封面
市场调查报告书
商品编码
1668014

特发性肺纤维化市场 - 全球产业规模、份额、趋势、机会和预测,按药物类型、给药途径、配销通路、地区和竞争细分,2020-2030 年预测

Idiopathic Pulmonary Fibrosis Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Drug Type, By Route of Administration, By Distribution Channel, By Region and Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 182 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2024 年全球特发性肺纤维化市场价值为 36.4 亿美元,预计到 2030 年将达到 53.9 亿美元,预测期内复合年增长率为 6.72%。特发性肺纤维化(IPF)这种肺部疾病很危险。当你吸气时,氧气会透过肺部的小气囊进入血液。然后它会进入你的内部器官。 Prescriber 于 2022 年 7 月发布的流行病学资料显示,欧洲特发性肺纤维化年发病率为每 10 万人 0.22 至 7.4 例,仅在英国就报告了约 32,500 例。

市场概况
预测期 2026-2030
2024 年市场规模 36.4 亿美元
2030 年市场规模 53.9 亿美元
2025-2030 年复合年增长率 6.72%
成长最快的领域 吡非尼酮
最大的市场 北美洲

由于特发性肺纤维化 (IPF),您的肺部会因疤痕组织而变得阻塞。随着时间的推移,情况变得更糟。就像皮肤割伤后留下的疤痕一样,IPF 疤痕组织很緻密。它会抑制氧气从肺部向血液的输送,可能导致身体无法正常运作。特发性肺纤维化可以存在很长时间而不会出现任何症状。当人们接触到污染、某些药物或疾病等因素时,可能会罹患肺纤维化。然而,医师并不确定 IPF 的病因。

IPF 的诊断需要结合病史、身体检查、肺功能测试、高解析度电脑断层扫描 (HRCT) 以及某些情况下的肺部活检。 IPF 通常很难诊断,因为其症状可能与其他肺部疾病的症状重迭。高解析度电脑断层扫描 (HRCT) 和生物标记的识别等改进的诊断技术使得能够更早、更准确地检测出 IPF。这增加了寻求治疗的患者数量。对特发性肺纤维化(IPF)新药和新疗法的持续研究和开发带来了新疗法的推出,扩大了患者的可用治疗选择。创新疗法的批准是市场发展的驱动力。针对特发性肺纤维化 (IPF) 症状和早期诊断重要性的宣传活动和教育措施的不断加强,促使更多患者寻求医疗治疗。医疗保健专业人员也能够更好地识别这种疾病。以患者为中心的照护(包括支持团体、患者权益以及改善 IPF 患者的生活品质)已成为市场驱动因素。病患权益组织在提高意识和改善病患照护方面发挥着至关重要的作用。

主要市场驱动因素

诊断方面的进展

主要市场挑战

治疗费用高昂

主要市场趋势

遗传和环境因素研究

分段洞察

配销通路洞察

目录

第 1 章:产品概述

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:顾客之声

第五章:全球特发性肺纤维化市场展望

  • 市场规模和预测
    • 按价值
  • 市场占有率和预测
    • 依药物类型(吡非尼酮、尼达尼布等)
    • 依给药途径(肠胃外、口服、其他)
    • 按配销通路(医院药房、零售药房、网路药房)
    • 按地区
    • 按公司分类(2024)
  • 市场地图

第 6 章:北美特发性肺纤维化市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 北美:国家分析
    • 加拿大
    • 墨西哥

第 7 章:欧洲特发性肺纤维化市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 欧洲:国家分析
    • 英国
    • 义大利
    • 法国
    • 西班牙

第 8 章:亚太特发性肺纤维化市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 亚太地区:国家分析
    • 印度
    • 日本
    • 韩国
    • 澳洲

第 9 章:南美洲特发性肺纤维化市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 南美洲:国家分析
    • 阿根廷
    • 哥伦比亚

第 10 章:中东和非洲特发性肺纤维化市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • MEA:国家分析
    • 沙乌地阿拉伯
    • 阿联酋

第 11 章:市场动态

  • 驱动程式
  • 挑战

第 12 章:市场趋势与发展

  • 合併与收购(如有)
  • 产品发布(如果有)
  • 最新动态

第 13 章:波特五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 顾客的力量
  • 替代产品的威胁

第 14 章:竞争格局

  • Boehringer Ingelheim International GmbH
  • F. Hoffmann-La Roche Ltd.
  • Cipla Limited
  • Shionogi & Co., Ltd
  • Bristol-Myers Squibb Company
  • United Therapeutics Corporation
  • FibroGen, Inc
  • Pliant Therapeutics, Inc
  • Galecto, Inc.
  • CSL Behring

第 15 章:策略建议

第16章 调査会社について・免责事项

简介目录
Product Code: 19233

lobal Idiopathic Pulmonary Fibrosis Market was valued at USD 3.64 Billion in 2024 and is expected to reach USD 5.39 Billion by 2030 with a CAGR of 6.72% during the forecast period. The lung condition idiopathic pulmonary fibrosis (IPF) is dangerous. When you breathe in, oxygen enters your bloodstream through small air sacs in your lungs. It then makes its way to your inside organs. Epidemiological data from Prescriber, published in July 2022, indicates that the annual incidence of idiopathic pulmonary fibrosis in Europe ranges from 0.22 to 7.4 cases per 100,000 individuals, with approximately 32,500 cases reported in the United Kingdom alone.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 3.64 Billion
Market Size 2030USD 5.39 Billion
CAGR 2025-20306.72%
Fastest Growing SegmentPirfenidone
Largest MarketNorth America

Your lungs get congested with scar tissue because of IPF. With time, it becomes worse. Like the scars you receive on your skin after a cut, the IPF scar tissue is dense. It inhibits the transfer of oxygen from your lungs to your blood, which might prevent your body from functioning properly. Idiopathic pulmonary fibrosis can exist for a very long time without any symptoms showing up. When someone is exposed to anything like pollution, certain medications, or an illness, they may develop pulmonary fibrosis. Doctors are unsure of what causes IPF, though.

Diagnosing IPF involves a combination of medical history, physical examination, lung function tests, high-resolution computed tomography (HRCT) scans, and, in some cases, a lung biopsy. IPF is often challenging to diagnose because its symptoms can overlap with those of other lung diseases. Improved diagnostic techniques, such as high-resolution computed tomography (HRCT) and the identification of biomarkers, have enabled earlier and more accurate detection of IPF. This has increased the number of patients seeking treatment. The ongoing research and development of new drugs and therapies for IPF have led to the introduction of novel treatments, which expand the available options for patients. The approval of innovative therapies is a driving force in the market. Increased awareness campaigns and educational initiatives about IPF symptoms and the importance of early diagnosis have resulted in more patients seeking medical care. Healthcare professionals are also better equipped to recognize the disease. The focus on patient-centered care, including support groups, patient advocacy, and improving the quality of life for IPF patients, has become a driving factor in the market. Patient advocacy organizations play a crucial role in raising awareness and improving patient care.

Key Market Drivers

Advancements in Diagnosis

High-Resolution Computed Tomography (HRCT) imaging has become a gold standard in diagnosing IPF. It provides detailed images of the lungs, allowing healthcare professionals to detect characteristic patterns of fibrosis. HRCT is non-invasive and has significantly improved the accuracy of IPF diagnosis. Ongoing research into biomarkers, such as specific proteins or genetic markers, has the potential to aid in early diagnosis and disease monitoring. Identifying biomarkers associated with IPF can help distinguish it from other lung conditions. Minimally invasive lung biopsy techniques, such as transbronchial cryobiopsy and endobronchial ultrasound-guided biopsy, offer alternatives to traditional surgical biopsies. These techniques provide tissue samples for analysis, aiding in the confirmation of IPF diagnosis.

Multi-Disciplinary Discussion (MDD) approach involves a team of specialists, including radiologists, pulmonologists, and pathologists, who jointly evaluate patient data, imaging, and biopsy results. This collaborative approach enhances the accuracy of IPF diagnosis. AI and machine learning algorithms have been applied to HRCT scans and other patient data to improve diagnostic accuracy. These technologies can assist in identifying patterns and characteristics of IPF that may be missed by human observers. Telemedicine has become a valuable tool, especially during the COVID-19 pandemic. It allows healthcare professionals to remotely assess patients, review diagnostic images, and provide consultation for individuals in remote or underserved areas. Genetic testing for specific gene mutations associated with familial IPF can help confirm the diagnosis in cases where a family history of the disease is present. International guidelines and consensus statements, such as those from the American Thoracic Society (ATS) and the European Respiratory Society (ERS), have provided standardized criteria for diagnosing IPF, facilitating consistency in diagnosis. Improved understanding of the clinical presentation and symptoms of IPF has enabled healthcare providers to diagnose the disease more accurately. Common symptoms include progressive breathlessness and dry cough. Bronchoalveolar Lavage (BAL) is a diagnostic procedure that involves collecting fluid from the air sacs in the lungs. It can help rule out other lung diseases and contribute to the diagnostic process. This factor will help in the development of the Global Idiopathic Pulmonary Fibrosis Market.

Key Market Challenges

High Cost of Treatment

Idiopathic Pulmonary Fibrosis (IPF) is a chronic and often progressive disease that requires long-term treatment. The high cost of medications, therapy, and healthcare services can impose a substantial financial burden on patients and their families, potentially leading to financial stress. Some IPF treatments, especially newer and more advanced therapies, may not be fully covered by health insurance plans. This can result in out-of-pocket expenses for patients, making it difficult for them to access necessary treatments. The high cost of IPF treatment can create disparities in access to care. Patients with limited financial resources may face barriers to accessing the most effective therapies, leading to disparities in outcomes. The cost of treatment can impact patients' adherence to prescribed medications and therapies. Patients may reduce or skip doses due to cost concerns, which can affect the effectiveness of the treatment. The high cost of IPF treatment places a financial burden on healthcare systems and insurance providers, potentially limiting the availability of certain treatments or leading to increased healthcare costs for society. High treatment costs can lead to financial toxicity, which has a negative impact on patients' overall well-being. This can include increased stress, anxiety, and reduced quality of life. Pharmaceutical companies face significant research and development costs when developing new IPF treatments. The high cost of development and regulatory approval can contribute to the high prices of these therapies once they reach the market. High costs can lead some patients to discontinue or delay their treatment, which may result in disease progression and more severe health outcomes.

Key Market Trends

Research into Genetic and Environmental Factors

Research into genetic factors helps identify individuals who may be at a higher risk of developing IPF. This knowledge can lead to personalized screening and preventative strategies. Genetic and environmental research may reveal biomarkers that can be used for early detection and diagnosis of IPF, enabling healthcare providers to intervene at an earlier, potentially more treatable stage of the disease. Identifying genetic and environmental risk factors allows for risk assessment and counseling for individuals with a family history of IPF or who have been exposed to certain environmental triggers.

Genetic research can help identify specific pathways and mechanisms underlying IPF. This knowledge may lead to the development of targeted therapies that address the root causes of the disease. Understanding the genetic and environmental factors contributing to an individual's IPF can inform the development of personalized treatment plans, optimizing therapy for each patient's unique needs. Research into environmental factors, such as exposure to certain toxins or pollutants, can help identify strategies for reducing exposure and preventing the development or exacerbation of IPF. Patients with IPF may benefit from genetic counseling to understand the hereditary aspects of the disease, particularly in cases of familial IPF. Insights gained from genetic and environmental research can uncover novel therapeutic targets, which may lead to the development of innovative treatments for IPF.

Segmental Insights

Distribution Channel Insights

In 2024, the Global Idiopathic Pulmonary Fibrosis Market largest share was held by hospital pharmacies segment in the forecast period and is predicted to continue expanding over the coming years. In some regions, a significant proportion of IPF patients receive treatment on an inpatient basis, particularly during acute exacerbations or advanced stages of the disease. Hospital pharmacies are responsible for dispensing and managing medications for these inpatients. Hospitals often play a key role in conducting clinical trials for new IPF treatments. The distribution and management of trial medications may involve hospital pharmacies. IPF treatment can involve complex medication regimens, including the use of oxygen therapy, immunosuppressive drugs, and other specialized medications. Hospital pharmacies are equipped to handle these complex regimens. Regional healthcare regulations and reimbursement policies can influence the distribution of medications. In some cases, regulations or policies may favour or require hospital-based distribution of certain medications.

Key Market Players

  • Boehringer Ingelheim International GmbH
  • F. Hoffmann-La Roche Ltd.
  • Cipla Limited
  • Shionogi & Co., Ltd
  • Bristol-Myers Squibb Company
  • United Therapeutics Corporation
  • FibroGen, Inc
  • Pliant Therapeutics, Inc
  • Galecto, Inc.
  • CSL Behring

Report Scope:

In this report, the Global Idiopathic Pulmonary Fibrosis Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Idiopathic Pulmonary Fibrosis Market, By Drug Type:

  • Pirfenidone
  • Nintedanib
  • others
  • Idiopathic Pulmonary Fibrosis Market, By Route of Administration
  • Oral
  • Parenteral
  • Others

Idiopathic Pulmonary Fibrosis Market, By Distribution Channel:

  • Hospital Pharmacies
  • Retail Pharmacies
  • Online Pharmacies

Idiopathic Pulmonary Fibrosis Market, By region:

  • North America
    • United States
    • Canada
    • Mexico
  • Asia-Pacific
    • China
    • India
    • South Korea
    • Australia
    • Japan
  • Europe
    • Germany
    • France
    • United Kingdom
    • Spain
    • Italy
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Idiopathic Pulmonary Fibrosis Market.

Available Customizations:

Global Idiopathic Pulmonary Fibrosis Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validations
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Idiopathic Pulmonary Fibrosis Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Drug Type (Pirfenidone, Nintedanib, others)
    • 5.2.2. By Route of Administration (Parenteral, Oral, Others)
    • 5.2.3. By Distribution Channel (Hospital Pharmacies, Retail Pharmacies, Online Pharmacies)
    • 5.2.4. By Region
    • 5.2.5. By Company (2024)
  • 5.3. Market Map

6. North America Idiopathic Pulmonary Fibrosis Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Drug Type
    • 6.2.2. By Route of Administration
    • 6.2.3. By Distribution Channel
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Idiopathic Pulmonary Fibrosis Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Drug Type
        • 6.3.1.2.2. By Route of Administration
        • 6.3.1.2.3. By Distribution Channel
    • 6.3.2. Canada Idiopathic Pulmonary Fibrosis Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Drug Type
        • 6.3.2.2.2. By Route of Administration
        • 6.3.2.2.3. By Distribution Channel
    • 6.3.3. Mexico Idiopathic Pulmonary Fibrosis Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Drug Type
        • 6.3.3.2.2. By Route of Administration
        • 6.3.3.2.3. By Distribution Channel

7. Europe Idiopathic Pulmonary Fibrosis Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Drug Type
    • 7.2.2. By Route of Administration
    • 7.2.3. By Distribution Channel
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Idiopathic Pulmonary Fibrosis Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Drug Type
        • 7.3.1.2.2. By Route of Administration
        • 7.3.1.2.3. By Distribution Channel
    • 7.3.2. United Kingdom Idiopathic Pulmonary Fibrosis Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Drug Type
        • 7.3.2.2.2. By Route Of Administration
        • 7.3.2.2.3. By Distribution Channel
    • 7.3.3. Italy Idiopathic Pulmonary Fibrosis Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Drug Type
        • 7.3.3.2.2. By Route Of Administration
        • 7.3.3.2.3. By Distribution Channel
    • 7.3.4. France Idiopathic Pulmonary Fibrosis Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Drug Type
        • 7.3.4.2.2. By Route Of Administration
        • 7.3.4.2.3. By Distribution Channel
    • 7.3.5. Spain Idiopathic Pulmonary Fibrosis Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Drug Type
        • 7.3.5.2.2. By Route Of Administration
        • 7.3.5.2.3. By Distribution Channel

8. Asia-Pacific Idiopathic Pulmonary Fibrosis Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Drug Type
    • 8.2.2. By Route Of Administration
    • 8.2.3. By Distribution Channel
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Idiopathic Pulmonary Fibrosis Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Drug Type
        • 8.3.1.2.2. By Route Of Administration
        • 8.3.1.2.3. By Distribution Channel
    • 8.3.2. India Idiopathic Pulmonary Fibrosis Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Drug Type
        • 8.3.2.2.2. By Route Of Administration
        • 8.3.2.2.3. By Distribution Channel
    • 8.3.3. Japan Idiopathic Pulmonary Fibrosis Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Drug Type
        • 8.3.3.2.2. By Route Of Administration
        • 8.3.3.2.3. By Distribution Channel
    • 8.3.4. South Korea Idiopathic Pulmonary Fibrosis Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Drug Type
        • 8.3.4.2.2. By Route Of Administration
        • 8.3.4.2.3. By Distribution Channel
    • 8.3.5. Australia Idiopathic Pulmonary Fibrosis Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Drug Type
        • 8.3.5.2.2. By Route Of Administration
        • 8.3.5.2.3. By Distribution Channel

9. South America Idiopathic Pulmonary Fibrosis Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Drug Type
    • 9.2.2. By Route Of Administration
    • 9.2.3. By Distribution Channel
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Idiopathic Pulmonary Fibrosis Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Drug Type
        • 9.3.1.2.2. By Route Of Administration
        • 9.3.1.2.3. By Distribution Channel
    • 9.3.2. Argentina Idiopathic Pulmonary Fibrosis Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Drug Type
        • 9.3.2.2.2. By Route of Administration
        • 9.3.2.2.3. By Distribution Channel
    • 9.3.3. Colombia Idiopathic Pulmonary Fibrosis Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Drug Type
        • 9.3.3.2.2. By Route of Administration
        • 9.3.3.2.3. By Distribution Channel

10. Middle East and Africa Idiopathic Pulmonary Fibrosis Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Drug Type
    • 10.2.2. By Route Of Administration
    • 10.2.3. By Distribution Channel
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Idiopathic Pulmonary Fibrosis Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Drug Type
        • 10.3.1.2.2. By Route Of Administration
        • 10.3.1.2.3. By Distribution Channel
    • 10.3.2. Saudi Arabia Idiopathic Pulmonary Fibrosis Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Drug Type
        • 10.3.2.2.2. By Route Of Administration
        • 10.3.2.2.3. By Distribution Channel
    • 10.3.3. UAE Idiopathic Pulmonary Fibrosis Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Drug Type
        • 10.3.3.2.2. By Route Of Administration
        • 10.3.3.2.3. By Distribution Channel

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Boehringer Ingelheim International GmbH
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. F. Hoffmann-La Roche Ltd.
  • 14.3. Cipla Limited
  • 14.4. Shionogi & Co., Ltd
  • 14.5. Bristol-Myers Squibb Company
  • 14.6. United Therapeutics Corporation
  • 14.7. FibroGen, Inc
  • 14.8. Pliant Therapeutics, Inc
  • 14.9. Galecto, Inc.
  • 14.10. CSL Behring

15. Strategic Recommendations

16. About Us & Disclaimer