封面
市场调查报告书
商品编码
1637166

微塑胶检测市场 - 全球产业规模、份额、趋势、机会和预测,按类型、技术、应用、最终用户产业、地区和竞争细分,2020-2030F

Microplastic Detection Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Technology, By Application, By End User Industry, By Region & Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2024年全球微塑胶检测市场估值为48.7亿美元,预计2030年将达71.8亿美元,到2030年复合年增长率为6.52%。

市场概况
预测期 2026-2030
2024 年市场规模 48.7亿美元
2030 年市场规模 71.8亿美元
2025-2030 年复合年增长率 6.52%
成长最快的细分市场 天然微塑料
最大的市场 北美洲

微塑胶检测市场专注于对各种环境(包括水、土壤、空气和食品)中的微塑胶(尺寸小于 5 毫米的微小塑胶颗粒)进行识别、定量和分析。这个市场的推动因素是人们对微塑胶污染对生态系统、人类健康和海洋生物多样性的不利影响的日益担忧。世界各地的政府和监管机构正在实施严格的政策和环境法规,以监测和减轻微塑胶污染,进一步增加了对先进检测技术的需求。拉曼光谱、傅立叶变换红外光谱 (FTIR) 和热解-气相层析质谱 (Py-GC-MS) 等技术广泛应用于此领域,可提供精确可靠的结果。各行业,特别是食品和饮料、医疗保健和废水管理等行业,对污染风险和法律合规要求的认识不断提高,正在推动对微塑胶检测解决方案的投资。此外,分析方法、便携式检测设备和自动化的进步使微塑胶检测变得更加容易和高效,进一步推动市场成长。越来越多采用研究微塑胶长期影响的研究措施也支持了市场的扩张,这创造了学术和科研机构的强劲需求。随着对永续发展和企业责任的日益重视,各行业正在重点监控其供应链和生产流程,以尽量减少微塑胶的释放,从而促进对检测技术的积极需求。随着环境监测成为全球优先事项,并得到公私合作伙伴关係、研发资金和技术进步的支持,预计该市场在预测期内将大幅成长。亚太地区由于其大规模的工业活动和日益增强的环保意识,预计将成为主要的成长动力,而北美和欧洲则由于已建立的监管框架而保持主导地位。这些因素的结合使微塑胶检测市场在全球范围内持续加速成长。

主要市场驱动因素

不断升级的环境问题和法规

增加水和废水处理的工业应用

对微塑胶污染的健康担忧日益加剧

主要市场挑战

先进检测技术的高成本

缺乏标准化测试协议

主要市场趋势

人工智慧在微塑胶检测的应用不断增加

便携式和现场检测解决方案的开发

越来越关注监管合规性和标准

细分市场洞察

类型洞察

区域洞察

目录

第 1 章:产品概述

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:客户之声

第 5 章:全球微塑胶检测市场概述

第 6 章:全球微塑胶检测市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型(合成微塑胶、天然微塑胶)
    • 依技术(拉曼光谱、傅立叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM)、热解-气相层析质谱仪 (Py-GC-MS) 等)
    • 按应用(环境监测、食品和饮料测试、海洋和水生监测、医疗保健和生物医学应用、其他)
    • 按最终用户行业(研究实验室、监管机构、工业设施、其他)
    • 按地区(北美、欧洲、南美、中东和非洲、亚太地区)
  • 按公司划分 (2024)
  • 市场地图

第 7 章:北美微塑胶检测市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 依技术
    • 按申请
    • 按最终用户产业
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 8 章:欧洲微塑胶检测市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 依技术
    • 按申请
    • 按最终用户产业
    • 按国家/地区
  • 欧洲:国家分析
    • 德国
    • 法国
    • 英国
    • 义大利
    • 西班牙
    • 比利时

第 9 章:亚太地区微塑胶检测市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 依技术
    • 按申请
    • 按最终用户产业
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲
    • 印尼
    • 越南

第10章:南美洲微塑胶检测市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 依技术
    • 按申请
    • 按最终用户产业
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 哥伦比亚
    • 阿根廷
    • 智利

第 11 章:中东和非洲微塑胶检测市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 依技术
    • 按申请
    • 按最终用户产业
    • 按国家/地区
  • 中东和非洲:国家分析
    • 沙乌地阿拉伯
    • 阿联酋
    • 南非
    • 土耳其
    • 以色列

第 12 章:市场动态

  • 司机
  • 挑战

第 13 章:市场趋势与发展

第 14 章:公司简介

  • Thermo Fisher Scientific Inc
  • Agilent Technologies, Inc
  • Bruker Corporation
  • PerkinElmer AES
  • JEOL Ltd.
  • Shimadzu Corporation.
  • Danaher Corporation.
  • ZEISS Group.
  • Renishaw plc.
  • Oxford Instruments plc.

第 15 章:策略建议

第16章调查会社について・免责事项

简介目录
Product Code: 27081

The Global Microplastic Detection Market was valued at USD 4.87 Billion in 2024 and is expected to reach USD 7.18 Billion by 2030 with a CAGR of 6.52% through 2030.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 4.87 Billion
Market Size 2030USD 7.18 Billion
CAGR 2025-20306.52%
Fastest Growing SegmentNatural Microplastics
Largest MarketNorth America

The Microplastic Detection market focuses on the identification, quantification, and analysis of microplastics-tiny plastic particles less than 5 millimeters in size across various environments, including water, soil, air, and food. This market is driven by escalating concerns over the adverse effects of microplastic pollution on ecosystems, human health, and marine biodiversity. Governments and regulatory bodies worldwide are implementing stringent policies and environmental regulations to monitor and mitigate microplastic pollution, further bolstering the demand for advanced detection technologies. Techniques such as Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) are widely used in this domain, offering precise and reliable results. The rising awareness among industries, particularly in sectors like food and beverage, healthcare, and wastewater management, about the contamination risks and legal compliance requirements is fueling investments in microplastic detection solutions. Additionally, advancements in analytical methods, portable detection devices, and automation are making microplastic detection more accessible and efficient, further driving market growth. The market's expansion is also supported by the increasing adoption of research initiatives to study the long-term impacts of microplastics, which has created a robust demand from academic and scientific institutions. With a growing emphasis on sustainability and corporate responsibility, industries are focusing on monitoring their supply chains and production processes to minimize microplastic release, fostering a proactive demand for detection technologies. The market is expected to rise significantly during the forecast period as environmental monitoring becomes a global priority, supported by public-private partnerships, funding for research and development, and technological advancements. The Asia Pacific region, owing to its large-scale industrial activities and growing environmental awareness, is anticipated to emerge as a key growth driver, while North America and Europe maintain their dominance due to established regulatory frameworks. This combination of factors positions the Microplastic Detection market for sustained and accelerated growth globally.

Key Market Drivers

Escalating Environmental Concerns and Regulations

The rising awareness regarding the detrimental effects of microplastic pollution on ecosystems and human health is a primary driver for the Microplastic Detection market. Microplastics, which are small plastic particles measuring less than five millimeters in size, pose a significant threat to aquatic life, soil quality, and air purity. These particles have been found to accumulate in the food chain, impacting not only marine organisms but also human populations that consume seafood.

Governments and international organizations worldwide are implementing stringent regulations to monitor and reduce microplastic pollution. Policies such as bans on single-use plastics, mandates for wastewater treatment plants to integrate microplastic filtration systems, and guidelines for industries to limit microplastic emissions are intensifying the need for advanced detection technologies. For example, the European Union has implemented a directive requiring member states to monitor and report microplastic levels in their water systems, driving the adoption of innovative microplastic detection solutions.

Moreover, the Microplastic Detection market is benefiting from initiatives by environmental organizations and research institutions aimed at understanding the long-term impact of microplastics. The demand for accurate detection technologies, such as Raman spectroscopy, Fourier-transform infrared spectroscopy, and Pyrolysis-Gas Chromatography-Mass Spectrometry, is growing as these methods provide reliable and detailed data.

The global movement toward sustainability, fueled by public awareness campaigns and consumer demand for environmentally friendly products, further accelerates the market. Companies across various industries, including textiles, cosmetics, and packaging, are adopting microplastic detection solutions to ensure compliance with regulations and demonstrate corporate social responsibility. This focus on sustainability and environmental preservation positions the Microplastic Detection market for robust growth during the forecast period. Microplastics have become a global environmental concern, with studies estimating that approximately 8 million tons of plastic enter the oceans every year, much of it breaking down into microplastic particles (less than 5mm in size)

Increasing Industrial Applications in Water and Wastewater Treatment

The Microplastic Detection market is witnessing significant growth due to the increasing demand for advanced technologies in the water and wastewater treatment sector. Microplastics are a persistent contaminant in aquatic environments, stemming from industrial discharges, agricultural runoff, and household waste. Their small size and resistance to natural degradation make them difficult to eliminate, necessitating specialized detection and filtration solutions.

Governments and environmental agencies are mandating stringent monitoring of microplastics in water bodies, including rivers, lakes, and oceans, to ensure the safety of aquatic ecosystems and drinking water sources. For instance, the United Nations Sustainable Development Goals emphasize the need for clean water and sanitation, which aligns with the adoption of microplastic detection technologies. Water treatment facilities are increasingly integrating sophisticated analytical instruments, such as Scanning Electron Microscopy and Raman spectroscopy, to identify and quantify microplastic particles effectively.

Industries reliant on water as a critical resource, such as beverage manufacturing, aquaculture, and power generation, are also adopting microplastic detection solutions. These industries must comply with environmental regulations to minimize their ecological footprint and ensure the safety and quality of their products. For example, beverage companies are investing in microplastic detection systems to analyze water sources and prevent contamination in their production processes.

Furthermore, advancements in microplastic detection technologies are enhancing their efficiency and cost-effectiveness, encouraging widespread adoption in the water and wastewater treatment sector. The integration of automated systems and portable devices allows for real-time monitoring, reducing the need for manual interventions and increasing the reliability of data collection. This growing focus on water quality management and environmental sustainability is expected to propel the Microplastic Detection market significantly in the coming years. The market size for microplastic detection technologies is projected to surpass USd 2 billion by 2028, driven by the increased investment in research and development (R&D) in detection technologies and the rise in environmental monitoring efforts globally.

Rising Health Concerns Over Microplastic Contamination

The growing concern regarding the impact of microplastics on human health is a critical driver for the Microplastic Detection market. Studies have indicated that microplastics can enter the human body through various pathways, including ingestion, inhalation, and dermal absorption. These particles have been found in drinking water, food items, and even atmospheric dust, raising alarm over their potential health effects.

Microplastics are known to carry toxic chemicals, heavy metals, and pathogens, which can have harmful consequences when ingested. Research has linked microplastic exposure to gastrointestinal issues, hormonal disruptions, and even long-term risks such as carcinogenic effects. These findings have spurred increased attention from the healthcare sector and regulatory authorities, driving the adoption of advanced detection and monitoring technologies. Microplastics have been found in bottled water, seafood, and salt, and plastic particles in drinking water have been detected in more than 70% of global water supplies. This has contributed to growing concerns about the possible long-term effects of ingesting or inhaling microplastics.

The food and beverage industry is particularly impacted, as microplastics have been detected in seafood, bottled water, and other consumable goods. Companies are now investing in microplastic detection solutions to ensure product safety and maintain consumer trust. For instance, food testing laboratories are employing techniques such as Fourier-transform infrared spectroscopy and Pyrolysis-Gas Chromatography-Mass Spectrometry to identify microplastic contamination in food products.

Public awareness campaigns and media coverage highlighting the dangers of microplastic contamination have also played a significant role in driving market growth. Consumers are increasingly demanding transparency from companies regarding their environmental impact and product safety measures. This has prompted industries across the supply chain to adopt microplastic detection technologies as part of their quality assurance processes.

Additionally, ongoing research and development efforts to understand the health implications of microplastics are further fueling the market. Scientific institutions and healthcare organizations are collaborating to develop innovative detection methods and assess the risks associated with microplastic exposure. This emphasis on safeguarding human health is expected to drive significant growth in the Microplastic Detection market. The environmental monitoring sector remains the largest user of microplastic detection technologies, particularly in oceans and freshwater systems. It is estimated that over 80% of global microplastic contamination is from land-based sources, leading to rising demand for detection in rivers, lakes, and coastal areas.

Key Market Challenges

High Cost of Advanced Detection Technologies

One of the primary challenges facing the Microplastic Detection market is the significant cost associated with advanced detection technologies. Techniques such as Raman spectroscopy, Fourier-transform infrared spectroscopy, and Pyrolysis-Gas Chromatography-Mass Spectrometry are highly accurate and reliable but require substantial financial investment in equipment, maintenance, and operational expertise. This financial burden is particularly daunting for small-scale organizations, research institutions, and developing countries with limited budgets for environmental monitoring.

The high cost of these technologies also extends to the personnel required to operate them, as trained professionals with expertise in analytical methods and data interpretation are essential. The scarcity of such skilled professionals further increases operational expenses, making it challenging for smaller organizations to adopt microplastic detection solutions. Additionally, ongoing costs such as calibration, software upgrades, and the replacement of consumables add to the financial strain.

Industries such as water treatment, food and beverage, and manufacturing, which are under increasing regulatory pressure to monitor microplastic levels, may find it difficult to justify these expenditures, especially in the absence of immediate financial returns. This reluctance to invest in expensive technologies slows the adoption rate and restricts market growth. The challenge is further compounded in emerging economies, where limited awareness and infrastructure for environmental monitoring hinder the deployment of advanced detection systems. Overcoming this challenge requires collaborative efforts from governments, industry stakeholders, and technology providers to develop cost-effective solutions and incentivize their adoption.

Lack of Standardized Testing Protocols

The absence of globally recognized and standardized testing protocols for microplastic detection presents another significant challenge for the market. Different organizations, laboratories, and regulatory bodies often use varying methods and criteria to detect and analyze microplastics, leading to inconsistent results and limited comparability across studies. This lack of uniformity undermines the credibility and reliability of data, posing difficulties for policymakers, researchers, and industries aiming to address microplastic pollution comprehensively.

For example, there is no universal agreement on the size range, chemical composition, or particle type that constitutes microplastics, leading to variations in detection thresholds and reporting formats. Additionally, the choice of detection methods often depends on the resources available, with some institutions relying on basic visual inspection while others employ sophisticated spectroscopic techniques. These disparities make it challenging to establish a unified database or baseline for global microplastic pollution levels, hindering coordinated efforts to mitigate the problem.

The lack of standardized protocols also complicates regulatory compliance for industries, as differing requirements across regions can result in operational inefficiencies and increased costs. For instance, companies operating in multiple countries may need to adhere to varying guidelines, requiring them to implement multiple testing approaches and reporting mechanisms. Addressing this challenge necessitates the establishment of global standards through collaboration among international organizations, governments, and scientific communities. Such efforts would enhance the consistency and reliability of microplastic detection while fostering greater market adoption.

Key Market Trends

Increasing Adoption of Artificial Intelligence in Microplastic Detection

The integration of artificial intelligence into microplastic detection methods is emerging as a significant trend in the market. Artificial intelligence algorithms are being employed to automate and enhance the accuracy of microplastic analysis, particularly in the identification and quantification of particles. These algorithms can process large volumes of data generated by advanced detection techniques such as Raman spectroscopy and Fourier-transform infrared spectroscopy, reducing the time and labor required for analysis.

One notable development is the use of image recognition software powered by artificial intelligence to identify microplastic particles based on their size, shape, and color. This technology minimizes human error and ensures consistent results, making it particularly valuable for large-scale monitoring programs. Additionally, artificial intelligence can help optimize sampling strategies by analyzing environmental patterns and predicting areas with high microplastic concentrations.

The adoption of artificial intelligence is further driven by the increasing availability of cloud-based platforms that enable real-time data sharing and collaboration among researchers, industries, and regulatory bodies. These platforms facilitate the integration of artificial intelligence tools, fostering innovation and streamlining the detection process. As more stakeholders recognize the potential of artificial intelligence in addressing the complexities of microplastic detection, its adoption is expected to accelerate, driving advancements in the market.

Development of Portable and On-Site Detection Solutions

The demand for portable and on-site microplastic detection solutions is growing as industries and environmental organizations seek efficient ways to monitor pollution levels in real time. Traditional detection methods often require laboratory-based equipment, which is costly, time-consuming, and limited in accessibility. Portable devices address these limitations by enabling users to conduct analyses directly in the field.

Recent advancements in sensor technology and miniaturization have paved the way for the development of compact, user-friendly devices capable of detecting microplastics in various environments, including water bodies, soil, and air. These devices often integrate with mobile applications, providing instant results and facilitating data collection. For example, handheld Raman spectrometers are increasingly being used for rapid on-site identification of microplastics, eliminating the need for extensive sample preparation.

The rise of portable detection solutions is particularly significant for industries such as water treatment, food and beverage, and waste management, which require continuous monitoring to comply with regulatory standards. By enabling faster and more accessible analysis, portable devices are expected to revolutionize microplastic detection, expanding the market's reach and adoption.

Growing Focus on Regulatory Compliance and Standards

The increasing emphasis on regulatory compliance and the establishment of global standards is shaping the trajectory of the microplastic detection market. Governments and international organizations are introducing stricter regulations to address microplastic pollution, compelling industries to adopt robust detection and monitoring solutions. For instance, the European Union has mandated the assessment of microplastics in drinking water, driving the demand for reliable detection technologies.

In response to these regulations, industry players are focusing on developing standardized testing methods to ensure consistency and accuracy in microplastic detection. Collaborative efforts among regulatory bodies, academic institutions, and private companies are underway to establish universally accepted guidelines for sampling, analysis, and reporting. These efforts aim to create a level playing field for industries and promote the adoption of sustainable practices.

Moreover, the growing focus on regulatory compliance is fostering innovation in the market, as companies strive to develop cost-effective and scalable solutions to meet evolving standards. The alignment of market offerings with regulatory requirements is expected to drive the growth of the microplastic detection market, making it an essential component of environmental sustainability initiatives globally.

Segmental Insights

Type Insights

In 2024, the Synthetic Microplastics segment dominated the Microplastic Detection Market and is anticipated to maintain its dominance during the forecast period. Synthetic microplastics, primarily originating from industrial processes, plastic manufacturing, and consumer products such as cosmetics, textiles, and packaging materials, are more prevalent and widespread compared to natural microplastics. These particles are characterized by their non-biodegradable nature, durability, and extensive usage in various industries, making them a significant contributor to microplastic pollution. Consequently, the detection and analysis of synthetic microplastics have become a critical focus for industries, environmental agencies, and regulatory bodies globally.

The dominance of synthetic microplastics in the market can also be attributed to their significant impact on ecosystems and human health. Their presence has been widely documented in water bodies, soil, and air, raising concerns about environmental sustainability and public safety. This has driven substantial investment in advanced detection technologies capable of identifying and quantifying synthetic microplastics with high precision. Techniques such as Raman spectroscopy, Fourier-transform infrared spectroscopy, and mass spectrometry are increasingly being utilized to address these challenges, further bolstering the prominence of the segment.

Moreover, the regulatory focus on reducing synthetic microplastic pollution, particularly in developed regions such as North America and Europe, has intensified. Governments and organizations are implementing stringent guidelines for industries to monitor and mitigate the release of synthetic microplastics, thereby increasing the demand for detection solutions. The rising awareness among consumers and industries regarding the environmental and health impacts of synthetic microplastics is also contributing to the growth of this segment. With continued technological advancements, enhanced regulatory measures, and growing environmental concerns, the synthetic microplastics segment is poised to lead the microplastic detection market throughout the forecast period..

Regional Insights

In 2024, North America is expected to dominate the Microplastic Detection market and maintain its dominance throughout the forecast period. The region benefits from strong technological advancements, substantial investments in research and development, and a high concentration of key players in the semiconductor and electronics industries. North America's leadership in the Microplastic Detection market is primarily driven by the increasing demand for advanced data processing technologies in sectors such as telecommunications, aerospace, automotive, and consumer electronics. The rapid deployment of next-generation technologies, including 5G networks, autonomous vehicles, and industrial automation, is significantly contributing to the demand for high-speed data conversion solutions in the region. Moreover, North America has a robust infrastructure for the development and implementation of innovative solutions, which further accelerates the adoption of Microplastic Detections. The United States, in particular, is home to major companies that are at the forefront of semiconductor manufacturing and electronic components, positioning the region as a hub for Microplastic Detection technology. Additionally, the continuous expansion of data centers, cloud computing services, and the Internet of Things applications across North America is increasing the need for efficient and high-performance data conversion solutions. The region's strong emphasis on digital transformation and technological advancements, coupled with its ability to rapidly adopt emerging innovations, positions North America to maintain its market dominance in the Microplastic Detection market. As industries continue to evolve and embrace cutting-edge technologies, North America's strategic investments and focus on driving next-generation innovations ensure that the region will retain its leadership position in the market during the forecast period.

Key Market Players

  • Thermo Fisher Scientific Inc
  • Agilent Technologies, Inc
  • Bruker Corporation
  • PerkinElmer AES
  • JEOL Ltd.
  • Shimadzu Corporation.
  • Danaher Corporation.
  • ZEISS Group.
  • Renishaw plc.
  • Oxford Instruments plc.

Report Scope:

In this report, the Global Microplastic Detection Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Microplastic Detection Market, By Type:

  • Synthetic Microplastics
  • Natural Microplastics

Microplastic Detection Market, By Technology:

  • Raman Spectroscopy
  • Fourier-Transform Infrared Spectroscopy (FTIR)
  • Scanning Electron Microscopy (SEM)
  • Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS)
  • Others

Microplastic Detection Market, By Application:

  • Environmental Monitoring
  • Food and Beverage Testing
  • Marine and Aquatic Monitoring
  • Healthcare and Biomedical Applications
  • Others

Microplastic Detection Market, By End User Industry:

  • Research Laboratories
  • Regulatory Bodies
  • Industrial Facilities
  • Others

Microplastic Detection Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Belgium
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia
    • Indonesia
    • Vietnam
  • South America
    • Brazil
    • Colombia
    • Argentina
    • Chile
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • South Africa
    • Turkey
    • Israel

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Microplastic Detection Market.

Available Customizations:

Global Microplastic Detection Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Voice of Customer

5. Global Microplastic Detection Market Overview

6. Global Microplastic Detection Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type (Synthetic Microplastics, Natural Microplastics)
    • 6.2.2. By Technology (Raman Spectroscopy, Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS), Others)
    • 6.2.3. By Application (Environmental Monitoring, Food & Beverage Testing, Marine & Aquatic Monitoring, Healthcare & Biomedical Applications, Others)
    • 6.2.4. By End User Industry (Research Laboratories, Regulatory Bodies, Industrial Facilities, Others)
    • 6.2.5. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 6.3. By Company (2024)
  • 6.4. Market Map

7. North America Microplastic Detection Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Technology
    • 7.2.3. By Application
    • 7.2.4. By End User Industry
    • 7.2.5. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Microplastic Detection Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Technology
        • 7.3.1.2.3. By Application
        • 7.3.1.2.4. By End User Industry
    • 7.3.2. Canada Microplastic Detection Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Technology
        • 7.3.2.2.3. By Application
        • 7.3.2.2.4. By End User Industry
    • 7.3.3. Mexico Microplastic Detection Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Technology
        • 7.3.3.2.3. By Application
        • 7.3.3.2.4. By End User Industry

8. Europe Microplastic Detection Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Technology
    • 8.2.3. By Application
    • 8.2.4. By End User Industry
    • 8.2.5. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. Germany Microplastic Detection Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By Application
        • 8.3.1.2.4. By End User Industry
    • 8.3.2. France Microplastic Detection Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By Application
        • 8.3.2.2.4. By End User Industry
    • 8.3.3. United Kingdom Microplastic Detection Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By Application
        • 8.3.3.2.4. By End User Industry
    • 8.3.4. Italy Microplastic Detection Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Technology
        • 8.3.4.2.3. By Application
        • 8.3.4.2.4. By End User Industry
    • 8.3.5. Spain Microplastic Detection Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Technology
        • 8.3.5.2.3. By Application
        • 8.3.5.2.4. By End User Industry
    • 8.3.6. Belgium Microplastic Detection Market Outlook
      • 8.3.6.1. Market Size & Forecast
        • 8.3.6.1.1. By Value
      • 8.3.6.2. Market Share & Forecast
        • 8.3.6.2.1. By Type
        • 8.3.6.2.2. By Technology
        • 8.3.6.2.3. By Application
        • 8.3.6.2.4. By End User Industry

9. Asia Pacific Microplastic Detection Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Technology
    • 9.2.3. By Application
    • 9.2.4. By End User Industry
    • 9.2.5. By Country
  • 9.3. Asia Pacific: Country Analysis
    • 9.3.1. China Microplastic Detection Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By Application
        • 9.3.1.2.4. By End User Industry
    • 9.3.2. India Microplastic Detection Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By Application
        • 9.3.2.2.4. By End User Industry
    • 9.3.3. Japan Microplastic Detection Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Technology
        • 9.3.3.2.3. By Application
        • 9.3.3.2.4. By End User Industry
    • 9.3.4. South Korea Microplastic Detection Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Type
        • 9.3.4.2.2. By Technology
        • 9.3.4.2.3. By Application
        • 9.3.4.2.4. By End User Industry
    • 9.3.5. Australia Microplastic Detection Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Type
        • 9.3.5.2.2. By Technology
        • 9.3.5.2.3. By Application
        • 9.3.5.2.4. By End User Industry
    • 9.3.6. Indonesia Microplastic Detection Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Type
        • 9.3.6.2.2. By Technology
        • 9.3.6.2.3. By Application
        • 9.3.6.2.4. By End User Industry
    • 9.3.7. Vietnam Microplastic Detection Market Outlook
      • 9.3.7.1. Market Size & Forecast
        • 9.3.7.1.1. By Value
      • 9.3.7.2. Market Share & Forecast
        • 9.3.7.2.1. By Type
        • 9.3.7.2.2. By Technology
        • 9.3.7.2.3. By Application
        • 9.3.7.2.4. By End User Industry

10. South America Microplastic Detection Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Technology
    • 10.2.3. By Application
    • 10.2.4. By End User Industry
    • 10.2.5. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Microplastic Detection Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Technology
        • 10.3.1.2.3. By Application
        • 10.3.1.2.4. By End User Industry
    • 10.3.2. Colombia Microplastic Detection Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Technology
        • 10.3.2.2.3. By Application
        • 10.3.2.2.4. By End User Industry
    • 10.3.3. Argentina Microplastic Detection Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Technology
        • 10.3.3.2.3. By Application
        • 10.3.3.2.4. By End User Industry
    • 10.3.4. Chile Microplastic Detection Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Technology
        • 10.3.4.2.3. By Application
        • 10.3.4.2.4. By End User Industry

11. Middle East & Africa Microplastic Detection Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Type
    • 11.2.2. By Technology
    • 11.2.3. By Application
    • 11.2.4. By End User Industry
    • 11.2.5. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Microplastic Detection Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Type
        • 11.3.1.2.2. By Technology
        • 11.3.1.2.3. By Application
        • 11.3.1.2.4. By End User Industry
    • 11.3.2. UAE Microplastic Detection Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Type
        • 11.3.2.2.2. By Technology
        • 11.3.2.2.3. By Application
        • 11.3.2.2.4. By End User Industry
    • 11.3.3. South Africa Microplastic Detection Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Type
        • 11.3.3.2.2. By Technology
        • 11.3.3.2.3. By Application
        • 11.3.3.2.4. By End User Industry
    • 11.3.4. Turkey Microplastic Detection Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Type
        • 11.3.4.2.2. By Technology
        • 11.3.4.2.3. By Application
        • 11.3.4.2.4. By End User Industry
    • 11.3.5. Israel Microplastic Detection Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Type
        • 11.3.5.2.2. By Technology
        • 11.3.5.2.3. By Application
        • 11.3.5.2.4. By End User Industry

12. Market Dynamics

  • 12.1. Drivers
  • 12.2. Challenges

13. Market Trends and Developments

14. Company Profiles

  • 14.1. Thermo Fisher Scientific Inc
    • 14.1.1. Business Overview
    • 14.1.2. Key Revenue and Financials
    • 14.1.3. Recent Developments
    • 14.1.4. Key Personnel/Key Contact Person
    • 14.1.5. Key Product/Services Offered
  • 14.2. Agilent Technologies, Inc
    • 14.2.1. Business Overview
    • 14.2.2. Key Revenue and Financials
    • 14.2.3. Recent Developments
    • 14.2.4. Key Personnel/Key Contact Person
    • 14.2.5. Key Product/Services Offered
  • 14.3. Bruker Corporation
    • 14.3.1. Business Overview
    • 14.3.2. Key Revenue and Financials
    • 14.3.3. Recent Developments
    • 14.3.4. Key Personnel/Key Contact Person
    • 14.3.5. Key Product/Services Offered
  • 14.4. PerkinElmer AES
    • 14.4.1. Business Overview
    • 14.4.2. Key Revenue and Financials
    • 14.4.3. Recent Developments
    • 14.4.4. Key Personnel/Key Contact Person
    • 14.4.5. Key Product/Services Offered
  • 14.5. JEOL Ltd.
    • 14.5.1. Business Overview
    • 14.5.2. Key Revenue and Financials
    • 14.5.3. Recent Developments
    • 14.5.4. Key Personnel/Key Contact Person
    • 14.5.5. Key Product/Services Offered
  • 14.6. Shimadzu Corporation.
    • 14.6.1. Business Overview
    • 14.6.2. Key Revenue and Financials
    • 14.6.3. Recent Developments
    • 14.6.4. Key Personnel/Key Contact Person
    • 14.6.5. Key Product/Services Offered
  • 14.7. Danaher Corporation.
    • 14.7.1. Business Overview
    • 14.7.2. Key Revenue and Financials
    • 14.7.3. Recent Developments
    • 14.7.4. Key Personnel/Key Contact Person
    • 14.7.5. Key Product/Services Offered
  • 14.8. ZEISS Group.
    • 14.8.1. Business Overview
    • 14.8.2. Key Revenue and Financials
    • 14.8.3. Recent Developments
    • 14.8.4. Key Personnel/Key Contact Person
    • 14.8.5. Key Product/Services Offered
  • 14.9. Renishaw plc.
    • 14.9.1. Business Overview
    • 14.9.2. Key Revenue and Financials
    • 14.9.3. Recent Developments
    • 14.9.4. Key Personnel/Key Contact Person
    • 14.9.5. Key Product/Services Offered
  • 14.10. Oxford Instruments plc.
    • 14.10.1. Business Overview
    • 14.10.2. Key Revenue and Financials
    • 14.10.3. Recent Developments
    • 14.10.4. Key Personnel/Key Contact Person
    • 14.10.5. Key Product/Services Offered

15. Strategic Recommendations

16. About Us & Disclaimer