardware
        • 12.3.7.2.2. By Service
        • 12.3.7.2.3. By End-User

13. Market Dynamics

  • 13.1. Drivers
  • 13.2. Challenges

14. Market Trends and Developments

15. Company Profiles

  • 15.1. Oracle Corporation
    • 15.1.1. Business Overview
    • 15.1.2. Key Revenue and Financials
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel/Key Contact Person
    • 15.1.5. Key Product/Services Offered
  • 15.2. Microsoft Corporation
    • 15.2.1. Business Overview
    • 15.2.2. Key Revenue and Financials
    • 15.2.3. Recent Developments
    • 15.2.4. Key Personnel/Key Contact Person
    • 15.2.5. Key Product/Services Offered
  • 15.3. SAP SE
    • 15.3.1. Business Overview
    • 15.3.2. Key Revenue and Financials
    • 15.3.3. Recent Developments
    • 15.3.4. Key Personnel/Key Contact Person
    • 15.3.5. Key Product/Services Offered
  • 15.4. IBM Corporation
    • 15.4.1. Business Overview
    • 15.4.2. Key Revenue and Financials
    • 15.4.3. Recent Developments
    • 15.4.4. Key Personnel/Key Contact Person
    • 15.4.5. Key Product/Services Offered
  • 15.5. SAS Institute Inc.
    • 15.5.1. Business Overview
    • 15.5.2. Key Revenue and Financials
    • 15.5.3. Recent Developments
    • 15.5.4. Key Personnel/Key Contact Person
    • 15.5.5. Key Product/Services Offered
  • 15.6. Salesforce, Inc.
    • 15.6.1. Business Overview
    • 15.6.2. Key Revenue and Financials
    • 15.6.3. Recent Developments
    • 15.6.4. Key Personnel/Key Contact Person
    • 15.6.5. Key Product/Services Offered
  • 15.7. Teradata Corporation
    • 15.7.1. Business Overview
    • 15.7.2. Key Revenue and Financials
    • 15.7.3. Recent Developments
    • 15.7.4. Key Personnel/Key Contact Person
    • 15.7.5. Key Product/Services Offered
  • 15.8. Google LLC
    • 15.8.1. Business Overview
    • 15.8.2. Key Revenue and Financials
    • 15.8.3. Recent Developments
    • 15.8.4. Key Personnel/Key Contact Person
    • 15.8.5. Key Product/Services Offered
  • 15.9. Accenture PLC
    • 15.9.1. Business Overview
    • 15.9.2. Key Revenue and Financials
    • 15.9.3. Recent Developments
    • 15.9.4. Key Personnel/Key Contact Person
    • 15.9.5. Key Product/Services Offered
  • 15.10. Informatica LLC
    • 15.10.1. Business Overview
    • 15.10.2. Key Revenue and Financials
    • 15.10.3. Recent Developments
    • 15.10.4. Key Personnel/Key Contact Person
    • 15.10.5. Key Product/Services Offered
  • 15.11. Wipro Limited
    • 15.11.1. Business Overview
    • 15.11.2. Key Revenue and Financials
    • 15.11.3. Recent Developments
    • 15.11.4. Key Personnel/Key Contact Person
    • 15.11.5. Key Product/Services Offered
  • 15.12. Hewlett Packard Enterprise Company
    • 15.12.1. Business Overview
    • 15.12.2. Key Revenue and Financials
    • 15.12.3. Recent Developments
    • 15.12.4. Key Personnel/Key Contact Person
    • 15.12.5. Key Product/Services Offered

16. Strategic Recommendations

17. About Us & Disclaimer