封面
市场调查报告书
商品编码
1668191

组织工程市场 - 全球产业规模、份额、趋势、机会和预测,按材料类型、应用、最终用户、地区和竞争情况细分,2020-2030 年预测

Tissue Engineering Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Material Type, By Application, By End User By Region and Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2024 年全球组织工程市场价值为 135 亿美元,预计将经历显着增长,到 2030 年的年复合成长率(CAGR) 为 9.20%。该领域涉及应用生物学、化学和工程学原理来创建用于医疗应用的功能组织和器官。市场的成长是由器官移植需求的不断增长、捐赠器官的短缺以及对先进治疗方案的需求所推动的。

市场概况
预测期 2026-2030
2024 年市场规模 135 亿美元
2030 年市场规模 229.4 亿美元
2025-2030 年复合年增长率 9.20%
成长最快的领域 生物衍生材料
最大的市场 北美洲

组织工程市场扩张的关键驱动因素是心血管疾病、糖尿病和骨科疾病等慢性疾病和伤害的发生率不断上升。组织工程为开发针对特定患者的治疗方法提供了创新的解决方案,包括工程器官、组织和植入物,以解决这些关键的健康问题。此外,全球人口老化进一步促进了市场的成长,因为老年人经常需要基于组织的疗法来提高他们的生活品质。

生物技术、生物材料和 3D 列印技术的进步正在推动组织工程迈向新的水平。公司和研究人员越来越多地利用这些创新来创造与自然器官紧密模仿的复杂功能组织,从而提高移植成功率并降低排斥风险。干细胞研究、CRISPR-Cas9 等基因编辑技术以及生物相容性材料的整合为组织工程中的个人化医疗方法铺平了道路。

全球组织工程市场具有广泛的应用范围,包括皮肤移植、骨骼和软骨修復、心臟瓣膜,甚至肾臟和肝臟等整个器官。这些应用涵盖了从骨科到皮肤科和心臟病学等各个医疗领域,凸显了市场的多功能性和成长潜力。

主要市场驱动因素

慢性病和伤害盛行率上升

主要市场挑战

复杂的监理框架

主要市场趋势

多种应用

目录

第 1 章:产品概述

第 2 章:研究方法

第 3 章:执行摘要

第四章:全球组织工程市场展望

  • 市场规模和预测
    • 按价值
  • 市场占有率和预测
    • 依材料类型(合成材料、生物衍生材料、其他)
    • 依应用分类(骨科、肌肉骨骼及脊椎、神经内科、心臟科、皮肤及体皮、其他)
    • 按最终用户(医院、癌症研究中心、学术和研究机构等)
    • 按地区
    • 按公司分类(2024)
  • 市场地图
    • 依材料类型
    • 按应用
    • 按最终用户
    • 按地区

第五章:亚太组织工程市场展望

  • 市场规模和预测
    • 按价值
  • 市场占有率和预测
    • 依材料类型
    • 按应用
    • 按最终用户
    • 按国家
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 澳洲
    • 日本
    • 韩国

第六章:欧洲组织工程市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 欧洲:国家分析
    • 德国
    • 西班牙
    • 义大利
    • 英国

第 7 章:北美组织工程市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 北美:国家分析
    • 墨西哥
    • 加拿大

第 8 章:南美洲组织工程市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 南美洲:国家分析
    • 阿根廷
    • 哥伦比亚

第 9 章:中东和非洲组织工程市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • MEA:国家分析
    • 沙乌地阿拉伯
    • 阿联酋

第 10 章:市场动态

  • 驱动程式
  • 挑战

第 11 章:市场趋势与发展

  • 最新动态
  • 产品发布
  • 合併与收购

第 12 章:全球组织工程市场:SWOT 分析

第 13 章:波特五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 顾客的力量
  • 替代产品的威胁

第 14 章:竞争格局

  • Zimmer Biomet Holdings Inc.
  • Stryker Corporation Holdings
  • 3D BioFibR Inc.
  • Integra LifeSciences Corporation
  • CollPlant Biotechnologies Ltd.
  • AbbVie (Allergan Aesthetics)
  • Becton, Dickinson and Company
  • Athersys, Inc.
  • BioTissue
  • Japan Tissue Engineering Co., Ltd

第 15 章:策略建议

第16章 调査会社について・免责事项

简介目录
Product Code: 17591

The Global Tissue Engineering Market was valued at USD 13.50 billion in 2024 and is projected to experience significant growth, with a compound annual growth rate (CAGR) of 9.20% through 2030. Tissue engineering has become a dynamic and rapidly evolving segment within regenerative medicine and biotechnology. This field involves applying principles from biology, chemistry, and engineering to create functional tissues and organs for medical applications. The market's growth is driven by the increasing demand for organ transplants, a shortage of donor organs, and the need for advanced therapeutic solutions.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 13.50 Billion
Market Size 2030USD 22.94 Billion
CAGR 2025-20309.20%
Fastest Growing SegmentBiologically Derived Materials
Largest MarketNorth America

A key driver behind the expansion of the tissue engineering market is the rising incidence of chronic diseases and injuries, such as cardiovascular diseases, diabetes, and orthopedic conditions. Tissue engineering offers innovative solutions for the development of patient-specific treatments, including engineered organs, tissues, and implants, addressing these critical health issues. Additionally, the aging global population further contributes to the market's growth, as elderly individuals frequently require tissue-based therapies to enhance their quality of life.

Technological advancements in biotechnology, biomaterials, and 3D printing are propelling tissue engineering to new levels. Companies and researchers are increasingly leveraging these innovations to create complex, functional tissues that closely mimic natural organs, improving transplant success rates and reducing rejection risks. The integration of stem cell research, gene editing techniques such as CRISPR-Cas9, and biocompatible materials has paved the way for personalized medicine approaches within tissue engineering.

The global tissue engineering market is characterized by a broad range of applications, including skin grafts, bone and cartilage repair, heart valves, and even whole organs such as kidneys and livers. These applications span various medical fields, from orthopedics to dermatology and cardiology, highlighting the market's versatility and growth potential.

Key Market Drivers

Rising Prevalence of Chronic Diseases and Injuries

The tissue engineering market is experiencing rapid growth, largely driven by the increasing global prevalence of chronic diseases and injuries. Cardiovascular diseases, which impact the heart and blood vessels, account for 18 million deaths annually worldwide, with cancer causing 9 million deaths and chronic respiratory diseases contributing to 4 million fatalities. Diabetes is responsible for 2 million deaths each year. These figures emphasize the substantial health burden posed by non-communicable diseases, underscoring the critical need for innovative healthcare solutions. As the demand for regenerative treatments grows, tissue engineering is emerging as a crucial component of modern medicine.

Chronic conditions such as cardiovascular diseases, diabetes, orthopedic disorders, and trauma-related injuries necessitate advanced tissue regeneration and organ repair solutions. Tissue engineering offers effective regenerative solutions to repair or replace damaged tissues resulting from these conditions. For example, tissue-engineered blood vessels, heart valves, and cardiac patches are in high demand due to the increasing incidence of cardiovascular complications. Similarly, tissue-engineered skin grafts and cell-based therapies are helping diabetic patients heal chronic wounds and foot ulcers.

As healthcare systems shift focus toward treating chronic illnesses, bioprinted tissues, scaffold-based regenerative treatments, and stem cell therapies are becoming key solutions, further driving the market's expansion.

Key Market Challenges

Complex Regulatory Frameworks

The complex regulatory landscape is a significant challenge to the growth and development of the Global Tissue Engineering Market. While regulations are necessary to ensure the safety and efficacy of medical products, the evolving nature of tissue engineering presents unique obstacles for both industry stakeholders and regulatory bodies. A major challenge is the classification and oversight of tissue-engineered products, which may fall under various regulatory categories, including medical devices, biologics, or combination products, depending on their intended use and composition. This ambiguity often requires engagement with multiple regulatory agencies, each with its own set of requirements, making the process time-consuming and cumbersome.

The lengthy and stringent approval processes for tissue-engineered products are another major hurdle. Regulatory agencies, such as the FDA (Food and Drug Administration) in the United States and the EMA (European Medicines Agency) in Europe, require extensive preclinical and clinical data to demonstrate the safety and efficacy of these products. While this is crucial for patient safety, it can lead to delays in market entry and increased development costs. Additionally, the rapid pace of advancements in tissue engineering often outstrips the ability of regulators to adapt their frameworks, creating uncertainty for companies engaged in R&D.

Key Market Trends

Diverse Range of Applications

The Global Tissue Engineering Market is experiencing significant growth, primarily due to its broad range of applications across various medical fields. Initially focused on repairing and replacing damaged tissues, tissue engineering has expanded to address a wide array of healthcare challenges, driving market growth.

One notable application is in orthopedics and musculoskeletal medicine. Tissue-engineered solutions are helping patients with bone fractures, cartilage defects, and joint injuries regenerate these essential structures. Advanced biomaterials and scaffold designs are enabling the creation of custom-made bone grafts and cartilage implants that integrate seamlessly with patients' tissues, improving mobility and reducing pain.

In dermatology, tissue-engineered skin substitutes are offering effective solutions for chronic wounds, burns, and skin defects. These skin grafts promote tissue regeneration, enhance healing, and reduce scarring. In cardiology, tissue-engineered heart valves and cardiac patches hold significant potential, offering alternatives to traditional treatments and improving cardiac function.

Beyond these areas, tissue engineering is also making strides in ophthalmology, neurology, and urology. For instance, tissue-engineered corneas are being developed to treat vision impairments, while neural tissue engineering is targeting spinal cord injuries and neurodegenerative disorders. Additionally, tissue-engineered bladders and urethras are being explored to address urinary tract conditions.

Key Market Players

  • Zimmer Biomet Holdings Inc.
  • Stryker Corporation
  • 3D BioFibR Inc.
  • Integra LifeSciences Corporation
  • CollPlant Biotechnologies Ltd.
  • AbbVie (Allergan Aesthetics)
  • Becton, Dickinson and Company
  • Athersys, Inc.
  • BioTissue
  • Japan Tissue Engineering Co., Ltd.

Report Scope

This report segments the Global Tissue Engineering Market based on the following categories:

By Material Type:

  • Synthetic Materials
  • Biologically Derived Materials
  • Others

By Application:

  • Orthopedics
  • Musculoskeletal & Spine
  • Neurology
  • Cardiology
  • Skin & Integumentary
  • Others

By End-User:

  • Hospitals
  • Cancer Research Centers
  • Academic and Research Institutes
  • Others

By Region:

  • North America (United States, Canada, Mexico)
  • Europe (France, United Kingdom, Italy, Germany, Spain)
  • Asia-Pacific (China, India, Japan, Australia, South Korea)
  • South America (Brazil, Argentina, Colombia)
  • Middle East & Africa (South Africa, Saudi Arabia, UAE)

Competitive Landscape and Company Profiles:

The report includes detailed analyses of the major companies operating in the Global Tissue Engineering Market.

Available Customizations:

TechSci Research offers the ability to customize the report according to a company's specific needs, including profiling additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Global Tissue Engineering Market Outlook

  • 4.1. Market Size & Forecast
    • 4.1.1. By Value
  • 4.2. Market Share & Forecast
    • 4.2.1. By Material Type (Synthetic Materials, Biologically Derived Materials, Others)
    • 4.2.2. By Application (Orthopedics, Musculoskeletal & Spine, Neurology, Cardiology, Skin & Integumentary, Others)
    • 4.2.3. By End User (Hospitals, Cancer Research Centers, Academic and Research Institutes, Others)
    • 4.2.4. By Region
    • 4.2.5. By Company (2024)
  • 4.3. Market Map
    • 4.3.1. By Material Type
    • 4.3.2. By Application
    • 4.3.3. By End User
    • 4.3.4. By Region

5. Asia Pacific Tissue Engineering Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Material Type
    • 5.2.2. By Application
    • 5.2.3. By End User
    • 5.2.4. By Country
  • 5.3. Asia Pacific: Country Analysis
    • 5.3.1. China Tissue Engineering Market Outlook
      • 5.3.1.1. Market Size & Forecast
        • 5.3.1.1.1. By Value
      • 5.3.1.2. Market Share & Forecast
        • 5.3.1.2.1. By Material Type
        • 5.3.1.2.2. By Application
        • 5.3.1.2.3. By End User
    • 5.3.2. India Tissue Engineering Market Outlook
      • 5.3.2.1. Market Size & Forecast
        • 5.3.2.1.1. By Value
      • 5.3.2.2. Market Share & Forecast
        • 5.3.2.2.1. By Material Type
        • 5.3.2.2.2. By Application
        • 5.3.2.2.3. By End User
    • 5.3.3. Australia Tissue Engineering Market Outlook
      • 5.3.3.1. Market Size & Forecast
        • 5.3.3.1.1. By Value
      • 5.3.3.2. Market Share & Forecast
        • 5.3.3.2.1. By Material Type
        • 5.3.3.2.2. By Application
        • 5.3.3.2.3. By End User
    • 5.3.4. Japan Tissue Engineering Market Outlook
      • 5.3.4.1. Market Size & Forecast
        • 5.3.4.1.1. By Value
      • 5.3.4.2. Market Share & Forecast
        • 5.3.4.2.1. By Material Type
        • 5.3.4.2.2. By Application
        • 5.3.4.2.3. By End User
    • 5.3.5. South Korea Tissue Engineering Market Outlook
      • 5.3.5.1. Market Size & Forecast
        • 5.3.5.1.1. By Value
      • 5.3.5.2. Market Share & Forecast
        • 5.3.5.2.1. By Material Type
        • 5.3.5.2.2. By Application
        • 5.3.5.2.3. By End User

6. Europe Tissue Engineering Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Material Type
    • 6.2.2. By Application
    • 6.2.3. By End User
    • 6.2.4. By Country
  • 6.3. Europe: Country Analysis
    • 6.3.1. France Tissue Engineering Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Material Type
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End User
    • 6.3.2. Germany Tissue Engineering Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Material Type
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End User
    • 6.3.3. Spain Tissue Engineering Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Material Type
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End User
    • 6.3.4. Italy Tissue Engineering Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Material Type
        • 6.3.4.2.2. By Application
        • 6.3.4.2.3. By End User
    • 6.3.5. United Kingdom Tissue Engineering Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Material Type
        • 6.3.5.2.2. By Application
        • 6.3.5.2.3. By End User

7. North America Tissue Engineering Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Material Type
    • 7.2.2. By Application
    • 7.2.3. By End User
    • 7.2.4. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Tissue Engineering Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Material Type
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End User
    • 7.3.2. Mexico Tissue Engineering Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Material Type
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End User
    • 7.3.3. Canada Tissue Engineering Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Material Type
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End User

8. South America Tissue Engineering Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Material Type
    • 8.2.2. By Application
    • 8.2.3. By End User
    • 8.2.4. By Country
  • 8.3. South America: Country Analysis
    • 8.3.1. Brazil Tissue Engineering Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Material Type
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End User
    • 8.3.2. Argentina Tissue Engineering Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Material Type
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End User
    • 8.3.3. Colombia Tissue Engineering Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Material Type
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End User

9. Middle East and Africa Tissue Engineering Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Material Type
    • 9.2.2. By Application
    • 9.2.3. By End User
    • 9.2.4. By Country
  • 9.3. MEA: Country Analysis
    • 9.3.1. South Africa Tissue Engineering Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Material Type
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End User
    • 9.3.2. Saudi Arabia Tissue Engineering Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Material Type
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End User
    • 9.3.3. UAE Tissue Engineering Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Material Type
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End User

10. Market Dynamics

  • 10.1. Drivers
  • 10.2. Challenges

11. Market Trends & Developments

  • 11.1. Recent Developments
  • 11.2. Product Launches
  • 11.3. Mergers & Acquisitions

12. Global Tissue Engineering Market: SWOT Analysis

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Product

14. Competitive Landscape

  • 14.1. Zimmer Biomet Holdings Inc.
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (In case of listed)
    • 14.1.5. Recent Developments
    • 14.1.6. SWOT Analysis
  • 14.2. Stryker Corporation Holdings
  • 14.3. 3D BioFibR Inc.
  • 14.4. Integra LifeSciences Corporation
  • 14.5. CollPlant Biotechnologies Ltd.
  • 14.6. AbbVie (Allergan Aesthetics)
  • 14.7. Becton, Dickinson and Company
  • 14.8. Athersys, Inc.
  • 14.9. BioTissue
  • 14.10. Japan Tissue Engineering Co., Ltd

15. Strategic Recommendations

16. About Us & Disclaimer