封面
市场调查报告书
商品编码
1812027

燃气供应系统模组市场-全球产业规模、份额、趋势、机会和预测,按应用、类型、最终用户、燃料类型、地区和竞争进行细分,2020-2030 年预测

Fuel Gas Supply System Module Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented, By Application, By Type, By End-User, By Fuel Type, By Region & Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2024年,燃气供应系统模组市场规模为56.6亿美元,预计2030年将达72.4亿美元,复合年增长率为4.04%。燃气供应系统 (FGSS) 模组市场涵盖整合系统的设计、製造和部署,用于管理气体燃料(主要是液化天然气 (LNG))的储存、处理和输送至引擎和燃烧系统。

市场概况
预测期 2026-2030
2024年市场规模 56.6亿美元
2030年市场规模 72.4亿美元
2025-2030年复合年增长率 4.04%
成长最快的领域 工业加热
最大的市场 北美洲

这些模组旨在确保为发电机组、船舶推进系统和工业应用提供安全、可靠和高效的燃料供应。 FGSS模组是能源基础设施的关键组件,能够利用更清洁、更永续的燃料,从而减少对传统化石燃料的依赖并降低环境排放。

典型的燃油喷射系统 (FGSS) 模组包含多种设备和技术,例如燃油处理系统、压力控制单元、汽化单元和计量系统。这些组件协同工作,以保持最佳的燃油品质、压力和流量,这对于引擎和涡轮机的高效运行至关重要。先进的燃油喷射系统 (FGSS) 模组通常整合数位监控、自动控制和安全机制,以检测和降低营运风险,确保符合监管标准和行业最佳实践。

市场驱动力主要源自于液化天然气(LNG)作为柴油和重质燃料油的清洁替代品,在船舶、发电和工业领域日益普及。随着全球环境法规的收紧和碳减排目标的日益严格,对能够安全处理低排放燃料的燃气系统的需求正在激增。 FGSS模组透过提供可靠的燃料管理来促进这一转变,使营运商能够优化燃烧效率,同时最大限度地减少停机时间和维护成本。

FGSS 模组应用广泛。在船舶领域,它们对于 LNG 燃料船舶(包括货柜船、渡轮和邮轮)至关重要,可协助营运商满足排放控制区 (ECA) 法规,并减少硫氧化物 (SOx)、氮氧化物 (NOx) 和二氧化碳 (CO2) 的排放。在发电业,FGSS 模组支援陆上和海上设施中的燃气发动机和涡轮机,确保在不同负载条件下持续供应燃料。工业应用包括製程加热、热电联产 (CHP) 电厂以及其他使用气体燃料进行能源密集型操作的製造流程。

关键市场驱动因素

液化天然气作为清洁船用燃料的应用日益广泛

主要市场挑战

高资本投资和基础设施复杂性

主要市场趋势

液化天然气作为清洁船用燃料的应用日益广泛

目录

第 1 章:产品概述

第二章:研究方法

第三章:执行摘要

第四章:顾客之声

第五章:全球燃气供应系统模组市场展望

  • 市场规模和预测
    • 按价值
  • 市场占有率和预测
    • 依应用(发电、工业供热、住宅供热、运输、船舶)
    • 按类型(模组化系统、整合系统、客製化系统、便携式系统)
    • 按最终用户(商业、工业、住宅)
    • 依燃料种类(天然气、液化石油气、沼气、甲醇)
    • 按地区
  • 按公司分类(2024 年)
  • 市场地图

第六章:北美瓦斯供应系统模组市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第七章:欧洲燃气供应系统模组市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 欧洲:国家分析
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙

第八章:亚太地区燃气供应系统模组市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲

第九章:南美瓦斯供应系统模组市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第十章:中东和非洲燃气供应系统模组市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 中东和非洲:国家分析
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋
    • 科威特
    • 土耳其

第 11 章:市场动态

  • 驱动程式
  • 挑战

第 12 章:市场趋势与发展

  • 合併与收购(如有)
  • 产品发布(如有)
  • 最新动态

第十三章:公司简介

  • LGM Engineering (Gloryholders)
  • Wartsila Corporation
  • DongHwa Entec Co., Ltd.
  • MAN Energy Solutions SE
  • Mitsubishi Shipbuilding Co., Ltd.
  • TGE Marine Gas Engineering GmbH
  • Kongsberg Maritime AS
  • China State Shipbuilding Corporation (CSSC)
  • Headway Technology Group (Qingdao) Co., Ltd.
  • Trans Gas Solution

第 14 章:策略建议

第15章调查会社について・免责事项

简介目录
Product Code: 30661

The Fuel Gas Supply System Module Market was valued at USD 5.66 Billion in 2024 and is expected to reach USD 7.24 Billion by 2030 with a CAGR of 4.04%. The Fuel Gas Supply System (FGSS) Module market encompasses the design, manufacturing, and deployment of integrated systems that manage the storage, treatment, and delivery of gaseous fuels, primarily liquefied natural gas (LNG), to engines and combustion systems.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 5.66 Billion
Market Size 2030USD 7.24 Billion
CAGR 2025-20304.04%
Fastest Growing SegmentIndustrial Heating
Largest MarketNorth America

These modules are engineered to ensure the safe, reliable, and efficient supply of fuel to power generation units, marine propulsion systems, and industrial applications. FGSS modules are critical components in energy infrastructure, enabling the utilization of cleaner and more sustainable fuels, thereby reducing reliance on conventional fossil fuels and lowering environmental emissions.

A typical FGSS module includes a combination of equipment and technologies such as fuel treatment systems, pressure control units, vaporization units, and metering systems. These components work in concert to maintain optimal fuel quality, pressure, and flow, which is essential for the efficient operation of engines and turbines. Advanced FGSS modules often incorporate digital monitoring, automated control, and safety mechanisms to detect and mitigate operational risks, ensuring compliance with regulatory standards and industry best practices.

The market is primarily driven by the increasing adoption of LNG as a cleaner alternative to diesel and heavy fuel oil across marine, power generation, and industrial sectors. As environmental regulations tighten globally and carbon reduction targets become more stringent, the demand for fuel gas systems that can safely handle low-emission fuels is surging. FGSS modules facilitate this transition by providing reliable fuel management, enabling operators to optimize combustion efficiency while minimizing operational downtime and maintenance costs.

FGSS modules are utilized in a variety of applications. In the marine sector, they are essential for LNG-fueled vessels, including container ships, ferries, and cruise liners, helping operators meet emission control area (ECA) regulations and reduce sulfur oxide (SOx), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions. In the power generation industry, FGSS modules support gas-fired engines and turbines in both onshore and offshore facilities, ensuring continuous fuel supply under varying load conditions. Industrial applications include process heating, combined heat and power (CHP) plants, and other manufacturing processes where gas fuel is used for energy-intensive operations.

Key Market Drivers

Growing Adoption of LNG as a Cleaner Marine Fuel

The Fuel Gas Supply System (FGSS) module market is experiencing strong growth due to the rising adoption of liquefied natural gas (LNG) as a cleaner alternative to conventional marine fuels. The shipping industry is under increasing pressure to comply with stringent environmental regulations, including International Maritime Organization (IMO) sulfur emission limits and global initiatives to reduce greenhouse gas (GHG) emissions.

LNG offers a significant reduction in sulfur oxides (SOx), nitrogen oxides (NOx), and particulate matter compared to heavy fuel oil and marine diesel, making it a preferred choice for ship operators aiming to meet environmental compliance requirements while enhancing operational sustainability.

FGSS modules are critical enablers for LNG-fueled vessels, providing the necessary infrastructure to store, vaporize, and supply LNG safely to ship engines at regulated pressure and temperature. The complexity of LNG as a cryogenic fuel requires sophisticated handling systems, and FGSS modules deliver these capabilities, ensuring efficiency, safety, and reliability during onboard operations. As global shipping fleets undergo retrofitting and new vessel construction increasingly adopts LNG propulsion, demand for FGSS modules rises correspondingly.

Moreover, LNG adoption is not limited to the shipping sector; industrial and power generation segments are also integrating natural gas as a transitional fuel to lower carbon intensity. LNG-powered power plants and industrial facilities benefit from modular FGSS systems, which provide scalable and standardized solutions for fuel storage and supply. This trend broadens the application scope of FGSS modules, creating substantial opportunities for manufacturers to cater to multiple end-use sectors.

Technological advancements in FGSS modules, including automated control systems, digital monitoring, and enhanced safety features, further accelerate market adoption. As shipowners and industrial operators prioritize operational efficiency and fuel optimization, these advanced modules allow precise fuel delivery, minimize energy losses, and ensure compliance with safety and environmental standards.

The increasing availability of LNG bunkering infrastructure globally, particularly in major maritime hubs and strategic ports, also complements FGSS market growth. Investments in LNG terminals and bunkering facilities enhance accessibility and reduce operational constraints, encouraging more ship operators to transition to LNG propulsion. This integrated ecosystem-comprising LNG supply, storage, and FGSS modules-strengthens the business case for LNG adoption, fueling market demand and incentivizing further technological innovation.

The global push toward cleaner marine fuels, coupled with environmental regulations, industrial adoption, and supportive LNG infrastructure, is driving significant growth in the FGSS module market. Companies providing advanced, reliable, and scalable FGSS solutions are well-positioned to capitalize on this sustainable energy transition across maritime and industrial applications. The global fleet of LNG-fueled vessels has grown significantly, with over 500 ships currently operating on LNG and more in the orderbook. LNG bunkering infrastructure is expanding, with 100+ ports worldwide now offering LNG refueling facilities. Adoption of LNG as a marine fuel has led to a 20-25% reduction in CO2 emissions compared to conventional marine fuels. Major shipping companies are planning to convert or commission hundreds of new LNG-powered vessels over the next decade. LNG demand in the maritime sector is projected to increase, supporting millions of tons of LNG consumption annually as environmental regulations tighten.

Key Market Challenges

High Capital Investment and Infrastructure Complexity

One of the most significant challenges facing the Fuel Gas Supply System (FGSS) Module market is the substantial capital investment required for both development and deployment. FGSS modules are highly specialized systems designed to ensure the safe and efficient storage, transportation, and supply of fuel gases, such as LNG or other industrial gases. The complexity of these modules arises from the need to integrate multiple components, including compressors, cryogenic pumps, pipelines, sensors, and automated control systems, all while maintaining stringent safety and operational standards. This technical sophistication translates into high upfront costs for manufacturers, shipbuilders, and industrial end-users.

The high capital requirement creates a barrier to entry for smaller players and limits adoption in emerging markets where funding availability may be constrained. Even for established players, the financial risk associated with deploying these systems is significant, particularly given the long payback periods typical of energy infrastructure projects. Companies must carefully evaluate project feasibility, supply chain logistics, and long-term operational costs before committing to large-scale installations. Any delay in project execution or unforeseen technical issues can lead to cost overruns and impact profitability, making investment decisions highly sensitive to risk assessments and financial planning.

Additionally, infrastructure integration presents a considerable challenge. FGSS modules are often deployed in existing industrial plants, ships, or LNG terminals, where retrofitting or modifying existing infrastructure may be required. This integration involves significant engineering work to ensure compatibility with current pipelines, storage tanks, and safety systems.

Furthermore, compliance with international safety and environmental standards adds another layer of complexity. Regulations governing cryogenic gases, flammable fuels, and pressure systems are stringent and vary by region, requiring extensive documentation, approvals, and safety certifications. Failure to meet these standards can result in project delays, financial penalties, or even operational shutdowns, which further increases the cost and risk associated with FGSS deployment.

Operational complexity also adds to financial challenges. Maintaining continuous supply, preventing leaks, and managing pressure and temperature variations require skilled personnel and advanced monitoring systems. Companies must invest in training, digital monitoring, and predictive maintenance solutions to ensure reliability and safety.

The combination of high initial investment, complex engineering requirements, regulatory compliance, and operational demands makes it difficult for organizations to scale FGSS deployment rapidly, particularly in regions with limited technical expertise or capital availability. Consequently, high capital intensity and infrastructure complexity remain a persistent market challenge, influencing adoption rates and shaping strategic decisions among industry players.

Key Market Trends

Increasing Adoption of LNG as a Cleaner Marine Fuel

The global shift toward environmental sustainability and regulatory compliance is driving significant adoption of liquefied natural gas (LNG) as a preferred marine fuel. Traditional heavy fuel oils, widely used in shipping, are facing increasing restrictions due to sulfur oxide (SOx), nitrogen oxide (NOx), and particulate matter emissions. International Maritime Organization (IMO) regulations, including IMO 2020, have heightened the need for cleaner fuel alternatives, positioning LNG as a critical enabler of compliance. This regulatory push is fueling the demand for robust Fuel Gas Supply System (FGSS) modules capable of delivering safe, reliable, and efficient LNG supply to vessels.

The trend is further amplified by growing investment in LNG-powered vessels, including cargo ships, tankers, ferries, and cruise liners. FGSS modules, which include components such as gas regulators, pressure control systems, safety shut-off valves, and vaporization units, are integral to ensuring uninterrupted fuel flow and operational safety. Shipowners and operators are increasingly prioritizing systems that integrate advanced monitoring technologies, real-time leak detection, and automated control to mitigate operational risks associated with cryogenic LNG handling.

Technological innovation is a key driver within this trend. FGSS module manufacturers are investing in research and development to enhance system efficiency, modularity, and scalability. Digital integration, including remote monitoring, predictive maintenance, and IoT-enabled performance analytics, allows operators to optimize fuel consumption, reduce operational costs, and minimize downtime. Moreover, standardized modular designs enable easier installation, retrofitting, and compliance with class society regulations, making LNG adoption more feasible for both newbuild and existing fleets.

Economic factors also support this shift. LNG prices are becoming increasingly competitive relative to traditional marine fuels, particularly in regions with abundant natural gas supply and supportive infrastructure. The expansion of global LNG bunkering ports and infrastructure, including pipelines, storage terminals, and refueling stations, further accelerates adoption. Additionally, government incentives and green financing mechanisms encourage shipping operators to invest in LNG propulsion systems and associated FGSS modules.

Key Market Players

  • LGM Engineering (Gloryholders)
  • Wartsila Corporation
  • DongHwa Entec Co., Ltd.
  • MAN Energy Solutions SE
  • Mitsubishi Shipbuilding Co., Ltd.
  • TGE Marine Gas Engineering GmbH
  • Kongsberg Maritime AS
  • China State Shipbuilding Corporation (CSSC)
  • Headway Technology Group (Qingdao) Co., Ltd.
  • Trans Gas Solution

Report Scope:

In this report, the Global Fuel Gas Supply System Module Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Fuel Gas Supply System Module Market, By Application:

  • Power Generation
  • Industrial Heating
  • Residential Heating
  • Transportation
  • Marine

Fuel Gas Supply System Module Market, By Type:

  • Modular Systems
  • Integrated Systems
  • Custom Systems
  • Portable Systems

Fuel Gas Supply System Module Market, By End-User:

  • Commercial
  • Industrial
  • Residential

Fuel Gas Supply System Module Market, By Fuel Type:

  • Natural Gas
  • Liquefied Petroleum Gas
  • Biogas
  • Methanol

Fuel Gas Supply System Module Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Kuwait
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Fuel Gas Supply System Module Market.

Available Customizations:

Global Fuel Gas Supply System Module Market report with the given Market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional Market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Fuel Gas Supply System Module Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Application (Power Generation, Industrial Heating, Residential Heating, Transportation, Marine)
    • 5.2.2. By Type (Modular Systems, Integrated Systems, Custom Systems, Portable Systems)
    • 5.2.3. By End-User (Commercial, Industrial, Residential)
    • 5.2.4. By Fuel Type (Natural Gas, Liquefied Petroleum Gas, Biogas, Methanol)
    • 5.2.5. By Region
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America Fuel Gas Supply System Module Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Application
    • 6.2.2. By Type
    • 6.2.3. By End-User
    • 6.2.4. By Fuel Type
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Fuel Gas Supply System Module Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Application
        • 6.3.1.2.2. By Type
        • 6.3.1.2.3. By End-User
        • 6.3.1.2.4. By Fuel Type
    • 6.3.2. Canada Fuel Gas Supply System Module Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Application
        • 6.3.2.2.2. By Type
        • 6.3.2.2.3. By End-User
        • 6.3.2.2.4. By Fuel Type
    • 6.3.3. Mexico Fuel Gas Supply System Module Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Application
        • 6.3.3.2.2. By Type
        • 6.3.3.2.3. By End-User
        • 6.3.3.2.4. By Fuel Type

7. Europe Fuel Gas Supply System Module Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Application
    • 7.2.2. By Type
    • 7.2.3. By End-User
    • 7.2.4. By Fuel Type
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Fuel Gas Supply System Module Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Application
        • 7.3.1.2.2. By Type
        • 7.3.1.2.3. By End-User
        • 7.3.1.2.4. By Fuel Type
    • 7.3.2. United Kingdom Fuel Gas Supply System Module Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Application
        • 7.3.2.2.2. By Type
        • 7.3.2.2.3. By End-User
        • 7.3.2.2.4. By Fuel Type
    • 7.3.3. Italy Fuel Gas Supply System Module Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Application
        • 7.3.3.2.2. By Type
        • 7.3.3.2.3. By End-User
        • 7.3.3.2.4. By Fuel Type
    • 7.3.4. France Fuel Gas Supply System Module Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Application
        • 7.3.4.2.2. By Type
        • 7.3.4.2.3. By End-User
        • 7.3.4.2.4. By Fuel Type
    • 7.3.5. Spain Fuel Gas Supply System Module Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Application
        • 7.3.5.2.2. By Type
        • 7.3.5.2.3. By End-User
        • 7.3.5.2.4. By Fuel Type

8. Asia-Pacific Fuel Gas Supply System Module Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Application
    • 8.2.2. By Type
    • 8.2.3. By End-User
    • 8.2.4. By Fuel Type
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Fuel Gas Supply System Module Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Application
        • 8.3.1.2.2. By Type
        • 8.3.1.2.3. By End-User
        • 8.3.1.2.4. By Fuel Type
    • 8.3.2. India Fuel Gas Supply System Module Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Application
        • 8.3.2.2.2. By Type
        • 8.3.2.2.3. By End-User
        • 8.3.2.2.4. By Fuel Type
    • 8.3.3. Japan Fuel Gas Supply System Module Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Application
        • 8.3.3.2.2. By Type
        • 8.3.3.2.3. By End-User
        • 8.3.3.2.4. By Fuel Type
    • 8.3.4. South Korea Fuel Gas Supply System Module Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Application
        • 8.3.4.2.2. By Type
        • 8.3.4.2.3. By End-User
        • 8.3.4.2.4. By Fuel Type
    • 8.3.5. Australia Fuel Gas Supply System Module Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Application
        • 8.3.5.2.2. By Type
        • 8.3.5.2.3. By End-User
        • 8.3.5.2.4. By Fuel Type

9. South America Fuel Gas Supply System Module Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Application
    • 9.2.2. By Type
    • 9.2.3. By End-User
    • 9.2.4. By Fuel Type
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Fuel Gas Supply System Module Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Application
        • 9.3.1.2.2. By Type
        • 9.3.1.2.3. By End-User
        • 9.3.1.2.4. By Fuel Type
    • 9.3.2. Argentina Fuel Gas Supply System Module Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Application
        • 9.3.2.2.2. By Type
        • 9.3.2.2.3. By End-User
        • 9.3.2.2.4. By Fuel Type
    • 9.3.3. Colombia Fuel Gas Supply System Module Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Application
        • 9.3.3.2.2. By Type
        • 9.3.3.2.3. By End-User
        • 9.3.3.2.4. By Fuel Type

10. Middle East and Africa Fuel Gas Supply System Module Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Application
    • 10.2.2. By Type
    • 10.2.3. By End-User
    • 10.2.4. By Fuel Type
    • 10.2.5. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Fuel Gas Supply System Module Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Application
        • 10.3.1.2.2. By Type
        • 10.3.1.2.3. By End-User
        • 10.3.1.2.4. By Fuel Type
    • 10.3.2. Saudi Arabia Fuel Gas Supply System Module Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Application
        • 10.3.2.2.2. By Type
        • 10.3.2.2.3. By End-User
        • 10.3.2.2.4. By Fuel Type
    • 10.3.3. UAE Fuel Gas Supply System Module Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Application
        • 10.3.3.2.2. By Type
        • 10.3.3.2.3. By End-User
        • 10.3.3.2.4. By Fuel Type
    • 10.3.4. Kuwait Fuel Gas Supply System Module Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Application
        • 10.3.4.2.2. By Type
        • 10.3.4.2.3. By End-User
        • 10.3.4.2.4. By Fuel Type
    • 10.3.5. Turkey Fuel Gas Supply System Module Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Application
        • 10.3.5.2.2. By Type
        • 10.3.5.2.3. By End-User
        • 10.3.5.2.4. By Fuel Type

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Company Profiles

  • 13.1. LGM Engineering (Gloryholders)
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. Wartsila Corporation
  • 13.3. DongHwa Entec Co., Ltd.
  • 13.4. MAN Energy Solutions SE
  • 13.5. Mitsubishi Shipbuilding Co., Ltd.
  • 13.6. TGE Marine Gas Engineering GmbH
  • 13.7. Kongsberg Maritime AS
  • 13.8. China State Shipbuilding Corporation (CSSC)
  • 13.9. Headway Technology Group (Qingdao) Co., Ltd.
  • 13.10. Trans Gas Solution

14. Strategic Recommendations

15. About Us & Disclaimer