封面
市场调查报告书
商品编码
1643173

癌症生物製剂市场 - 全球产业规模、份额、趋势、机会和预测,按产品、应用、最终用户、地区和竞争细分,2020-2030F

Cancer Biologics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Product, By Application, By End User, By Region & Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 182 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2024 年,全球癌症生物製品市场估值为 941 亿美元,预计在预测期内将出现令人印象深刻的成长,到 2030 年复合年增长率为 7.17%。癌症生物製剂,也称为肿瘤生物製剂或生物製药,是一类用于治疗癌症的药物。这些药物与传统化疗不同,旨在针对参与癌症生长、进展和扩散的特定分子和途径。癌症生物製剂通常源自活细胞或生物体,包括多种治疗剂,例如单株抗体、细胞激素、疫苗和基因疗法。这些药物抑制促进癌细胞生长和分裂的信号。它们可用于减缓肿瘤生长并防止形成为肿瘤供血的新血管。这些单株抗体可以同时结合两个不同的标靶,通常一个是癌细胞,另一个是免疫细胞。它们使免疫系统接近癌细胞,增强免疫反应。癌症生物製剂通常被认为比传统化学疗法更具针对性和特异性,传统化学疗法可以影响癌症和健康细胞。它们是更广泛的免疫疗法领域的一部分,免疫疗法利用患者的免疫系统来对抗癌症。例如,根据世界卫生组织的预测,预计 2022 年将出现约 2,000 万新癌症病例和 970 万人死于该疾病。预计五分之一的人在一生中会罹患癌症,大约九分之一的男性和十二分之一的女性死于这种疾病。肺癌仍是最常见的癌症,全球新增病例达 250 万例,占所有新增病例的 12.4%。继肺癌之后,摄护腺癌(150万例,7.3%)、胃癌(97万例,4.9%)、结肠癌(190万例,9.6%)和女性乳癌(230万例,11.6%)是第二位元癌症。

市场概况
预测期 2026-2030
2024 年市场规模 941亿美元
2030 年市场规模 1414.3亿美元
2025-2030 年复合年增长率 7.17%
成长最快的细分市场 免疫检查点抑制剂
最大的市场 北美洲

生物技术和免疫学领域的持续研究和创新促进了更有效、更有针对性的癌症生物製剂的开发。新发现和技术进步继续推动市场向前发展。个人化医疗的趋势导致了针对特定基因突变和生物标记的生物製剂的开发,为个别癌症患者提供了量身定制的治疗选择。免疫检查点抑制剂在各种癌症类型中取得了显着的成功,并且正在进行的研究探索了它们在其他癌症中的应用,推动了市场成长。现有癌症生物製剂的生物相似药的开发和批准增加了竞争和节省成本的潜力,鼓励了市场成长。癌症患者倡导团体和公众意识的提高导致对创新治疗和新生物製剂开发的更大需求。製药公司正在大力投资肿瘤学研究和开发,从而发现新的生物製剂和治疗标靶。 2024 年 3 月,Zydus Lifescience 透过推出 IBYRA 品牌的 PARP 抑制剂奥拉帕尼,让印度每个人都能更容易获得先进的癌症治疗。聚 ADP 核糖聚合酶(PARP)是一种帮助受损细胞自我修復的蛋白质。 PARP 抑制剂透过抑制癌细胞的修復过程发挥作用,从而导致细胞死亡。

主要市场驱动因素

肿瘤学投资不断增加

提高意识和患者倡导

主要市场挑战

开发成本高

电阻和响应变化

主要市场趋势

单株抗体的进展

细分市场洞察

应用洞察

最终使用者见解

区域洞察

目录

第 1 章:产品概述

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:客户之声

第 5 章:全球癌症生物製品市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 副产品(单株抗体、以细胞激素为基础的免疫疗法、癌症疫苗、CAR-T细胞疗法、免疫检查点抑制剂)
    • 依应用分类(非小细胞肺癌、摄护腺癌、乳癌、急性骨髓性白血病、淋巴瘤等)
    • 按最终使用者(医院和诊所、门诊护理中心、其他)
    • 按地区
    • 按公司划分 (2024)
  • 市场地图

第 6 章:亚太地区癌症生物製剂市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品分类
    • 按申请
    • 按最终用户
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 澳洲
    • 日本
    • 韩国

第 7 章:欧洲癌症生物製品市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品分类
    • 按申请
    • 按最终用户
    • 按国家/地区
  • 欧洲:国家分析
    • 法国
    • 德国
    • 西班牙
    • 义大利
    • 英国

第 8 章:北美癌症生物製剂市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品分类
    • 按申请
    • 按最终用户
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第 9 章:南美洲癌症生物製剂市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品分类
    • 按申请
    • 按最终用户
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第 10 章:中东和非洲癌症生物製剂市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品分类
    • 按申请
    • 按最终用户
    • 按国家/地区
  • MEA:国家分析
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

  • 最新动态
  • 产品发布
  • 併购

第 13 章:全球癌症生物製剂市场:SWOT 分析

第 14 章:波特的五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第 15 章:大环境分析

第16章:竞争格局

  • Roche Holding AG
  • Novartis AG
  • Merck & Co., Inc.
  • Bristol-Myers Squibb Company
  • Amgen Inc.
  • Johnson & Johnson
  • Pfizer Inc.
  • AstraZeneca plc
  • Eli Lilly and Company
  • AbbVie Inc.

第 17 章:策略建议

第18章调查会社について・免责事项

简介目录
Product Code: 20614

Global Cancer Biologics Market was valued at USD 94.10 billion in 2024 and is anticipated to witness an impressive growth in the forecast period with a CAGR of 7.17% through 2030F. Cancer biologics, also known as oncology biologics or biopharmaceuticals, are a class of drugs used to treat cancer. These drugs are distinct from traditional chemotherapy and are designed to target specific molecules and pathways involved in the growth, progression, and spread of cancer. Cancer biologics are often derived from living cells or organisms and include a variety of therapeutic agents, such as monoclonal antibodies, cytokines, vaccines, and gene therapies. These drugs inhibit the signals that promote the growth and division of cancer cells. They can be used to slow tumor growth and prevent the formation of new blood vessels that feed the tumor. These monoclonal antibodies can simultaneously bind to two different targets, often one on a cancer cell and one on an immune cell. They bring the immune system into proximity with cancer cells, enhancing the immune response. Cancer biologics are often considered more targeted and specific than traditional chemotherapy, which can affect both cancer and healthy cells. They are part of the broader field of immunotherapy, which harnesses the patient's immune system to fight cancer. For instance, according to WHO predictions, approximately 20 million new cancer cases and 9.7 million deaths from the disease were estimated to occur in 2022. It was also projected that 53.5 million people would be living five years after being diagnosed with cancer. One in five individuals is expected to experience cancer during their lifetime, with roughly 1 in 9 men and 1 in 12 women dying from the condition. Lung cancer remains the most prevalent, comprising 2.5 million new cases worldwide, or 12.4% of all new cases. Following lung cancer, prostate cancer (1.5 million cases, 7.3%), stomach cancer (970,000 cases, 4.9%), colon cancer (1.9 million cases, 9.6%), and female breast cancer (2.3 million cases, 11.6%) are the next most common.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 94.10 Billion
Market Size 2030USD 141.43 Billion
CAGR 2025-20307.17%
Fastest Growing SegmentImmune Checkpoint Inhibitors
Largest MarketNorth America

Ongoing research and innovation in the field of biotechnology and immunology have led to the development of more effective and targeted cancer biologics. New discoveries and technological advancements continue to drive the market forward. The trend toward personalized medicine has led to the development of biologics that target specific genetic mutations and biomarkers, providing tailored treatment options for individual cancer patients. Immune checkpoint inhibitors have shown remarkable success in various cancer types, and ongoing research explores their application in additional cancers, driving market growth. The development and approval of biosimilars for established cancer biologics have increased competition and the potential for cost savings, encouraging market growth. Cancer patient advocacy groups and increased public awareness have led to a greater demand for innovative treatments and the development of new biologics. Pharmaceutical companies are investing significantly in oncology research and development, leading to the discovery of new biologics and therapeutic targets. In March 2024, Zydus Lifescience made advanced cancer treatment more accessible to everyone in India by introducing olaparib, a PARP inhibitor, under the brand name IBYRA. Poly-ADP ribose polymerase, or PARP, is a protein that helps injured cells repair themselves. PARP inhibitors work by inhibiting this repair process in cancer cells, leading to cell death.

Key Market Drivers

Rising Investment in Oncology

Higher investment in oncology research and development (R&D) has led to the discovery and development of new cancer biologics. Pharmaceutical and biotechnology companies allocate substantial funds to conduct clinical trials, explore innovative treatment modalities, and discover novel targets for biologic therapies. Increased funding has led to the discovery of new cancer targets and the development of biologics specifically designed to target these markers. This has expanded the range of available treatment options and personalized medicine approaches. Investment supports a growing number of clinical trials, including large-scale, multi-phase trials for cancer biologics. These trials are essential for evaluating the safety and efficacy of new treatments, ultimately leading to regulatory approvals. Investment has fueled the growth of biotechnology startups dedicated to oncology. These startups often focus on niche areas and novel biologic therapies, contributing to the diversity of treatment options. For instance, in April 2023, TORL BioTherapeutics LLC announced a $158 million Series B fundraising round and its public launch as a biopharmaceutical company focused on developing innovative biologics for cancer treatment. The company's antibody-drug conjugates (ADCs) and monoclonal antibodies (mAbs) pipeline was discovered in the lab of scientific co-founder Dennis Slamon, who is a professor of medicine at UCLA's David Geffen School of Medicine (DGSOM) and serves as the chief of the hematology/oncology division.

Greater investment encourages innovation in biologics development. Researchers and companies explore novel therapeutic approaches, such as bispecific antibodies, gene editing technologies, and advanced immunotherapies. Investment in oncology research and development extends beyond well-established markets, offering cancer patients worldwide access to cutting-edge biologic treatments. Investment enables the exploration of combination therapies, where biologics are used in conjunction with other treatment modalities, such as chemotherapy, targeted therapies, or radiation therapy. These combinations have shown promise in enhancing treatment efficacy. Funding supports advancements in biologics manufacturing processes, making production more efficient, cost-effective, and scalable. This ensures a stable supply of these treatments. Ongoing investment in oncology leads to the exploration of biologics in new clinical indications and cancer types, broadening the market and increasing treatment options for patients. Funds are allocated to navigate the complex regulatory pathways associated with biologics, increasing the number of approved treatments available for patients. Investment in biomarker research and diagnostic tools enables a more targeted and personalized approach to cancer treatment. Biologics are often used in conjunction with companion diagnostics to identify the most appropriate therapy for individual patients. This factor will pace up the demand of the Global Cancer Biologics Market.

Increasing Awareness and Patient Advocacy

Patient advocacy groups and awareness campaigns provide valuable information about cancer biologics, their benefits, and their availability. This empowers patients and their families to make informed decisions about their treatment options. Increased awareness often leads to earlier cancer detection, which can result in a better prognosis and more treatment options, including biologics. Patients and their advocates often push for access to the latest and most advanced cancer treatments, including biologics. This demand can lead to changes in healthcare policies and increased funding for these therapies. Patients who are aware of clinical trials involving cancer biologics may be more willing to participate in research, helping to advance the development of new treatments and expand treatment options. Patient advocacy and awareness efforts have contributed to the push for personalized medicine. Patients and advocacy groups advocate for treatments tailored to individual genetics and biomarkers, which is a central feature of many biologic therapies. Increased awareness can lead to greater patient access to specialized clinics and healthcare providers experienced in administering cancer biologics. For instance, with an annual incidence of 2.24 million cases and a mortality rate of 1.80 million, lung cancer (LC) is the leading cause of cancer-related deaths worldwide. The two primary histological subtypes are non-small cell lung cancer (NSCLC), which accounts for 85% of cases, and small cell lung carcinoma (SCLC), making up 15% of all lung cancers.

Advocacy groups often raise funds for cancer research, including biologics development, through events, donations, and partnerships. This financial support helps drive further research and innovation. Increased awareness efforts aim to reduce the stigma surrounding cancer and cancer treatments, making it more acceptable for patients to explore various treatment options, including biologics. Advocacy groups often advocate for policy changes and regulatory reforms to improve the approval and accessibility of biologics, which can directly impact demand. Greater awareness can lead to higher enrollment in clinical trials, helping researchers gather valuable data on the efficacy and safety of biologic treatments, ultimately driving demand if positive results are achieved. By promoting early detection, personalized treatment, and advanced therapies like biologics, patient advocacy and awareness efforts contribute to improved patient outcomes, creating a growing demand for these treatments. Patient advocacy may focus on improving the quality of life for cancer patients. Biologics often have a more favorable side effect profile compared to traditional chemotherapy, making them a preferred choice for patients seeking a better quality of life during treatment. This factor will accelerate the demand of the Global Cancer Biologics Market.

Key Market Challenges

High Development Costs

Developing biologic therapies is a highly complex and resource-intensive process. It involves extensive preclinical research, clinical trials, and regulatory requirements, which all require substantial financial investments. Conducting clinical trials for cancer biologics, including Phase I, II, and III trials, is a costly endeavor. These trials involve patient recruitment, monitoring, data collection, and compliance with regulatory standards. Regulatory authorities, such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA), have stringent requirements for the approval of biologics. Meeting these standards necessitates significant investment in research and documentation. Biologics are challenging to manufacture due to their complexity. Establishing and maintaining the infrastructure for the large-scale production of biologics requires substantial capital. Maintaining the quality and consistency of biologics is vital to ensuring safety and efficacy. Stringent quality control and assurance processes contribute to development costs. Identifying appropriate biomarkers and targets for cancer biologics can be a resource-intensive process, requiring specialized research and expertise. Patient recruitment and ongoing monitoring in clinical trials involve substantial costs, including patient compensation, site expenses, and data management.

Resistance and Response Variability

Some cancer patients may exhibit innate or acquired resistance to certain biologics, meaning that the treatment may not be as effective as initially hoped. Tumors are often heterogeneous, with different regions of the tumor having distinct genetic profiles and responses to treatment. This heterogeneity can lead to resistance in certain tumor subpopulations. Patients can respond differently to biologic therapies due to factors such as genetics, overall health, and the presence of other medical conditions. This response variability can make it challenging to predict treatment outcomes accurately. The presence or absence of specific biomarkers, which are often used to select patients for certain biologics, can vary between individuals. This variability can impact the treatment's effectiveness. Cancer cells can adapt to treatment and develop resistance over time. This adaptability can lead to treatment failure and disease progression. Identifying the right patients for specific biologics based on predictive biomarkers is a complex process. Inadequate patient stratification can result in non-responders and treatment inefficiency. Developing and bringing new biologics to market is a costly and resource-intensive process. The potential for resistance and variability can increase the risks and costs associated with these endeavors.

Key Market Trends

Advancements in Monoclonal Antibodies

Monoclonal antibodies have been a cornerstone of cancer treatment for years, and ongoing advancements in this field are expanding their potential and impact. Bispecific monoclonal antibodies are designed to simultaneously target two different antigens or receptors, often present on cancer cells and immune cells. These bi-specific antibodies can enhance the immune system's ability to recognize and attack cancer cells, potentially leading to improved treatment outcomes. Immune checkpoint inhibitors are monoclonal antibodies that block proteins like PD-1 and PD-L1 to unleash the immune system's ability to attack cancer cells. Ongoing research is expanding the use of these inhibitors in various cancer types and as combination therapies. ADCs (Antibody-Drug Conjugates) are monoclonal antibodies that are chemically linked to cytotoxic drugs. These smart bombs selectively target cancer cells, delivering the drug payload directly to the tumor while sparing healthy tissue. Advancements in ADC technology have led to more effective and less toxic treatments. Researchers are continually identifying new cancer targets for monoclonal antibodies. This involves a deeper understanding of the molecular and genetic basis of cancer, leading to more precise targeting. Monoclonal antibodies are often used in combination with other immunotherapies or targeted therapies, leading to the development of innovative combination treatments to enhance treatment efficacy. Some monoclonal antibodies are being developed for subcutaneous administration, making treatment more convenient for patients compared to intravenous infusions. Advances in antibody engineering have led to the development of next-generation antibodies with enhanced properties, such as increased binding affinity, longer half-life, and improved tumor penetration. The identification of predictive biomarkers helps select patients who are most likely to respond to specific monoclonal antibody therapies, enabling a more personalized approach to treatment.

Segmental Insights

Application Insights

In 2024, the Global Cancer Biologics Market largest share was held by Acute Myeloid Leukemia segment and is predicted to continue expanding over the coming years. Cancer biologics play a crucial role in the treatment of breast cancer. These biologic therapies have been developed to target specific aspects of breast cancer biology, offering more targeted and effective treatment options. Human Epidermal Growth Factor Receptor 2 (HER2) is a protein that is overexpressed in some breast cancers. Biologics like trastuzumab (Herceptin) and pertuzumab (Perjeta) are monoclonal antibodies that specifically target HER2-positive breast cancers. They can block the growth signals of cancer cells and enhance the effectiveness of chemotherapy in these cases. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors, such as palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio), are used in combination with hormone therapy to treat hormone receptor-positive, HER2-negative metastatic breast cancer. These biologics inhibit specific proteins involved in cell division, slowing the progression of cancer. Some breast cancer patients benefit from immune checkpoint inhibitors, such as atezolizumab (Tecentriq) and pembrolizumab (Keytruda). These biologics unleash the immune system to attack cancer cells by blocking the immune checkpoints that prevent immune cells from recognizing and destroying cancer. Bevacizumab (Avastin) is a biologic antibody used to inhibit angiogenesis, the formation of new blood vessels that supply tumors with nutrients. It can be combined with chemotherapy to treat certain types of advanced breast cancer.a

End-User Insights

In 2024, the Global Cancer Biologics Market largest share was held by Hospitals & Clinics segment in the forecast period and is predicted to continue expanding over the coming years. Hospitals and clinics serve as primary points of access for cancer patients seeking diagnosis, treatment, and ongoing care. This results in a significant volume of cancer patients receiving biologics and other treatments within these healthcare settings. Hospitals and clinics offer comprehensive cancer care, including surgery, chemotherapy, radiation therapy, and biologics. They often have multidisciplinary teams of specialists who can coordinate and provide a range of treatments, including biologics, to address the complexity of cancer care. Healthcare professionals in hospitals and clinics have the expertise and experience required to administer biologics safely and effectively. They are equipped to handle the potential side effects and monitor patient responses. Many hospitals and academic medical centres actively participate in clinical trials and cancer research. This involvement allows them to offer patients access to cutting-edge biologics as part of clinical trial programs. Hospitals and clinics typically have advanced medical equipment and infrastructure necessary for the storage, preparation, and administration of biologics, which often require special handling and monitoring.

Regional Insights

The North America region dominated the Global Cancer Biologics Market in 2024. North America, particularly the United States and Canada, boasts highly advanced healthcare infrastructure and medical facilities. This allows for early diagnosis and effective treatment of cancer, including the use of biologics. The region is home to numerous leading biopharmaceutical companies, research institutions, and academic centers that are at the forefront of cancer biologics research and development. The United States has a well-established regulatory framework for the approval of biologics. The U.S. Food and Drug Administration (FDA) has a robust and transparent approval process that has encouraged the development and adoption of biologics. North America often serves as an early launch market for new biologics. This, in turn, leads to higher adoption rates and greater market share. Many global clinical trials for cancer biologics are conducted in North America, as it has a diverse and large patient population, streamlined regulatory processes, and skilled clinical trial infrastructure.

Key Market Players

  • Roche Holding AG
  • Novartis AG
  • Merck & Co., Inc.
  • Bristol-Myers Squibb Company
  • Amgen Inc.
  • Johnson & Johnson
  • Pfizer Inc.
  • AstraZeneca plc
  • Eli Lilly and Company
  • AbbVie Inc.

Report Scope:

In this report, the Global Cancer Biologics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Cancer Biologics Market, By Product:

  • Monoclonal Antibodies
  • Cytokine-Based Immunotherapy
  • Cancer Vaccines
  • CAR-T Cell Therapy
  • Immune Checkpoint Inhibitors

Cancer Biologics Market, By Application:

  • Non-small Cell Lung Cancer
  • Prostate Cancer
  • Breast Cancer
  • Acute Myeloid Leukemia
  • Lymphoma
  • Others

Cancer Biologics Market, By End-User:

  • Hospitals & Clinics
  • Ambulatory Care Centers
  • Others

Cancer Biologics Market, By region:

  • North America
    • United States
    • Canada
    • Mexico
  • Asia-Pacific
    • China
    • India
    • South Korea
    • Australia
    • Japan
  • Europe
    • Germany
    • France
    • United Kingdom
    • Spain
    • Italy
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Cancer Biologics Market.

Available Customizations:

Global Cancer Biologics Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Cancer Biologics Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Product (Monoclonal Antibodies, Cytokine-Based Immunotherapy, Cancer Vaccines, CAR-T Cell Therapy, Immune Checkpoint Inhibitors)
    • 5.2.2. By Application (Non-small Cell Lung Cancer, Prostate Cancer, Breast Cancer, Acute Myeloid Leukemia, Lymphoma, Others)
    • 5.2.3. By End User (Hospitals & Clinics, Ambulatory Care Centers, Others)
    • 5.2.4. By Region
    • 5.2.5. By Company (2024)
  • 5.3. Market Map

6. Asia Pacific Cancer Biologics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Product
    • 6.2.2. By Application
    • 6.2.3. By End User
    • 6.2.4. By Country
  • 6.3. Asia Pacific: Country Analysis
    • 6.3.1. China Cancer Biologics Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Product
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End User
    • 6.3.2. India Cancer Biologics Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Product
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End User
    • 6.3.3. Australia Cancer Biologics Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Product
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End User
    • 6.3.4. Japan Cancer Biologics Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Product
        • 6.3.4.2.2. By Application
        • 6.3.4.2.3. By End User
    • 6.3.5. South Korea Cancer Biologics Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Product
        • 6.3.5.2.2. By Application
        • 6.3.5.2.3. By End User

7. Europe Cancer Biologics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Product
    • 7.2.2. By Application
    • 7.2.3. By End User
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Cancer Biologics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Product
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End User
    • 7.3.2. Germany Cancer Biologics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Product
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End User
    • 7.3.3. Spain Cancer Biologics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Product
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End User
    • 7.3.4. Italy Cancer Biologics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Product
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By End User
    • 7.3.5. United Kingdom Cancer Biologics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Product
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By End User

8. North America Cancer Biologics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Product
    • 8.2.2. By Application
    • 8.2.3. By End User
    • 8.2.4. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Cancer Biologics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Product
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End User
    • 8.3.2. Mexico Cancer Biologics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Product
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End User
    • 8.3.3. Canada Cancer Biologics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Product
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End User

9. South America Cancer Biologics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Product
    • 9.2.2. By Application
    • 9.2.3. By End User
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Cancer Biologics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Product
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End User
    • 9.3.2. Argentina Cancer Biologics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Product
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End User
    • 9.3.3. Colombia Cancer Biologics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Product
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End User

10. Middle East and Africa Cancer Biologics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Product
    • 10.2.2. By Application
    • 10.2.3. By End User
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Cancer Biologics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Product
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By End User
    • 10.3.2. Saudi Arabia Cancer Biologics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Product
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By End User
    • 10.3.3. UAE Cancer Biologics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Product
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches
  • 12.3. Mergers & Acquisitions

13. Global Cancer Biologics Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. PESTLE Analysis

16. Competitive Landscape

  • 16.1. Roche Holding AG
    • 16.1.1. Business Overview
    • 16.1.2. Company Snapshot
    • 16.1.3. Products & Services
    • 16.1.4. Financials (In case of listed companies)
    • 16.1.5. Recent Developments
    • 16.1.6. SWOT Analysis
  • 16.2. Novartis AG
    • 16.2.1. Business Overview
    • 16.2.2. Company Snapshot
    • 16.2.3. Products & Services
    • 16.2.4. Financials (In case of listed companies)
    • 16.2.5. Recent Developments
    • 16.2.6. SWOT Analysis
  • 16.3. Merck & Co., Inc.
    • 16.3.1. Business Overview
    • 16.3.2. Company Snapshot
    • 16.3.3. Products & Services
    • 16.3.4. Financials (In case of listed companies)
    • 16.3.5. Recent Developments
    • 16.3.6. SWOT Analysis
  • 16.4. Bristol-Myers Squibb Company
    • 16.4.1. Business Overview
    • 16.4.2. Company Snapshot
    • 16.4.3. Products & Services
    • 16.4.4. Financials (In case of listed companies)
    • 16.4.5. Recent Developments
    • 16.4.6. SWOT Analysis
  • 16.5. Amgen Inc.
    • 16.5.1. Business Overview
    • 16.5.2. Company Snapshot
    • 16.5.3. Products & Services
    • 16.5.4. Financials (In case of listed companies)
    • 16.5.5. Recent Developments
    • 16.5.6. SWOT Analysis
  • 16.6. Johnson & Johnson
    • 16.6.1. Business Overview
    • 16.6.2. Company Snapshot
    • 16.6.3. Products & Services
    • 16.6.4. Financials (In case of listed companies)
    • 16.6.5. Recent Developments
    • 16.6.6. SWOT Analysis
  • 16.7. Pfizer Inc.
    • 16.7.1. Business Overview
    • 16.7.2. Company Snapshot
    • 16.7.3. Products & Services
    • 16.7.4. Financials (In case of listed companies)
    • 16.7.5. Recent Developments
    • 16.7.6. SWOT Analysis
  • 16.8. AstraZeneca plc
    • 16.8.1. Business Overview
    • 16.8.2. Company Snapshot
    • 16.8.3. Products & Services
    • 16.8.4. Financials (In case of listed companies)
    • 16.8.5. Recent Developments
    • 16.8.6. SWOT Analysis
  • 16.9. Eli Lilly and Company
    • 16.9.1. Business Overview
    • 16.9.2. Company Snapshot
    • 16.9.3. Products & Services
    • 16.9.4. Financials (In case of listed companies)
    • 16.9.5. Recent Developments
    • 16.9.6. SWOT Analysis
  • 16.10. AbbVie Inc.
    • 16.10.1. Business Overview
    • 16.10.2. Company Snapshot
    • 16.10.3. Products & Services
    • 16.10.4. Financials (In case of listed companies)
    • 16.10.5. Recent Developments
    • 16.10.6. SWOT Analysis

17. Strategic Recommendations

18. About Us & Disclaimer