封面
市场调查报告书
商品编码
1771063

医疗辐射检测市场-全球产业规模、份额、趋势、机会和预测(按类型、按产品、按最终用途、按地区和竞争细分,2020-2030 年)

Medical Radiation Detection Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Product, By End-use, By Region & Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 183 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2024 年全球医疗辐射侦测市场价值为 9.5014 亿美元,预计将大幅成长,到 2030 年的预期复合年增长率为 7.18%。医用辐射侦测器在监测辐射暴露方面发挥关键作用,对于维持医疗环境的安全标准至关重要。由于长期辐射暴露会增加包括癌症在内的严重健康疾病的风险,因此对能够准确测量体内辐射水平的技术的需求日益增长。例如,根据美国癌症协会报道,预计 2023 年美国将新增约 1,958,310 例癌症病例,平均每天约 5,370 例。手持式测量仪 (HSM)、个人辐射侦测器 (PRD)、辐射门户监测器 (RPM) 和辐射同位素识别设备 (RIID) 等设备是侦测电离辐射的重要工具。技术进步为辐射检测工具的广泛应用铺平了道路,其中包括家用设备,例如检测伽马射线(一种高度危险的外部辐射)的剂量计。

市场概览
预测期 2026-2030
2024年市场规模 9.5014亿美元
2030年市场规模 14.2883亿美元
2025-2030 年复合年增长率 7.18%
成长最快的领域 医院
最大的市场 北美洲

关键市场驱动因素

癌症发生率上升

主要市场挑战

技术复杂性

主要市场趋势

人工智慧辐射侦测

目录

第 1 章:产品概述

第二章:研究方法

第三章:执行摘要

第四章:顾客之声

第五章:全球医疗辐射侦测市场展望

  • 市场规模和预测
    • 按价值
  • 市场占有率和预测
    • 依类型(充气探测器、闪烁体)
    • 按产品(个人剂量计、区域过程剂量计)
    • 依最终用途(医院、门诊手术中心、诊断影像中心、家庭护理)
    • 按地区(北美、欧洲、亚太、南美、中东和非洲)
    • 按公司分类(2024)
  • 市场地图
  • 按类型
  • 按产品
  • 按最终用途
  • 按地区

第六章:北美医疗辐射侦测市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第七章:欧洲医疗辐射侦测市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 欧洲:国家分析
    • 法国
    • 德国
    • 英国
    • 义大利
    • 西班牙

第八章:亚太医疗辐射侦测市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲

第九章:南美洲医疗辐射侦测市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第十章:中东和非洲医疗辐射检测市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • MEA:国家分析
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第 11 章:市场动态

  • 驱动程式
  • 挑战

第 12 章:市场趋势与发展

  • 近期发展
  • 併购
  • 产品发布

第 13 章:全球医疗辐射侦测市场:SWOT 分析

第 14 章:波特五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 顾客的力量
  • 替代产品的威胁

第 15 章:竞争格局

  • Thermo Fisher Scientific, Inc
  • UAB Polimaster Europe.
  • PTW Freiburg GmbH.
  • Sanlar imex services private limited.
  • Mirion Technologies, Inc.
  • MP BIOMEDICALS.
  • SIERRA RADIATION DOSIMETRY SERVICE, INC.
  • IBA Dosimetry GmbH.

第 16 章:策略建议

第17章调查会社について・免责事项

简介目录
Product Code: 16168

The Global Medical Radiation Detection Market was valued at USD 950.14 million in 2024 and is anticipated to witness substantial growth, with a projected CAGR of 7.18% through 2030F. Medical radiation detectors play a critical role in monitoring radiation exposure, essential for maintaining safety standards in medical environments. As prolonged radiation exposure increases the risk of severe health conditions, including cancer, there is a growing demand for technologies capable of accurately measuring radiation levels in the body. The U.S., for instance, is expected to witness approximately 1,958,310 new cancer cases in 2023, averaging about 5,370 cases daily, as reported by the American Cancer Society. Devices such as handheld survey meters (HSM), personal radiation detectors (PRD), radiation portal monitors (RPM), and radiation isotope identification devices (RIID) are vital tools in detecting ionizing radiation. Technological advancements are paving the way for the broader availability of radiation detection tools, including home-use devices like dosimeters that detect gamma rays, a highly dangerous form of external radiation.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 950.14 Million
Market Size 2030USD 1428.83 Million
CAGR 2025-20307.18%
Fastest Growing SegmentHospitals
Largest MarketNorth America

Key Market Drivers

Rising Incidence of Cancer

The increasing global burden of cancer is a major factor propelling the growth of the medical radiation detection market. As radiation therapy remains a cornerstone of cancer treatment, the growing number of cancer patients directly correlates with the rising demand for precise radiation detection systems. According to the National Institutes of Health (NIH), around 1,958,310 new cancer cases and 609,820 cancer-related deaths are projected in the U.S. in 2023 alone. This surge in cancer diagnoses is also increasing the use of radiation-based imaging techniques such as CT scans, X-rays, and PET scans, all of which require careful radiation monitoring to protect patient health. Furthermore, with the advancement of personalized medicine, radiation therapy is becoming more targeted, necessitating highly accurate detection systems that ensure optimal dosing while minimizing exposure to surrounding healthy tissues.

Key Market Challenges

Technological Complexity

The advanced nature of modern radiation detection technologies poses a significant adoption challenge, particularly for smaller or under-resourced healthcare facilities. These systems often involve complex operations requiring specialized training and expertise, creating a high barrier to entry. Additionally, the elevated upfront costs associated with procurement, training, and maintenance can deter investment. Integration with existing healthcare IT infrastructures, such as EHRs and PACS, also remains a challenge due to compatibility and data-sharing limitations. Moreover, the ongoing need for software updates and equipment maintenance adds to the operational burden, particularly in resource-limited environments.

Key Market Trends

AI-Powered Radiation Detection

Artificial Intelligence (AI) is transforming the landscape of medical radiation detection by enhancing the accuracy and efficiency of radiation monitoring systems. AI can process extensive datasets to detect subtle patterns and anomalies that might be overlooked by human operators. This results in more precise radiation dosing, contributing to improved treatment outcomes and patient safety. AI systems also support real-time monitoring and issue alerts when radiation exceeds safe thresholds, allowing for immediate corrective actions. By automating data analysis, these systems reduce the workload on healthcare providers, enabling professionals to dedicate more time to patient care and treatment planning.

Key Market Players

  • Thermo Fisher Scientific, Inc.
  • UAB Polimaster Europe.
  • PTW Freiburg GmbH.
  • Sanlar imex services private limited.
  • Mirion Technologies, Inc.
  • MP BIOMEDICALS.
  • SIERRA RADIATION DOSIMETRY SERVICE, INC.
  • IBA Dosimetry GmbH.

Report Scope:

In this report, the Global Medical Radiation Detection Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Medical Radiation Detection Market, By Type:

  • Gas-filled Detector
  • Scintillators

Medical Radiation Detection Market, By Product:

  • Personal Dosimeters
  • Area Process Dosimeters

Medical Radiation Detection Market, By End Use:

  • Hospitals
  • Ambulatory Surgical Centers
  • Diagnostic Imaging Centers
  • Homecare

Medical Radiation Detection Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Medical Radiation Detection Market.

Available Customizations:

Global Medical Radiation Detection market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Medical Radiation Detection Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Gas-filled Detector, Scintillators)
    • 5.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
    • 5.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
    • 5.2.4. By Region (North America, Europe, Asia Pacific, South America, Middle East & Africa)
    • 5.2.5. By Company (2024)
  • 5.3. Market Map
  • 5.3.1 By Type
  • 5.3.2 By Product
  • 5.3.3 By End-use
  • 5.3.4 By Region

6. North America Medical Radiation Detection Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type (Gas-filled Detector, Scintillators)
    • 6.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
    • 6.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Medical Radiation Detection Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Product
        • 6.3.1.2.3. By End-use
    • 6.3.2. Canada Medical Radiation Detection Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Product
        • 6.3.2.2.3. By End-use
    • 6.3.3. Mexico Medical Radiation Detection Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Product
        • 6.3.3.2.3. By End-use

7. Europe Medical Radiation Detection Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type (Gas-filled Detector, Scintillators)
    • 7.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
    • 7.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Medical Radiation Detection Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Product
        • 7.3.1.2.3. By End-use
    • 7.3.2. Germany Medical Radiation Detection Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Product
        • 7.3.2.2.3. By End-use
    • 7.3.3. United Kingdom Medical Radiation Detection Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Product
        • 7.3.3.2.3. By End-use
    • 7.3.4. Italy Medical Radiation Detection Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Product
        • 7.3.4.2.3. By End-use
    • 7.3.5. Spain Medical Radiation Detection Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Product
        • 7.3.5.2.3. By End-use

8. Asia-Pacific Medical Radiation Detection Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type (Gas-filled Detector, Scintillators)
    • 8.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
    • 8.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Medical Radiation Detection Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Product
        • 8.3.1.2.3. By End-use
    • 8.3.2. India Medical Radiation Detection Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Product
        • 8.3.2.2.3. By End-use
    • 8.3.3. Japan Medical Radiation Detection Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Product
        • 8.3.3.2.3. By End-use
    • 8.3.4. South Korea Medical Radiation Detection Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Product
        • 8.3.4.2.3. By End-use
    • 8.3.5. Australia Medical Radiation Detection Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Product
        • 8.3.5.2.3. By End-use

9. South America Medical Radiation Detection Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type (Gas-filled Detector, Scintillators)
    • 9.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
    • 9.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Medical Radiation Detection Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Product
        • 9.3.1.2.3. By End-use
    • 9.3.2. Argentina Medical Radiation Detection Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Product
        • 9.3.2.2.3. By End-use
    • 9.3.3. Colombia Medical Radiation Detection Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Product
        • 9.3.3.2.3. By End-use

10. Middle East and Africa Medical Radiation Detection Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type (Gas-filled Detector, Scintillators)
    • 10.2.2. By Product (Personal Dosimeters, Area Process Dosimeters)
    • 10.2.3. By End-use (Hospitals, Ambulatory Surgical Centers, Diagnostic Imaging Centers, Homecare)
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Medical Radiation Detection Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Product
        • 10.3.1.2.3. By End-use
    • 10.3.2. Saudi Arabia Medical Radiation Detection Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Product
        • 10.3.2.2.3. By End-use
    • 10.3.3. UAE Medical Radiation Detection Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Product
        • 10.3.3.2.3. By End-use

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Development
  • 12.2. Mergers & Acquisitions
  • 12.3. Product Launches

13. Global Medical Radiation Detection Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Products

15. Competitive Landscape

  • 15.1. Thermo Fisher Scientific, Inc
    • 15.1.1. Business Overview
    • 15.1.2. Product Offerings
    • 15.1.3. Recent Developments
    • 15.1.4. Financials (As Reported)
    • 15.1.5. Key Personnel
    • 15.1.6. SWOT Analysis
  • 15.2. UAB Polimaster Europe.
  • 15.3. PTW Freiburg GmbH.
  • 15.4. Sanlar imex services private limited.
  • 15.5. Mirion Technologies, Inc.
  • 15.6. MP BIOMEDICALS.
  • 15.7. SIERRA RADIATION DOSIMETRY SERVICE, INC.
  • 15.8. IBA Dosimetry GmbH.

16. Strategic Recommendations

17. About Us & Disclaimer